THE PROBLEM OF QUEEN DIDO

Overview of the Subject of Isoperimetry
by
Mark Ashbaugh & Rafael Benguria !

The subject of isoperimetry has a long and eventful history, both for its
impact on people’s imaginations and society in general and for the impetus it
has given to the study of various mathematical subjects.

Isoperimetry began with the problem confronted by Queen Dido, which was
to find the shape of the boundary that should be laid down (using strips of
oxhide) to enclose maximum area. If one assumes a straight coastline, then the
answer, which was by all appearances discovered by Queen Dido, is to lay down
the hide in the shape of a semi-circle.

One finds the problem of Queen Dido colorfully described, including various
embellishments of the basic problem, in the expository account that Lord Kelvin
gave in 1893 (see http://math.arizona.edu/~dido/lord-kelvin1894.html).
If one takes account that land may vary in value, or that the coastline may
be irregular, one can arrive at various more complicated problems. In a much
more recent exposition, Hildebrandt and Tromba, in their book The Parsimo-
nious Universe: Shape and Form in the Natural World (originally published as
Mathematics and Optimal Form), give a much more detailed account of isoperi-
metric problems and their recurrence throughout history. In particular, it is
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interesting to see how many walled cities in the Middle Ages were constructed
to have a nearly circular perimeter, or to see in general that the growth of many
cities gave them a nearly circular form.

On the mathematical side, we find already in Euclid the proof that among
rectangles of a given perimeter the one having the greatest area is the square.
Also, various writers from antiquity were aware (or at least speculated) that the
honeycombs of bees, using a hexagonal design, were optimal from the point of
view of using the least material for a latticework of cells which would contain a
fixed volume per cell.

The mathematical study of the isoperimetric problem and related problems
really began to take off with the advent of calculus, when people like Newton,
Leibniz, the Bernoullis, and others developed systematic ways of attacking op-
timization problems based on the calculus, and within a few short years were
attacking problems in the calculus of variations (that is, the problem of find-
ing an optimizing path or shape of curve from among some class of curves).
For example, the brachistochrone problem was formulated by Johann Bernoulli
and solved by Newton and both Bernoulli brothers, Jakob (James) and Johann
(John). In the same period, the problem of the shape of a hanging chain (the
catenary) was posed and solved, and Newton considered the shape of projectile
which would give the least air resistance (the question of designing the optimal
shape for the nose-cone of a rocket or missile), but without reaching defini-
tive conclusions. Others, including US President Thomas Jefferson, considered
questions such as the optimal shape for ploughshares.

In the century following the early development of calculus by Newton, Leib-
niz, the Bernoulli brothers, and others, the calculus of variations was brought to
a relatively advanced state, especially from the point of view of direct solutions of
problems, by Euler and Lagrange. The explicit solution of the classical isoperi-
metric problem could be derived in those terms (using variational theory with
a constraint), and many other problems could be formulated and solved. Euler
and Lagrange had shown that all of mechanics could be put into this framework,
and that various physical and mathematical problems could be understood from
the point of view of various optimization or variational principles (recall Fer-
mat’s principle of least time, or, more generally, the d’Alembert/Maupertuis
principle of least action, for which Euler gave the definitive formulation). Al-
most a century later, Jacobi and Hamilton also made important contributions
to this area, especially as regards mechanics.

In the 19th century Jakob Steiner attacked the classical isoperimetric prob-
lem using direct geometrical tools, which were very suggestive and instructive
and led to many further developments. Around this time, however, Weierstrass
realized that there could be subtle problems involved with attacking certain
extremization problems, since it might be that no extremizer exists. Since that
time it has been recognized that the existence question is where one must be-
gin in attacking many problems from geometry and the calculus of variations.
This led to various existence and uniqueness results, and to the so-called direct
methods of the calculus of variations, wherein one tries to prove existence di-
rectly using extremizing sequences and various mathematical tools (developed



by Weierstrass, Schwarz, Poincaré, Hilbert, and their contemporaries, and also
more modern contributors, up to the present time).

A very useful development that came around the turn of the 20th century was
Hurwitz’s realization that the classical isoperimetric problem could be solved
relatively simply in terms of Fourier series and some of their basic properties
(e.g., Wirtinger’s inequality). The Fourier analysis approach to the isoperimet-
ric inequality gave rise to further studies in higher dimensions where spherical
harmonics take the place of Fourier series. This field is nicely summarized from
a modern perspective in Groemer’s book, Geometric Applications of Fourier
Series and Spherical Harmonics.

From the point of view of engineering and design, perhaps the first truly
interesting isoperimetric problem was to consider “the shape of the strongest
column,” a problem formulated by Lagrange in 1773 (but not fully solved until
much later). In the mid 1800’s T. Clausen was able to make his way around
some of the points that Lagrange had stumbled over, though some questions
have remained about the problem and its resolution up to recent times. See
Steve Cox’s Mathematical Intelligencer article, “The shape of the ideal column”
to get a sense of where things stand currently. Several of the most pertinent
recent contributors include J. Keller, I. Tadjbakhsh, M. Overton, and S. Cox.
This problem has to do with the buckling of columns, and similar problems can
be considered for horizontal beams under a variety of loads, and for plates and
other structural members having greater geometrical complexity.

Also in the mid 1800’s, J. C. B. St. Venant put forward the question of
finding the cross-section of a uniform column that would be most resistant to
twisting (the so-called “problem of torsional rigidity”). He conjectured that for
a given cross-sectional area, assumed to be a simply-connected region (and with
all other physical parameters held fixed), the shape giving the greatest torsional
rigidity was the circular one. This problem was finally resolved by George Pélya
in 1948 (in the sense that St. Venant had conjectured). Much work has been
done on torsion problems since that time, since it is also of interest to consider
non-simply connected regions and other variations of the basic problem.

A few years after St. Venant considered the torsion problem, Lord Rayleigh
set forth (and formulated conjectures for) (1) the shape of drum that would
minimize its fundamental (or “base”) tone for fixed area (with other physical
parameters held fixed), (2) in static electricity, the shape of capacitor among
simply-connected bodies of finite extent that would minimize capacity for given
volume, and (3) the shape of clamped plate that would minimize its fundamental
frequency for given area. In each case Rayleigh conjectured that the minimizing
shape was circular (or spherical, in the case of the 3-dimensional capacitor
problem).

Other related problems include the question of what shape minimizes heat
loss (described colorfully by Pdélya as the explanation for why a cat curls itself
into a ball on a cold winter’s night) and the shape of a body that minimizes its
(gravitational) potential energy.

All of the aforementioned physical problems can be formulated as variational
problems, with many leading directly to eigenvalue problems. In the early part



of the 20th century there was interesting progress on several of these problems,
the most spectacular being the solution of the problem of minimizing the funda-
mental tone of a drum by Faber and Krahn in independent papers in the early
to mid 1920’s (the answer is that one should take a circular drum of the given
area). Somewhat before Faber and Krahn, Courant had obtained a weaker ver-
sion of the result, that for fixed perimeter the way to minimize the fundamental
tone was to take a circular drum. Earlier Poincaré had made progress on the
capacity problem, with the full solution due to Gabor Szegé coming in 1930.

Around 1950, Pélya and Szeg6 took on the job of studying and systematizing
prior works on physical isoperimetric problems, and of advancing the field on
a wide front. Their book Isoperimetric Inequalities in Mathematical Physics,
published at that time, is a classic of the field. The techniques that they put
at the forefront included Steiner symmetrization, and, generally, rearrangement
inequalities. It could quite justifiably be said that all modern work on isoperi-
metric inequalities for physical quantities builds on the work of Pélya and Szeg6
and their collaborators. Pdélya and Szegd’s book contains, for example, the so-
lutions to the St. Venant and capacity problems mentioned above.

Pélya and Szeg@’s interest in the subject stimulated interest by others and
led to many important and interesting develoments in the field. Perhaps fore-
most among the early contributors to these developments are Payne, Hersch,
and Weinberger, who participated in many of the advances and inspired their
students and others to enter the field. Thus we find Payne, Pélya, and Wein-
berger obtaining very simple and nice universal inequalities for combinations of
eigenvalues in the mid-50’s, and conjecturing what the sharp forms of certain
of these inequalities might be. This leads one into the subject of isoperimetric
inequalities for eigenvalue ratios, which attracted considerable interest (partic-
ularly the ratio Ay/A;) and was finally solved by Ashbaugh and Benguria in
1990. Following a significant advance in work of H. C. Yang in the early 90’s,
the subject of universal eigenvalue inequalities has taken off, with many papers
contributing to and advancing the subject, and with much work continuing to
the present day. The work of Yang has allowed researchers to make fundamental
connections between the field of universal eigenvalue inequalities and the sub-
ject of eigenvalue asymptotics, as begun by Hermann Weyl around 1910. This,
too, is a burgeoning field, with key recent contributors including Q. M. Cheng
and H. C. Yang, E. M. Harrell and L. Hermi, E. M. Harrell and J. Stubbe, and
several others.

Conformal methods play an important role in the study of two-dimensional
problems. Szegd used them to prove that the disk minimizes 3 ()~ + 2 ()71
in the class of simply connected planar domains of given area (here the ;’s are
the positive eigenvalues of the Neumann Laplacian). Hersch proved that the
smallest positive eigenvalue of the Laplace—Beltrami operator on a two-sphere
cannot exceed the one of the operator for the round metric of the same area. The
crucial observation is that the numerator in the Rayleigh quotient, [ |Vu|?*dz,
is conformally invariant when the dimension equals 2. P. C. Yang and S.-T.
Yau proved that the first positive eigenvalue on a surface of genus g of given
area has an upper bound; moreover, they gave a precise bound. In the case



g = 2, Jacobson, Levitin, Nadirashvili, Nigam, and Polterovich proved that
Yang and Yau’s bound is sharp, and it is saturated on a singular metric on a
surface of conformal type of 32 = 2® — x. Their proof relied on some numerics;
that would be interesting to have a numerics-free proof. In the case when the
dimension of a manifold is higher than 2, Urakawa proved that, in the class of
metrics of fixed volume, the first positive eigenvalue of the Laplacian can be
arbitrarily large. However, within a given conformal class, it is bounded, and
these upper bounds are bounded from below when one varies conformal classes
(Friedlander, Nadirashvili). Recently, Colbois, Dryden, and El Soufi studied
bounds for eigenvalues of the Laplacian for G-invariant metrics in a certain
conformal class. Here GG is a Lie group acting on a manifold.

Obviously there are many other topics that figure in the history of isoperi-
metric problems and related areas and the most we could do here was point
out some of the highlights. To help make up for the deficiencies of such cov-
erage, we conclude with a brief summary of some of the relevant literature,
which it is hoped can be used to widen the coverage and give hints of other
worthy topics in the general area. For historical orientation, we recommend the
article by Lord Kelvin and the expository book by Hildebrandt and Tromba
(both mentioned earlier). For further background on the classical isoperimetric
problem one cannot do better than to consult the book of Burago and Zal-
galler (Geometric Inequalities and the 1978 review article in the Bulletin of the
American Mathematical Society by Robert Osserman (“The isoperimetric in-
equality”). Other books and articles of interest include Tikhomirov’s Stories
of Mazima and Minima, Pélya’s Mathematics and Plausible Reasoning (in 2
vols.; the most relevant sections of this can be found at the conference web-
site, http://math.arizona.edu/~dido/polyal954.html), and Pdlya’s article
“Circle, sphere, symmetrization, and some classical physical problems”, or D.
Pedoe’s Circles: A Mathematical View and N. Kazarinoff’s Geometric Inequali-
ties. For aspects of the isoperimetric problem occurring in the setting of Rieman-
nian geometry one can consult the books of Chavel (Eigenvalues in Riemannian
Geometry, Riemannian Geometry: A Modern Introduction, and Isoperimetric
Inequalities: Differential Geometric and Analytic Perspectives) and of Marcel
Berger (A Panoramic View of Riemannian Geomelry; or see his books Geome-
try I and II for much useful related information, mostly in the classical setting).
Chavel’s book Figenvalues in Riemannian Geometry includes topics that extend
well into the domain of isoperimetric inequalities for physical quantities.

On the side of isoperimetric inequalities for physical quantities one can find
much of interest in the works of Pdlya and Chavel already mentioned. In
the 1960’s and beyond, a key role was filled by Payne’s SIAM Review pa-
per, “Isoperimetric inequalities and their applications.” This paper provides
the background and setting for many physical isoperimetric problems (including
their mathematical formulation), and also states a variety of open problems and
conjectures. In 1991, Payne updated his discussion of many of these problems
in his contribution “Some comments on the past fifty years of isoperimetric in-
equalities” to the book Inequalities: Fifty Years on from Hardy, Littlewood and
Pdlya, edited by W. N. Everitt. Beyond that, one has the books of C. Bandle
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(Isoperimetric Inequalities and Applications), R. Sperb (Mazimum Principles
and Their Applications), and B. Kawohl (Rearrangements and Convexity of
Level Sets in PDE), dating to the early to mid 80’s, and the more recent books
of D. Bucur and G. Buttazzo ( Variational Methods in Shape Optimization Prob-
lems), A. Henrot (Extremum Problems for Eigenvalues of Elliptic Operators),
and S. Kesavan (Symmetrization and Applications).

Finally, we mention the excellent book by Lieb and Loss, Analysis, sec-
ond edition, which covers much of interest in the field of symmetrization and
rearrangements in the context of the classical inequalities of analysis and math-
ematical physics, as well as much else besides. In particular, the book covers
the problems of minimizing capacity and gravitational potential energy, and has
a full discussion of Lieb—Thirring inequalities and their relation to the question
of the stability of matter.

Detail from a sketch made in commemoration of Carlos Quintos’
campaign on the doubled-walled city of Tunis, clearly satisfying the
isoperimetric property of the circle. (31 August 1535).



