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Here, recent spectral properties of some linear and nonlinear problems in spaces of con-

stant curvature are reviewed. In particular, isoperimetric inequalities for low eigenvalues

of the Laplace–Beltrami operator with Dirichlet and Neumann boundary conditions on

smooth bounded domains on both Sn and Hn are considered. Also, I consider the Brézis–

Nirenberg problem in those spaces.
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1. Introduction

During the last decade, there has been an increasing interest in the properties of
several spectral problems in spaces of constant curvature, in particular in problems
defined on the n–dimensional sphere and also on the hyperbolic space. In general,
most properties of the analog problems defined on the Euclidean Space, do hold in
the hyperbolic case, and even in the case of S

n as long as the domains are restricted
to live on a hemisphere. The situation changes, however, when the domains are
allowed to extend beyond a hemisphere of S

n. Here I only address, as examples, two
completely different situations. The first one being the isoperimetric inequalities
for the low lying Dirichlet and Neumann eigenvalues. The second being the analog
of the Brézis–Nirenberg problem on both S

n and H
n. In the case of S

n, when the
domain extends beyond the hemisphere, many interesting new features do appear.
In the last few years there have also been many articles on universal inequalities for
eigenvalues of the Laplace–Beltrami operator on spaces of constant curvature, as
well as spectral problems for higher order operators on those spaces (in particular
the study of the analog of the clamped plate problem and many others), I will not
review those results here. In Section 2, I will review the isoperimetric problems for
eigenvalues of the laplacian and in Section 3, I will review the Brézis–Nirenberg
problem in S

n and in H
n. It is interesting to note (and that is the reason I am

treating these two, certainly different problems, together) that for some of the same
reasons the proof of the typical isoperimetric inequalities for low eigenvalues of the
laplacian fails in the case of geodesic caps that extend beyond the hemisphere in S

n,
one encounters a whole new class of unexpected solutions for the Brézis–Nirenberg
problem on those domains.

RB
Sticky Note
Laplacian

RB
Sticky Note
fail

RB
Sticky Note
Laplacian



January 9, 2011 12:34 WSPC - Proceedings Trim Size: 9.75in x 6.5in QMath11proc

132

2. Isoperimetric inequalities for eigenvalues of the Laplacian

Consider the eigenvalue problem,

−∆u = λu, in Ω (1)

with u = 0 in ∂Ω, where Ω is a bounded domain in R
n. It is well known that this

problem has a sequence of values of λ (the Dirichlet eigenvalues), i.e.,

0 < λ1 < λ2 ≤ λk . . . ,

for which (1) has a nontrivial solution. Associated with each λk there is an eigen-
function uk ∈ H1

0
(Ω). Certainly, the eigenvalues λk(Ω) depend on the geometry of

the domain. In 1877, Lord Rayleigh conjectured that among all domains of fixed
area (in two dimensions) the circular domain has the lowest λ1. Rayleigh’s conjec-
ture was proved independently by G. Faber (1923) and E. Krahn (1925). Moreover,
Krahn extended this result to n dimensions. This fact is known as the Rayleigh–
Faber–Krahn (RFK) inequality, which reads,

λ1(Ω) ≥

(

Cn

|Ω|

)2/n

j2

n/2−1,1 = λ1(Ω
∗), (2)

where jm,1 denotes the first positive zero of the Bessel function Jm and Cn is
the volume of the unit sphere in n dimensions. Here, Ω∗ denotes a ball of the
same volume of Ω. Equality is obtained in (2) if and only if Ω is a ball. There are
many different proofs of the RFK inequality. Perhaps the simplest is based on the
use of the variational characterization of λ1 together with properties of symmetric
decreasing rearrangements of functions. The RFK inequality has been extended to
many other situations. In particular to the Dirichlet problem for domains on S

n by
E. Sperner [1], and domains on H

n, by I. Chavel [2]. In 1992, A. Melas [3] proved
the stability of the RKK inequality in the euclidean space. Stability here refers to
the fact that if for a bounded, convex domain in R

n, λ1(Ω)|Ω| differs little from the
value that this quantity assumes for the ball, then the domain is approximately a
ball (Melas also proved the stability of the PPW inequality that I discuss below).
The stability for the analog of the RFK inequality for domains on on S

n was proved
by A. Avila [4].

Consider now the corresponding Neumann problem for a bounded smooth do-
main, Ω ⊂ R

n, n ≥ 2. That is,

−∆u = µu, in Ω, (3)

and ∂u/∂n = 0 in ∂Ω. Then, there is a sequence of values, 0 = µ0(Ω) < µ1(Ω) ≤
µ2(Ω) . . . , for which there is a nontrivial solution of the Neumann problem. In 1954,
G. Szegö proved the isoperimetric inequality (for the case n = 2):

µ1(Ω) ≤ µ1(Ω
∗) =

πp2

1,1

A
, (4)

where p1,1 = 1.8412 . . . is the first positive zero of the derivative of J1(t). The
analogous result for n ≥ 2 was proven by H. Weinberger in 1956. The analog of
the Szegö–Weinberger inequality S

n was proven by Mark Ashbaugh and myself
in 1995, [5]. However, our proof only works for domains that are contained in a
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hemisphere. Whether the corresponding result holds for domains that extend beyond
a hemisphere, is still an open problem. In the case of the hyperbolic space, there
are technical difficulties, but essentially the original proof of Weinberger (in the
Euclidean case) can be carried through for any bounded domain in H

n [2, 5].
In this context, the next simplest inequality that one can consider concerns

the ratio between the first two Dirichlet eigenvalues. In 1955, L. Payne, G.Pólya
and H. Weinberger [PPW] proved the universal inequality λ2(Ω)/λ1(Ω) ≤ 3 for
bounded, smooth domains in R

2. The PPW inequality in n dimensions reads,
λ2(Ω)/λ1(Ω) ≤ (1 + 4/n). There is a vast literature on universal inequalities for
eigenvalues of the Laplacian (i.e., inequalities between eigenvalues which are in-
dependent of the domain), including recent works of H.-C. Yang, and collabora-
tors, Harrell and Stubbe, Harrell and Hermi, Ashbaugh and Hermi, Levitin and
Parnovski. At the same time, PPW conjectured the bound,

λ2(Ω)

λ1(Ω)
≤

λ2(Ω
∗)

λ1(Ω∗)
=

j2

1,1

j2

0,1

≈ 2, 539, for all Ω ⊂ R
2, bounded. (5)

The PPW conjecture was proven by Mark Ashbaugh and myself [6–8]. The proof of
the PPW inequality (5) is done in five steps: i) The first is to use a Rayleigh–Ritz
variational estimate for the second Dirichlet eigenvalue (the so called gap formula);
ii) in the second step one exploits the degeneracy of the second eigenvalue (for the
conjectured maximizing domain), and then averages, using a Center of Mass ar-
gument to insure the necessary orthogonality; more technically, one uses a Brower
Fixed Point Theorem at this stage; iii) in the third step, one guesses the right
variational trial function (the guess is obviously based on the properties of the
maximizing domain). Then, one has to prove monotonicity properties for functions
associated to the trial function; iv) then one uses symmetrization (symmetric de-
creasing rearrangements), and, finally, v) a comparison theorem due to G. Chiti.

The analogous result for domains in S
n was proved in [9], but, again, only

for domains contained in a hemisphere. It is still an open problem to determine
whether a PPW inequality, like (5) is true for domains in S

n extending beyond
a hemisphere. The main reason (but not the only one) that our proof fails for
domain that extends beyond a hemisphere is that we cannot prove the monotonicity
properties associated to the trial functions (i.e., the main part of step iii) in the
proof of PPW). This failure relies on the fact that the Laplace–Beltrami operator
(in geodesic ccordinates) acting on radial functions has a term proportional to the
radial derivative and the coefficient changes sign when going beyond the hemisphere
(see equation (9) below. On the contrary, for both the Euclidean and the Hyperbolic
cases the corresponding coefficient is of one sign.

Concerning the hyperbolic space, the corresponding result was proven by H.
Linde and myself [10]. In the case of H

n case one cannot hope to prove that λ2/λ1(Ω)
is maximized by geodesic balls (this is in fact not true in general). The point here is
that the ratio λ2(B)/λ1(B), where B is a geodesic ball, is not a decreasing function
of the radius of the ball, as needed to complete the analog of the Chiti’s compari-
son argument (step 5 in the proof of the euclidean case). Notice, that this ratio is
independent of the radius of the ball in the euclidean case, and it has the right mono-
tonicity property for domains in S

n. Thus, in the H
n case what one proves is that
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among all domains having a fixed λ1(Ω) eigenvalue, it is the geodesic ball the one
that maximizes λ2. For some recent detailed reviews on isoperimetric inequalities
for eigenvalues of the laplacian, see, e.g., [11, 12].

3. Brézis–Nirenberg problem in S
n and H

n

Consider the boundary value problem

−∆u = λu + u5, (6)

in Ω ⊂ R3, bounded, with Dirichlet boundary conditions. Brézis and Nirenberg [13]
considered the problem of determining the range of values of the parameter λ for
which the above problem has a positive solution, u > 0 in Ω. If the domain Ω is a
ball (of radius R, say), that range is precisely given by

λ1

4
< λ < λ1, (7)

where λ1 = π2/R2 is the first Dirichlet eigenvalue of the ball. For general domains,
there exists a value 0 < λ∗

1
(Ω) < λ1(Ω), such that for λ ∈ (λ∗

1
, λ1) the above problem

has a positive solution. The proof of the Brézis–Nirenberg result goes in two steps:
i) Nonexistence: For λ ≥ λ1, just multiply (6) by the first Dirichlet eigenfunction
of the domain, integrate in Ω and you are done. Moreover, when the domain is a
ball, use a refinement of the Rellich–Pohozaev identity in order to show that there
are no positive solutions for λ ≤ λ1/4.
ii) Existence: In order to show existence in the interval (λ1/4, λ1) (for the case of
the ball), one uses the Brézis–Lieb compactness argument [14].

The corresponding problem,

−∆S3u = λu + u5 (8)

for u > 0 on geodesic balls D′(θ∗) on S
3 with Dirichlet boundary conditions was

considered in [15]. Here, without loss of generality the geodesic ball is centered at
the north pole, and θ∗ is the azimuthal angle of the boundary of D′. Using a moving
plane method (more precisely a moving spheres method) introduced by Padilla [16]
one can prove that the positive solutions of (8) (when θ∗ ≤ π/2, i.e., when D′ lies
inside a hemisphere) ara radially symmetric, i.e., they only depend on the azimuthal
angle θ. In geodesic coordinates, for radial functions,

∆S3u = u′′(θ) + 2 cot θ u′(θ) (9)

For domains lying inside a hemisphere the situation is similar to the euclidean case.
One has the following result:

Theorem 3.1 ( [15]). If λ > −3/4, there is a positive solution to (8), if and only
if,

λ∗

1
=

π2 − 4θ∗2

4θ∗2
< λ <

π2 − θ∗2

θ∗2
.

If λ ≤ −3/4, and θ∗ ∈ (0, π/2] there are no positive solutions to (8).
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As in the Euclidean case, the existence part relies on the Brézis–Lieb compactness
result. The nonexistence part relies on a refined Rellich–Pohozaev argument. The
picture for the geodesic balls contained in a hemisphere is not surprising. It is to be
expected, after the results of Bandle and Peletier on best critical constants for the
Sobolev embeddings in S

3, in the case λ = 0 [17].
On the other hand, once we exceed the hemisphere, interesting new solutions

start appearing. Originally, we proved the following result.

Theorem 3.2 ( [15]). Given any θ∗ ∈ (π/2, π), there exists at least two non con-
stant solutions of the Brézis–Nirenberg problem on D′ ⊂ S

3, as long as λ is suffi-
ciently large (and negative).

Later, Bandle and Stingelin [18] numerically found a double sequence of new positive
solutions for domains exceeding the hemisphere. Then, independently, Chen and
Wei [19], Brézis and Peletier [20], and Bandle and Wei [21, 22] completely classified
all the positive solutions to this problem. In particular one has,

Theorem 3.3 ( [20]). Given any θ∗ ∈ (π/2, π), there exists a constant Ak > 0
such that for λ < −Ak, the Brézis–Nirenberg problem has at least 2k solutions, such
that at the North–Pole, u(0) ∈ (0, |λ|1/4).

While in the S
3 case there is this rich set of solutions once we exceed a hemisphere, in

the hyperbolic case the situation is completely analogous to the one for the euclidean
space. The analogous problem for geodesic balls in the hyperbolic space H

3 (in fact
for H

n, with n ≥ 3) was considered in the Ph.D. Thesis of Silke Stapelkamp [23]. She
considers the following realization of H

3 (as the positive branch of an hyperboloid
embedded in R

4):

H
3 =

{

x ∈ R
4

∣

∣ x2

1
+ x2

2
+ x2

3
− x2

4
= 1, x4 > 0

}

and, moreover she considers the stereographic projection of H
3 into R

3 (in fact into
the euclidean apsce defined as x4 = 0), from the point (0, 0, 0,−1) in R

4. Then,
among many other results (including results for geodesic balls in H

n, with n ≥ 4),
she proved the following theorem for geodesic balls in H

3.

Theorem 3.4 ( [23]). Let D′ be a geodesic ball in H
3, with center at (0, 0, 0, 1).

Let D = B(0, R), 0 < R < 1 be the stereographic projection of D′ into R
3. Let,

λ∗ = 1 +
π2

16(tanh−1(R))2
. (10)

Then,
i) If λ ≤ λ∗, or λ ≥ λ1, the Brézis–Nirenberg problem on D′ has only trivial
solutions.
ii) Moreover, if λ ∈ (λ∗, λ1), there is a nontrivial positive solution to the Brézis–
Nirenberg problem on D′.

Remark: Here, λ1 denotes the first Dirichlet eigenvalue of the Laplace–Beltrami
operator on D′ ⊂ H

3. It is clear from (10) that λ∗ → 1 as R → 1. Moreover, one
can check also that λ1(R) → 1 as R → 1. The proof of this theorem follows the same
steps as in the case of R

3 and S
3. In particular, it uses the fact that the positive
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solutions of the Brézis–Nirenberg equation on D′ ⊂ H
3 are radial, which is proved

using a generalization of the moving planes method. For higher dimensions, if D′ is
now any bounded domain in H

n, n ≥ 4, the Brézis–Nirenberg problem does not have
nontrivial solutions if λ ≥ λ1, nor does it if it is star shaped, and λ ≤ n(n−2)/4. On
the other hand, there exists a nontrivial solution if λ ∈ (n(n−2)/4, λ1). The proof of
existence relies on a concentration-compactness argument, while the nonexistence
result for star shaped domains, when λ < n(n − 2)/4, relies on a Rellich–Pohozaev
argument.
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