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Abstract. For the case of the bipolaron, it has been recently proved that for U ≥ 53.2α,
where U is the repulsion parameter of the electrons, and α is the coupling constant of the
polaron, no binding occurs. We show that actually for U ≥ 52.1α, there is no binding.
Furthermore, we obtain special results for small and large values of α: more specifically, we
prove that for each ε > 0, there is an α1 and an α2, such that if 0 < α ≤ α1, a condition
for no–binding becomes U ≥ (40.4 + ε)α, and if α ≥ α2, it is U ≥ (38.7 + ε)α. Here, α1 can
be computed with any desired accuracy, whereas we were only able to prove the existence of
such an α2.

1. Introduction

The polaron was first considered by Fröhlich [9, 10] as a model of one non–relativistic
electron interacting with the longitudinal, optical phonons in the periodic lattice of atoms of
a polar crystal (e.g., NaCl). More precisely, the polaron is a quasi–particle, which corresponds
to the electron plus the phonons created by the interaction of the electron with the electric field
of the neighboring ions. Fröhlich derived the Hamiltonian of the polaron with the immediate
interest of explaining the phenomenon of electrical breakdown in polar crystals. It was later
called the “large” polaron, since in the formulation of the model, it was assumed that the
distortion of the lattice, due to the electron, comprised several lattice constants, and so the
medium was treated as a continuum. Since the creation of the model and its corresponding
Hamiltonian, the study of polarons has been in part stimulated by the fact that it is a simple
description of a particle interacting with a quantum field, in the context of non–relativistic
quantum mechanics. For a self-contained introduction to polarons, the reader may consult
[19]. Also, a very complete review of what was known about it, until 1969, is in [3].

The N–polaron is the extension to the case of N electrons, interacting not only with the field
of phonons, but also with each other through their mutual Coulomb repulsion. N–polarons
may play an important role in superconductivity at high temperature [1, 2], so there is some
interest in knowing under what circumstances they may be formed, that is, the ground–
state energy of the N–polaron is smaller than N times that of the polaron (and thus the
N–polaron configuration being energetically more favorable). In studying this question, we
will concentrate ourselves only on the bipolaron.

1.1. The bipolaron Hamiltonian. We first introduce the Hamiltonian of the polaron,

H1 = p2 − 1

π

√
α

2

∫ [
a(k)eikx + a(k)†e−ikx

] dk
|k|

+

∫
a(k)†a(k) dk. (1)
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As it is usual, whenever we omit the subscript in the integrals, integration in R3 is understood.
Moreover, x ∈ R3 is the position of the electron, and p is the corresponding momentum. Here,
a(k) denotes the lowering operator for the harmonic oscillator corresponding to the mode
k ∈ R3 of the field, and this operator and its adjoint satisfy the canonical commutation
relation

[
a(k), a(k′)†

]
= δ(k − k′), where δ is the Dirac delta. The first term corresponds to

the kinetic energy of the electron (p is given by −i∇), the second one to the interaction of the
electron with the phonon field, and the last term is the energy of this field. The units used
here are such that ~ = 2m = ω = 1, where m is the band mass of the electron, and ω is the
frequency of the phonons. We point out the fact that the dispersion relation is indeed ω = 1,
that is, there is no dependence of the frequency of the phonons upon the mode of the field;
this is part of the assumptions made for the derivation of this Hamiltonian by Fröhlich. This
operator will act on the Hilbert space L2(R3) ⊗ F , where F is the Fock space associated to
the phonons. Here, α is a positive, dimensionless constant, known as the coupling constant
for the polaron, and there is an explicit expression for it; restoring units, it is given by,

α =
e2

2~ω

(
2mω

~

)1/2(
1

ε∞
− 1

ε0

)
, (2)

where ω is as before, the frequency of the phonons, e is the charge of the electron, and ε0 and ε∞
are known as the static and high–frequency dielectric constants of the material, respectively.

The bipolaron Hamiltonian is simply a generalization of the previous operator, and is ob-
tained by including the electronic repulsion:

H2
U = p21 + p22 −

1

π

√
α

2

∫ [
a(k)eikx1 + a(k)†e−ikx1

] dk
|k|

− 1

π

√
α

2

∫ [
a(k)eikx2 + a(k)†e−ikx2

] dk
|k|

+

∫
a(k)†a(k) dk

+
U

|x2 − x1|
,

(3)

where xi and pi are the position and the momentum of the i-th particle. Here, U is, in these
units, a dimensionless parameter. It is given by e2/ε∞, and it satisfies an important relation:
notice that,

α <
e2

2~ω

(
2mω

~

)1/2
1

ε∞
, (4)

and so we must have U > 2α. We will assume this condition hereafter.
Given N , the number of electrons, we are interested in the ground-state energy of HN

U (N
being 1 or 2, and H1

U being written as H1), denoted by EN
U , which is defined by,

EN
U = inf

{〈
ψ
∣∣HN

U

∣∣ψ〉 : ψ ∈ L2(R3N)⊗F , ‖ψ‖ = 1
}
. (5)

As can be seen from the definition of EN
U , we will not treat the electrons as fermions, spin will

also be discarded. E1
U will be denoted by E1. Finally, the binding energy of the bipolaron is

given by,

2E1 − E2
U . (6)
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1.2. Bipolaron formation. With the information at hand, we can now state the question
presented previously in more precise terms: given α > 0, for what values of U will bipolarons
not exist?, that is, for what values of U , E2

U = 2E1, and so making the binding energy equal
to zero? It will suffice to find values of U for which E2

U ≥ 2E1 because the other inequality is
always true, due to the subadditivity of the energy, E2

U ≤ 2E1 [11, 12, 16] which is valid in a
more general setting.

In a recent article, Frank, Lieb, Seiringer and Thomas [7, 8] have proved that, for any α > 0,
no binding occurs if U ≥ 53.2α, thus finding an interesting linear law. In particular, it shows
that bipolarons will not be formed if the mutual repulsion among the electrons is sufficiently
strong; in this case, the attraction that is caused by the electric field of the ions is not able to
overcome this repulsion. It is known that bipolarons will be formed if U ≤ 2.3α, at least in
the limit α→∞ [20, 21], and in this case the opposite phenomenon occurs: the electric field
due to the ions of the lattice is able to keep the electrons bound together.

Assuming that the bipolaron Hamiltonian is bounded from below (which will become appar-
ent soon), it is seen that E2

U is a monotone increasing function of U , which arises from taking
an inner product with some vector in the Hilbert space, and then bounding appropriately and
obtaining the infimum at both sides. Thus, the result of no binding for large enough U would
be deduced if we knew that no binding occurs for some U .

Whether or not the correct behavior is a linear law (recall that if U ≥ 53.2α, no binding
occurs), we may generalize by stating that there is a function Uc(α), such that no bipolaron
will be formed if U > Uc(α), and binding will occur if U < Uc(α). This function exists since
we can actually define it as,

Uc(α) = inf
{
U > 2α : 2E1(α) = E2

U(α)
}
. (7)

A priori, the infimum may belong to the set or not, so we do not mention the case U = Uc(α).
This function could be 2α, for some α; actually, some works suggest that limα→0+ Uc(α)/2α = 1
[4, 21, 22], however we believe no formal proof of this result exists. On the other hand, we do
not know how small the value,

sup
α> 0

Uc(α)

α
, (8)

could be. The previously stated result affirms that it is smaller than or equal to 53.2.

2. Overview of the results

We will now explain each of the results obtained; the proofs will be presented in the next
sections:

a) An improvement upon supα>0 Uc(α)/α. We were able to improve slightly the numerical
constant 53.2 to 52.1, which corresponds to a reduction of about two percent. The proof is
based on a method developed in [7]. (See Section 3 below).

b) The case of weak coupling α → 0. For sufficiently small coupling constant α, the
previous result has been lowered; though the relation is no longer linear. More specifically, we
have found an explicit error function δ1(α), such that for any α < 3/4, if,

U ≥ 40.4α + δ1(α), (9)

where δ1(α) > 0, and limα→0 δ1(α)/α = 0, then E2
U(α) = 2E1(α). By definition of limit, this

can be stated in a different form: for each ε > 0, there is a α1 > 0, such that if 0 < α ≤ α1,
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no binding occurs provided U ≥ (40.4 + ε)α (and thus recovering a linear law). This α1 is
unique and can be computed with any desired accuracy, as we shall see below. (See Section
4 below).

c) The case of strong coupling α→∞We have obtained an analogous result in the limit
α→∞. An error function δ2(α) > 0 is found, such that, for all α > 0, if,

U ≥ 38.7α + δ2(α), (10)

where δ2(α)/α → 0 as α → ∞, then no binding occurs. Alluding again to the definition of
limit, this result can be cast in a similar form to that shown in the case of weak coupling.
However, contrary to that situation, we are only able to prove that a corresponding value
exists, not to evaluate it. (See Section 5 below).

3. An improved linear law

Here we prove the following theorem,

Theorem 3.1. For any α > 0, if U ≥ 52.1α, no bipolaron is formed.

As was said previously, the proof is based on a method used in [7]. Actually, it is almost the
same, except that we consider the variables that appear there in a more general setting. We
begin by performing a partition of unity [5, Section 3.1] on the variable |x2 − x1|, the relative
distance between the two electrons. To this end, consider the family of functions ϕj, given by,

ϕ1(t) =

cos

(
πt

2a1

)
0 ≤ t < a1

0 t ≥ a1,

(11)

ϕ2(t) =


sin

(
πt

2a1

)
0 ≤ t < a1

cos

[
π(t− a1)

2a2

]
a1 ≤ t < a1 + a2

0 t > a1 + a2,

(12)

ϕj(t) =



sin

[
π (t− Sj−2)

2aj−1

]
Sj−2 ≤ t ≤ Sj−1

cos

[
π (t− Sj−1)

2aj

]
Sj−1 ≤ t ≤ Sj

0 otherwise,

(13)

where Sj =
∑j

i=1 ai. For the moment, aj are arbitrary numbers; we only impose that aj > 0
and

∑∞
i=1 ai =∞. Equation (13) is written for j ≥ 3. We see that for any t ∈ [0,∞),

∞∑
i=1

ϕi(t)
2 = 1. (14)



IMPROVED RESULTS ON THE NO–BINDING OF BIPOLARONS 5

Now, we partition |x2 − x1| with this set of functions, and (using the standard IMS local-
ization formula, see, e.g., [5]) we conclude that,

H2
U =

∞∑
i=1

ϕi(|x2 − x1|)H2
Uϕi (|x2 − x1|)− 2

∞∑
i=1

ϕ′i (|x2 − x1|)
2

=
∞∑
i=1

ϕi
[
H2
U −R

]
ϕi,

(15)

where,

R ≡ 2
∞∑
i=1

ϕ′i(|x2 − x1|)2, (16)

is the localization error.
Given ψ ∈ L2(R6)⊗F , with ‖ψ‖ = 1, we can write 〈ψ |H2

U |ψ〉 as,

∞∑
i=1

〈
ψϕi

∣∣∣∣(H2
0 +

U

|x2 − x1|
−R

)∣∣∣∣ψϕi〉 . (17)

If we are able to find a U0(α), such that for any U ≥ U0(α),〈
ψϕj

∣∣∣∣(H2
0 +

U

|x2 − x1|
−R

)∣∣∣∣ψϕj〉 ≥ 2E1‖ψϕj‖2, (18)

for each j ≥ 1, then, 〈
ψ
∣∣H2

U

∣∣ψ〉 ≥ 2E1, (19)

from which the conclusion will follow. For j = 1, we will have,〈
ψϕ1

∣∣∣∣(H2
0 +

U

|x2 − x1|
−R

)∣∣∣∣ψϕ1

〉
≥
〈
ψϕ1

∣∣∣∣(H2
0 +

U

a1
− π2

2a21

)∣∣∣∣ψϕ1

〉
, (20)

and now we use Lemma 2 of reference [7]; for us it will be called Lemma 1:

Lemma 3.2. For all α > 0, if φ ∈ L2(R6)⊗F ,〈
φ
∣∣H2

0

∣∣φ〉 ≥ [2E1 − 7

3
α2

]
‖φ‖2. (21)

Therefore, the right hand side of (20) is bounded from below by,[
2E1 +

U

a1
− π2

2a21
− 7

3
α2

]
‖ψϕ1‖2. (22)

Then the condition (18) will be satisfied if U is such that,

U ≥ 7

3
α2a1 +

π2

2a1
. (23)

For j = 2, we repeat the argument, and find that it is enough for U to satisfy,

U ≥
[

7

3
α2 +

π2

2 min(a1, a2)2

]
(a1 + a2), (24)

where min denotes the minimum of its two arguments.
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Since for any a1, a2 > 0,[
7

3
α2 +

π2

2 min(a1, a2)2

]
(a1 + a2) ≥

(
7

3
α2 +

π2

2a21

)
(a1 + a2) ≥

7

3
α2a1 +

π2

2a1
, (25)

it will suffice if the second condition (j = 2) is satisfied.
For j ≥ 3, we have the following lower bound for the left hand side of (18):〈

ψϕj
∣∣H2

0

∣∣ψϕj〉+

〈
ψϕj

∣∣∣∣ U

|x2 − x1|

∣∣∣∣ψϕj〉− π2

2 min (aj−1, aj)
2‖ψϕj‖

2, (26)

and considering the operator H2
0 , we perform a partition of R6 consisting of spheres, one for

each particle: we take the family of functions,

gj,u1,u2(x1, x2) =
1

L3
j

χ

(
x1 − u1
Lj

)
χ

(
x2 − u2
Lj

)
, (27)

indexed by j and u1, u2 ∈ R3, where Lj > 0 will be the radius of each ball, and χ is given by,

χ(x) =
1√

2π |x|

{
sin(π |x|) |x| ≤ 1

0 |x| > 1,
(28)

and is such that
∫
χ2 dx = 1. Then,∫∫

gj,u1,u2(x1, x2)
2 du1du2 = 1, (29)

and so a similar localization formula can be obtained, by using the same arguments used to
derive the more usual one involving sums [5, Section 3.1]. Hence,

H2
0 =

∫∫
gj,u1,u2(x1, x2)H

2
0gj,u1,u2(x1, x2) du1du2 −

2π2

L2
j

. (30)

We have used the fact that
∫
|∇χ|2 dx = π2, which follows from an integration by parts. Also,

χ is the function that minimizes the localization error. We can now write (26) as,∫∫ 〈
ψϕjgj,u1,u2

∣∣H2
0

∣∣ψϕjgj,u1,u2〉 du1du2 +〈
ψφj

∣∣∣∣ U

|x2 − x1|

∣∣∣∣ψφj〉− [ π2

2 min(aj, aj−1)2
+

2π2

L2
j

]
‖ψϕj‖2. (31)

If ϕj(x1, x2)gj,u1,u2(x1, x2) 6= 0, then,

Sj−2 ≤ |x2 − x1| ≤ Sj, (32)

|u2 − u1| − 2Lj ≤ |x2 − x1| ≤ |u2 − u1|+ 2Lj. (33)

We would like to have |u2 − u1| − 2Lj > 0, so that the balls are effectively separated; this
will occur if Sj−2 − 4Lj > 0. With this condition, if |u2 − u1| − 2Lj ≤ 0, ϕjgj,u1,u2 is the zero
function on R6.

Given j, and Lj chosen in the manner described, we will now use the following lemma [7,
Lemma 3],
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Lemma 3.3. Let φ ∈ L2(R6) ⊗ F and supp φ ⊂ B1 × B2 where supp means support in the
coordinates of the electrons, and B1 and B2 are two disjoint balls of radius L, separated a
distance d > 0. Then,〈

φ
∣∣H2

0

∣∣φ〉 ≥ 2E1‖φ‖2 −
〈
φ

∣∣∣∣ 2α

|x2 − x1|

∣∣∣∣φ〉− 16αL

π2d(d+ 4L)
‖φ‖2. (34)

Using this lemma and the fact that,∫∫ 〈
ψϕjgu1,u2

∣∣H2
0

∣∣ψϕjgu1,u2〉 du1du2
=

∫∫
|u2−u1|>2Lj

〈
ψϕjgu1,u2

∣∣H2
0

∣∣ψϕjgu1,u2〉 du1du2, (35)

we find that (31) is bounded from below by,[
2E1 − 16αLj

π2(Sj−2 − 4Lj)Sj−2
+
U − 2α

Sj
− π2

2 min(aj, aj−1)2
− 2π2

L2
j

]
‖ψϕj‖2, (36)

and the sufficient condition for j ≥ 3 thus becomes,

U ≥ 2α +
16αLjSj

π2(Sj−2 − 4Lj)Sj−2
+

π2Sj
2min(aj, aj−1)2

+
2π2

L2
j

Sj. (37)

Introduce the parameters bi = αai, Qi = αSi and Ti = αLi. This allows a factorization of α.
Let us now consider only the cases j = 2 and j = 3. We are led to study the minimization of
G ≡ max(G1, G2), where max denotes the maximum of its arguments, and G1 and G2 are the
following functions:

G1(u, v) =

[
7

3
+

π2

2min(u, v)2

]
(u+ v), (38)

G2(u, v, w) = 2 +

[
16L

π2u(u− 4L)
+

π2

2 min(v, w)2
+

2π2

L2

]
(u+ v + w), (39)

where u, v and w are positive parameters. It can be seen that in G2 there is no dependence
upon L explicitly stated as an argument. This stems from the fact that, given u > 0, it is
always possible to minimize the part of the function that depends on L. This we will do now:
consider the expression,

16L

π2u(u− 4L)
+

2π2

L2
, (40)

and write L = tu, with 0 < t < 1/4, then this function of L becomes,

4

π2u

(
t

4−1 − t
+

π4

2t2u

)
, (41)

and writing t = rπ2/
√

2u, we find,

4

π2u

(
r

c− r
+

1

r2

)
, (42)
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with c =
√

2u/4π2. Introduce now the variable y = r/(c − r), and then, the expression is
transformed into,

4

π2u

[
y +

1

c2
+

2

c2y
+

1

c2y2

]
, (43)

with y lying in (0,∞). The positive value of y that minimizes the expression (43) will satisfy,

y3 − 2

c2
y − 2

c2
= 0. (44)

Depending on the value of u, this equation will have three real roots, or one real and two
complex. But an upper bound for u is available: recall that we are looking for a minimum
value that is smaller than 53.2. Since,[

7

3
+

π2

2 min(u, v)2

]
(u+ v) ≥ 7

3
u, (45)

we require u ≤ 22.8 = 3× 53.2/7. Therefore, the only positive root will be given by,

8π2

√
3u

cos

[
1

3
arccos

(
3
√

3u

8π2

)]
≡ 8π2

√
3u

Γ(u). (46)

It may be verified directly this is the only positive solution by using the identity cos(3θ) =
4 cos3 θ− 3 cos θ. Thus, the original expression has been minimized, and G2(u, v, w) becomes,

G2(u, v, w) = 2 +

[
Ω(u) +

π2

2 min(v, w)2

]
(u+ v + w), (47)

where,

Ω(u) ≡ 32√
3u3

Γ(u) +
32π2

u2
+

8

Γ(u)

√
3

u3
+

3

2π2uΓ(u)2
. (48)

We see that it suffices to study max(G1, G2) in the region 0 < w ≤ v ≤ u ≤ 22.8. This is due
to two properties: if (u0, v0, w0) corresponds to a global minimum, then v0 ≤ u0; if (u0, v0, w0)
corresponds to a global minimum in which v0 < w0, then G(u0, v0, v0) ≤ G(u0, v0, w0). We
have found numerically that for the parameters u = 15.716, w = v = 3.9706, max(G1, G2) is
a number smaller than 52.1.

As for the rest of the conditions j ≥ 4, first recall that in the notation introduced earlier,
b1 = u, b2 = v, b3 = v. Putting bj = (j − 2)v, for j ≥ 4, we find from equation (37) that the
sufficient condition becomes,

U ≥

[
2 +

16βj
π2(1− 4βj)

2u+ [2 + (j − 2)(j − 1)] v

2u+ [2 + (j − 4)(j − 3)] v

+
π2

4(j − 3)2v2
{2u+ [2 + (j − 2)(j − 1)] v}

+
4π2

β2
j

2u+ [2 + (j − 2)(j − 1)] v

{2u+ [2 + (j − 4)(j − 3)] v}2

]
α,

(49)

where βj is some number between 0 and 1/4.
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It can be seen that the sequences,

(j − 2)(j − 1)

2u+ [2 + (j − 4)(j − 3)] v
, (50)

(j − 2)(j − 1)

(j − 3)2
, (51)

are monotone decreasing provided that j ≥ 4 + u/v. For the values of u and v already found,
it will suffice to take j ≥ 8. If βj = 1/4.5 for j ≥ 4, all the conditions with 4 ≤ j ≤ 8 are
smaller than 52.1α. Thus, every condition is satisfied if U is larger than or equal to this value.
This concludes the proof.

4. The case of weak coupling

The main result of this section is,

Theorem 4.1. Let 0 < α < 3/4. Then no binding occurs if,

U ≥ 40.4α + 5.94α2

(
1− 4α

3

)−5/2
. (52)

We start with a theorem of Lieb and Yamazaki [18, Equation 24],

Theorem 4.2. Denote by E1 the ground-state energy of the polaron. Let p ≥ 2α/3. Then,

E1 ≥ −3

2

[
1−

(
1− 2α

3p

)1/2
]
− 1

2
pα. (53)

Given α > 0, choose a sufficiently large value for p, and set β = −2α/3p. Note that
−1 ≤ β < 0. Then the lower bound for E1 becomes,

E1 ≥ −3

2

[
1− (1 + β)1/2

]
+
α2

3β
. (54)

Let −1 < β < 0; thus by Taylor Theorem,

E1 ≥ α2

3β
+

3

4
β − 3

16
β2 +

3

32
β3(1 + ξ)−5/2, (55)

where ξ is some constant in the interval (β, 0).
If the first two terms are minimized with respect to β, the minimum corresponds to β =
−2α/3. This minimum will be attained provided that α < 3/2. Assume henceforth that α
satisfies this condition, and then, the following lower bound is obtained,

E1 ≥ −α− α2

12
− α3

36

(
1− 2α

3

)−5/2
. (56)

Recall what Lemma 1 said. We will improve that lemma in the case that α is sufficiently
close to 0:

Lemma 4.3. Let φ ∈ L2(R6)⊗F and 0 < α < 3/4. Then,〈
φ
∣∣H2

0

∣∣φ〉 ≥ [2E1 − 4α2

3
− 2α3

9

(
1− 4α

3

)−5/2]
‖φ‖2. (57)
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In [7, Equation 2.26], the following inequality was proved: given φ ∈ L2(R6)⊗F and α > 0,〈
φ
∣∣H2

0

∣∣φ〉 ≥ [E1(2α)− α2
]
‖φ‖2. (58)

Assuming that α < 3/4, by (56),〈
φ
∣∣H2

0

∣∣φ〉 ≥ [−2α− 4α2

3
− 2α3

9

(
1− 4α

3

)−5/2]
‖φ‖2. (59)

Gurari [13], Lee, Low and Pines [14, 15], and Feynman [6] have derived the following upper
bound for E1,

E1 ≤ −α. (60)

Valid for all α > 0. By using this bound on −2α, the result is obtained.
We now proceed in the following way: This lemma will be used in the conditions j = 1 and

j = 2, the remaining ones being unaltered. As in what was done above, if the condition for
j = 2 is satisfied, j = 1 will also hold. For j = 2 the sufficient condition will be,

U ≥

[
4

3
+

π2

2 min(b1, b2)2
+

2α

9

(
1− 4α

3

)−5/2]
(b1 + b2)α. (61)

Working as if the third term were absent (in both j = 1 and j = 2), we are in the same situation
as before, except that the first term has been modified from 7/3 in equation (38) to 4/3. As
in the previous section, it is found that the minimum of the maximum of the corresponding
two functions (G1 with parameter 4/3 and G2 without modifications) is smaller than 40.4,
choosing the parameters u = 21.41, v = w = 5.302. The rest of the conditions are satisfied by
doing the same procedure that was done before: choosing bj = (j − 2)v, it suffices to study
4 ≤ j ≤ 9, and (in the same notation) with βj = 1/4.5, it is seen that all the conditions with
j ≥ 4 are smaller than 40.4. Note that, with b1 and b2 being appropiate values,[

4

3
+

π2

2 min(b1, b2)2

]
(b1 + b2) ≤ 40.4, (62)

and thus if,

U ≥ 40.4α + 5.94α2

(
1− 4α

3

)−5/2
, (63)

no bipolaron is formed (the addition of the neglected term raises only the conditions j = 1
and j = 2). This expression is valid for any α < 3/4. One may feel uncomfortable with the
fact that the law is no longer linear: it is not of the form U ≥ Cα, with C being a constant;
however, to see the practical usefulness of the expression (63), suppose that α ≤ 0.1. This
is not a severe restriction; in fact, many materials satisfy this relation: for example, GaAs,
GaSb, InP, InAs and InSb, all have a coupling constant smaller than 0.1 (for instance, the
last one mentioned has α = 0.015) [3, Table 1]. In this case,

5.94α

(
1− 4α

3

)−5/2
≤ 0.9, (64)

and thus for α ≤ 0.1, no binding occurs if U ≥ 41.3α. We could proceed further, and determine
the unique value α0 such that, for any α < α0, this estimate is better than the previous one,
U ≥ 52.1α. This can be done by solving a fifth degree equation, and we have found that
α0 > 0.367. In an analogous way, given ε > 0, the unique value α1 > 0 such that if α ≤ α1,
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then no binding occurs provided U ≥ (40.4 + ε)α, can be found by solving a similar fifth
degree equation.

5. The case of strong coupling

For large enough α we can also obtain an improved bound, though this time we will not be
able to determine explicitly a value α2 such that for any α > α2, the bound is actually better
than U ≥ 52.1α:

Theorem 5.1. Let ε > 0. Then there is a α2 > 0 such that for any α ≥ α2, if,

U ≥ (38.7 + ε)α, (65)

then E2
U = 2E1.

We start with a bound by Lieb and Thomas [17, Equation 31; see also Erratum]: for all
α > 0

E1 ≥ −cpα2 − o(α2), (66)

where the term o(α2) is positive and the notation means that if it is divided by α2, it vanishes
as α → ∞. Also, E1 ≤ −cpα2, where, to five decimals of precision, cp = 0.10851; this is
explained in the next chapter, it arises from the Pekar functional. Using these two bounds
appropiately, together with equation (58), the following lemma can be proved:

Lemma 5.2. Let φ ∈ L2(R6)⊗F and α > 0. Then,〈
φ
∣∣H2

0

∣∣φ〉 ≥ [2E1 − 1.218α2 − o(α2)
]
‖φ‖2. (67)

The argument is now just as in the previous section: it suffices to study j ≥ 2, we do as if
the term o(α2) were absent, and compute the minimum of the maximum of G1 and G2, with
7/3 in G1 replaced by 1.218, and find U ≥ 38.7α as a sufficient condition, with u = 22.52,
v = w = 5.559. The same method consisting of choosing bj = (j − 2)v for j ≥ 4 is applied,
and again all the conditions with j ≥ 4 are smaller than 38.7. Putting the discarded term
only raises j = 1 and j = 2, and so the sufficient condition becomes,

U ≥
[
38.7 +

o(α2)

α2

]
α. (68)

By definition, for each ε > 0, there is a α2 > 0, such that for any α ≥ α2, no binding occurs
if,

U ≥ (38.7 + ε)α. (69)

6. Absence of binding in the Pekar–Tomasevich bipolaron

In [7, Section 5.2], the absence of binding in what is known as the Pekar-Tomasevich bipo-
laron has been studied. We do not wish to give now a full exposition of this model: information
about it can be found in the cited reference. We would like only to remark that exactly the
same method that was used in Section 3 can be applied here, except that (similarly to what
occurred in the previous two sections) 7/3 has to be changed to 0.654. For all α, the condition
U ≥ 29.3α is obtained, with parameters u = 31.97, w = v = 7.692. This is quite a modest
reduction: the result found in [7] was U ≥ 29.4α.
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