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Abstract. Let N^ denote the maximum number of electrons that can be bound to an atom 
of nuclear charge z, in the Thomas-Fermi-von Weizsacker theory. It is proved that N^ 
cannot exceed z by more than one, and thus this theory is in agreement with experimental 
facts about real atoms. A similar result is proved for molecules, i.e. N^ cannot exceed the 
total nuclear charge by more than the number of atoms in the molecule. 

1. Introduction 

The Thomas-Fermi-von Weizsacker (TFW) theory (von Weizsacker 1935, Benguria et 
al 1981, Lieb 1981) is defined by the energy functional (see Lieb 1981, § VII) (in units 
in which h^{2m)~^ = |e| = 1, where e and m are the electron charge and mass) 

where 

(Vp'/̂ (x))̂ dx+ir pixr^'d 

D{p,p)-

^pixY^'dx-^ V(x)p{x)dx + D{p,p) 

p{x)\x-y\ ^p{y)dxdy 

(1) 

(2) 

V ( x ) = I Zj\x-Rj\ (3) 

Here z,, Z j , . . . , ẑ ^ ̂  0 are the charges of K fixed nuclei located at JRJ, . . . , R^. The 
total nuclear charge is denoted by Z, Z = S^^, Zj. K = \ is the atomic case and here 
we shall simply write Z = Zi = z. dx is always a three-dimensional integral. f(p) is 
defined for electronic densities p(x)^0 such that each of the terms of f (p) in (1) is 
finite. In the physical situation, y = rphys = (37r̂ )̂ ^^ but, for generality, we shall allow 
y to be an arbitrary positive constant in what follows. The TFW energy for N (not 
necessarily an integer) electrons is defined by 

£(N) = inf(f(p)| jp = Ny (4) 

\ Work partially supported by Dpto Desarrollo Investigacion, Universidad de Chile. 
I Work partially supported by US National Science Foundation grant PHY-8116101-A02. 

383 



With R. Benguria in J. Phys. B: At. Mol. Phys. 18, 1045-1059 (1985) 

1046 R Benguria and E H Lieb 

On energetic grounds, the value of A should be chosen to reproduce the Scott term 
in the expression of the atomic or molecular energy E{N) as a function of N and the 
nuclear charges, (see Lieb 1981, §§ V.B, VII.D). Numerically one finds (Lieb and 
Liberman 1982, Lieb 1982), A = 0.1859. However, we should retain A as an arbitrary 
positive constant. In the original TFW model (von Weizsacker 1935) the numerical 
value of A is 1. 

It is known (Benguria et al 1981, Lieb 1981) that there exists a critical value of N 
(depending on A, y and the Zj and Rj), which we denote by N^, such that for N ^ N^ 
the minimisation problem (4) has a unique solution, whereas for N> Nc there is no 
solution. In other words, N^ is the maximum number of 'electrons' that can be bound 
to the atom or molecule. The aim of this paper is to find an upper bound for Nc. The 
value of TVc is given by ^p, where p ^ O is the unique minimising function of f(p) 
without constraints. Let ij/^p^^^. Then ip is the unique positive solution of the TFW 
equation (for a saturated system), 

-A^l|;ix) + {yi|J{xr^'-ct>(x))iP{x) = 0 (5) 

where 

(f)(x)=V{x)-\x\-'*p withp = iÂ . (6) 

Note that (5) is the Euler equation corresponding to the functional ^(JA^)- The only 
previous rigorous results (Lieb 1981, Benguria et al 1981) for Nc were that Z < Nc< 2Z. 

Our main result is the following. 

Theorem I. For a TFW molecule of X ^ 1 atoms, 

0 < Nc - Z ^ 270.74( A/ yf^^K (7) 

for all choices of z , , . . . , z,̂  and R , , . . . , Rj^. In particular, for the value of A chosen 
in Lieb (1981) and Lieb and Liberman (1982) to reproduce the Scott term in the energy 
(i.e. A = 0.1859) and for the physical y = (37r^)^/\ 

0<Nc-Z<0.7335/<:. (8) 

In the TFW model the number of electrons is not generally an integer, but in a real 
atom N and z are required to be integral. How can theorem 1 be interpreted in the 
light of this additional requirement? One way is the energetic point of view: since 
E{N) is strictly decreasing for N< N^ and constant for N ^ Nc (Lieb 1981, § VILA), 
theorem 1 implies that E{z)> E(z+{) = E{z-^2). Thus, the (z+l ) th electron has a 
positive binding energy, while the (z-f2)th does not, and we can say that a singly 
ionised atom (but not a doubly ionised atom) is stable. This interpretation, however, 
suffers from the drawback that there is no solution to (5) when N = z+ 1. A second 
interpretation that leads to the same conclusion about atomic ionisation, but eliminates 
the problem that (5) has no solution for N = z + 1 , was kindly provided by John 
Morgan: introduce the Fermi-Amaldi correction (i.e. replace D{p, p) in (1) by ( 1 -
l /N)D(p , p)). Tliis has the effect of replacing z by z'(N) = N z / ( N - 1 ) . (It also 
effectively changes A and y, but not A/y.) Theorem 1 now states that a solution to 
(5) always exists if N^z'{N) while it never exists if N - 0 . 7 4 ^ z'(N). This implies 
that a solution exists (with N and z integral) if and only if N ^ z+ 1. However it is 
not clear that E{z-\-1) < E{z) in this Fermi-Amaldi model. 

The best previous upper bound on Nc is, as we said, Nc<2Z (Lieb 1981, theorem 
7.23), a result which is valid for both atoms and molecules. It turns out that such a 
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bound also holds for the Hartree (bosonic) atom. More recently one of us (Lieb 1984a, 
Lieb et al 1984) has proved a similar bound for the real Schrodinger equation namely, 
/Vc<2z + 1 for an atom and N^KlZ+K for a molecule of K atoms. This result (Lieb 
1984a, Lieb et al 1984) is valid regardless of the statistics of the bound particles. 
However, if the bound particles are fermions, as is the case for real matter, N^ should 
presumably not exceed z (for an atom) by more than one or two electrons. This is 
still a conjecture; however, it has been proved that NJz^ 1 as z^oo for fermions 
(Lieb et al 1984). On the other hand, we know that N^- z>0.2z for the Schrodinger 
equation of an atom with bosonic particles and for large z (Benguria and Lieb 1983, 
Baumgartner 1983, 1984). See (Lieb 1984b) for a review of the recent literature on the 
subject. 

In the Thomas-Fermi theory, defined by the energy functional (1) with A = 0, N^ 
is exactly Z even in the molecular case (Lieb 1981, theorem 3.18, Lieb and Simon 
1977). Equation (7) implies that for the TFW atom or molecule N^^Z as A^O. 
However, we do not expect NJ^A) to be analytic around A = 0 because the von 
Weizsacker correction is a singular perturbation to Thomas-Fermi theory. It is an 
open problem to derive an asymptotic expansion for NJ^A) around A = 0. 

Two other open problems arise from the results of this paper. The first is that while 
we prove an upper bound for N^-Z, we have no lower bound. We conjecture that 
Nc - Z ^ constant > 0 as Z-»oo. The second problem is related to the first: it is highly 
plausible that N^-Z is a monotonically increasing function of all the z, (for fixed 
/ ? ! , . . . , RK). IS this true? 

This article is organised as follows: in § 2 we give the proof of theorem 1; in § 3 
we determine the behaviour of N^ as Z goes to zero. Finally in § 4 we give a bound 
for the chemical potential of a neutral molecule. Such a bound is independent of the 
charge of the nuclei. 

We should like to emphasise that many of the results herein can be extended in 
two ways: (i) to spherically symmetric 'smeared out' nuclei; (ii) to the TFW theory in 
which the exponent f in (1) is replaced by some p9^j (cf Lieb 1981). For simplicity 
and clarity we confine ourselves here to point nuclei and /? = f. 

2. Proof of theorem 1 

The proof of theorem 1 will be divided into three steps. First, we estimate the excess 
charge Q = Nc - Z in terms of the electronic density p and the TFW potential cf) evaluated 
at an arbitrary, but fixed, distance r from all the nuclei. Then we find a local bound 
for p in terms of </>. These two estimates do not involve the z, explicitly. Therefore, 
if we can prove that at some distance of order one, (i.e. independent of the z,) the 
potential </> is bounded by a constant independent of the z,, then the two previous 
results will imply that Q is less than a constant independent of the Zj, which is basically 
what theorem 1 says. Proving this last fact about </> is our third step. We begin with 

Lemma 2. Let (/̂  ^ 0, </> be the unique solution pair for the TFW equation (5), (6) with 
V being the potential (3) for a molecule. Then, the function 

p{x) = {47rAiPixr-\-c^(xry^' (9) 

is subharmonic away from the nuclei, i.e. on ^^\U^=i Rj. 
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Proof. By direct computation 

Ap = p-'(477AiAA(A + </) A(/)) + /? (10) 

with 

h = 47rA/7" |̂(/)ViA - <AV</>Î  ̂  0. 

By (5), (6) the sum of the first two terms in (10) is (away from the nuclei so that 
AV = 0): ATTJ^^^^^^O. Thus, A/7^0, so p is subharmonic. D 

Remark. Let 

W{x)^y4>{xY"-,i>{x) (11) 

be the 'potential' in the TFW equation (5). Proceeding as in the proof of lemma 2, one 
can show that 

{ATTAilj{xY+W{xfy^^ (12) 

is subharmonic whenever W{x)^0. 
The next lemma gives a local bound for i/̂  in terms of (f). This bound is independent 

of the nuclear charges z,. 

Lemma 3. For all A G (0, 1) and all x G ̂ ^ 

rA^(x)^/^^(/>(x) + c ( A ) A V ' (13) 

with 

c (A)^(9 /4)7r 'A- ' ( l -A)- ' . (14) 

Proof. Define u{x) = ipixY^^. Then, from the TFW equation (5), 

-AM + (4/3A)(rM-(^)M + |Vw|V4M = 0 

and hence 

- A M + ( 4 / 3 A ) ( 7 W - < / > ) M ^ 0 . (15) 

Also, from (6) 

- A 0 = -47T(A^ = -47rM^/' X9^Rj,2i\\f (16) 

Let v{x) = yXu{x) - </)(x) - d, with d a positive constant. We shall show that v(x) ^ 0, 
all X, for appropriate d and A. From equations (15) and (16), 

- A D ^-(4yA/3A)(7M-(/))«+ 47rw^/l 

Let S = {x\vix)>0}. ip is continuous and goes to zero at infinity; </> is continuous 
away from the Rj and it also goes to zero at infinity (Benguria et al 1981, §111). 
Therefore v is continuous away from all the Rj and goes to -d at infinity. Hence S 
is open and bounded. Moreover, Rj ̂  S, ally since cf) = +oo at the Rj. On S, (f) < y\u - d 
so 

-Al) ^-(4yA/3A)(yM + ^ - yAM)w 4-477M /̂̂  

^M[47n/'/^-(4/3A)7^A(l-A)M-(4/3A)yAcf] 

^ 0 
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provided we choose A G (0, 1) and d =|(7rA/A)^7~^(l - A)~' in order that the quantity 
in brackets [ ] be non-negative for all possible (unknown) values of u(x). With that 
choice of A and d, v is subharmonic on 5. On dS v = 0, and therefore 5 is empty. D 

Corollary. For all X G ^ ^ 

(l>{x)^-3'2-''7r^A^y-'^-\50A^y-\ (17) 

If X is such that (/)(x)^0, then /7(x) = (47rAi/^(x)^ + </>(x)^)'/^ satisfies 

p(x)^{iy^^\67T^A^y-'^\96A^y-\ (18) 

Proof. By (13) and the fact that il/ix^^^^O, (f){x)^-c{X)A^y-^ for all A G ( 0 , 1). 
Minimising c(A) (at A=f) gives (17). To prove (18), take A = | (which minimises 
c(A)/A), let a = -IcA^y'^ and observe from (13) that 

p(xy^ max [47rA(3r/4)-'/ '((/)-a)'/ '+(/>']. (19) 

The right-hand side of (19) is convex in </>, so its maximum occurs either at 0 = 0 or 
(f) = a. </) = 0 prevails and gives (18). D 

In our next lemma, starting from p and </>, we introduce a smeared density p and 
potential </>. We find that p and ^ satisfy an inequality resembling the Thomas-Fermi 
equation for smeared nuclei. Then we use a comparison theorem to get an upper 
bound for the smeared potential ^ in terms of a universal function (independent of 
the Zj). Finally, noting that cf) is subharmonic away from the nuclei, we see that 
essentially the same bound applies to </>. In particular, this lemma says that at distances 
of order one from all the nuclei, in atomic units, </> is of order one and, in any case, 
independent of the z,. We note, however, that this bound is not satisfactory both very 
close and very far from the nuclei. Near the nuclei it diverges too fast. On the other 
hand, the bound is always positive, whereas </> is negative at large distances because 
Q = N^-Z is strictly positive. 

Lemma 4. Let il/^O, (f) be the solution of the TFW equation (5), (6) with V given by 
(3). Choose any R>0 and define 

6^257r - 'y ' = 2.53y' (20) 

which is independent of the Zj. Suppose X G ^ ^ is such that \x-Rj\>R for all 
7 = 1 , 2 , . . . , A : . Then 

(t>{x)^A7r'R-'^8 t {\x-Rj\-Rr\ (21) 
7 = 1 

Proof Let W= yp^'^ - 0^ p = i/̂ ^ and consider the Hamiltonian H = - A A + W. H is a 
non-negative operator, since its ground state, the TFW function e/̂ , has zero energy 
(chemical potential). Therefore for any function b^l} with V 6 G iJ we have 

j |V6(x )rdx + \y(x)6(x)'dx^0. (22) 

We shall choose h{x) to be a translate of the normalised ground state, e(x), of the 
Laplacian on a ball of radius R with Dirichlet boundary condition. That is, let 
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e{x) = {27TR)~^^^sm{Tr\x\R~^)/\x\Jor\x\^R and e(x) = 0 otherwise. Clearly, e{x) is 
spherically symmetric, decreasing and it has compact support. Let h^{y) = e{y-x) 
denote the translate of e and define g{x) = e{xY and gxiy) = g{y - ^)- Let B = 
^ I \^K{y)\^ dy- Clearly B does not depend on x. With this choice of b, B = (7r/i?)^A 
From equation (22) we have, 

J W{y)gAy)dy^-B all x (23) 

Note that j" W{y)g^{y) dy = {g* W){x), where an asterisk denotes convolution. Define 

^ = (t>*g-B. (24) 

Since 0 6 L^^'+1^'% e>0, (Benguria et al 1981, proof of lemma 7) and geU, all 
p ^ l , (f) is continuous and goes to -B at infinity (Lieb 1981, lemma 3.1). Using 
Holder's inequality, we have for all x 

(g * p'^'){x) ^ [(g * p)(x)]^/^( j g{y) dy^''' = [(g * p)(x)r' (25) 

where we have used J g{y) d>' = 1. Let us also define 

P^g*P- (26) 

From equations (23)-(26) we obtain for all x 

B^{(f>* g){x) - r(p^/^ * g)(x) ^ (A(x) + B - yp(xf^\ 

In other words 

<?^ rp ' / ' . (27) 

Notice that 0 is subharmonic away from the nuclei and that 0 = g * 0 - B with g 
being spherically symmetric, positive, of total mass one and having support in a ball 
of radius R. From this it follows easily that 

(t>{x)^${x) + B (28) 

for all X such that \x- Rj\> R (for all j). Thus, to prove (21) we need a bound on 0. 
From equations (6) and (24), using the bound (27) and the fact that the Laplacian 

commutes with convolution, we compute 

-(47r)-'A(^(x)= V ( x ) - p ( x ) ^ V(x)-y-'^\Mx)f^' (29) 

with 

Vix)=t Zjg(x-Rj) (30) 
7 = 1 

and with 0+(^) = max(<^(x), 0). 
Note that equation (29) resembles a Thomas-Fermi (TF) equation with smeared 

nuclei of spherical charge density Zjg{x-Rj). Indeed, let $ be the TF potential for 
this system (i.e. with equality in (29)): 

-(477)-' ^${x)=V(x)-y-'^'${xr^\ (31) 

It is known from general TF theory that (31) has a unique solution, <̂ , that goes to 
zero at infinity. 
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It is easy to see that 

^{x)^$ix) for all X (32) 

by observing that if the set M = {x|</)(x) - (/)(x) < 0}, then (̂  - (̂  is superharmonic on 
M and zero on the boundary of M and infinity, so M is empty. 

The next step is to bound cj). First consider an atom with V=z / r , r = |x|, and 
consider the function f{r) = 8{r- R)'"^ which satisfies 

(477)-' A / ^ y-'^Y^' for r > R. (33) 

Outside the ball of radius R (centred at the origin) $ satisfies 

{41Tr'^$ = y-'^'$'^\ (34) 

Again, by a comparison argument (and using the fact that / ( r ) - 0(r ) = oo when r = R) 

${r)^f{r) for r>R. (35) 

This, together with (28), proves (21) in the atomic case. 
For the molecular case, let ^j(x) be the solution to (31) for an atom of (smeared) 

nuclear charge z, located at Rj. By another comparison argument (Lieb and Simon 
1977, theorem V. 12 or Lieb 1981, corollary 3.6), 0 ( x ) ^ l ] i i $j{x). This, together with 
(35) and (28) proves (21). D 

We conclude this section with 

Proof of Theorem 1: atomic case. Let us start with the atomic case, V{x) = z/\x\, in 
order to expose the ideas most simply. The following facts have been established: 

p{x) = (47rA(A(x)H 0 (x ) ' ) ' / ' (36) 

is subharmonic for |x| > 0. 

p(x) ^(4/3)'/ '*167r'A'r"' (37) 

if <A(x)^0. 

</)(x) ̂  8{\x\ - Ry'^+TT^AR-^ (38) 

for all |x |> i ?>0 , with 8 = 257^7r"^ and with arbitrary R>0. 

y\Hxr^'^ct>{x) + c{\)A'y-' (39) 

for all | x | , 0 < A < l with c(A) = 977 ' [4A' (1 - A)]"'. 
The functions p, </>, if/ are functions only of |x| = r. As r->oo, (/^(r)-»0 faster than 

any power of r (Lieb 1981, theorem 7.24) and r<f)(r)-^ -Q. Thus, 

rp(r)-^Q as r^oo. (40) 

The subharmonicity and the fact that p(r) -̂  0 as r ^ oo imply that rp(r) is monotonically 
decreasing and convex. (This may be seen from the fact that Ap ^ 0 is equivalent, in 
polar coordinates, to d^(rp(r))/dr^^O.) Using (40) we conclude that 

Q^rpir) f o r a n y r > 0 . (41) 

The same conclusion, (41), can be reached from another viewpoint, which will be 
important for the molecular case: fix r > 0 and consider the domain D^ = {x||x|> r}. 
Let P be any harmonic function on D^ with P(x)-^0 as |x|-»oo and P ( x ) ^ p ( x ) on 
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the boundary \x\ = r. Then P{x)^p{x) for all xeD^. (Proof: on the set E = 
{x\P{x)<p(x)}c: Dr, p- Pis positive, subharmonic and p- P vanishes on the boundary 
of E, so E is empty.) Now choose P{x) = rp{r)/\x\ for |x |>r . Then rp(r)^\x\p(x), 
for |x |>r . However, \x\p{x)-^Q as |x|^oo, and this establishes (41). 

To complete the proof, we make the following specific choices for r, /?, A: 

r = 0.9086 ( rV^) ' ' ' ^ i? = 0.4020 ( r V ^ ) ' ^ ' A =0.7825. (42) 

If 0(r) happens to be positive, we use the bound (38), followed by (39) and insert 
these in (36). (41) then implies that if 0 ( r )>O then 

Q ^270.74 ( A / r ) ' / ^ (43) 

(The numbers in (42) were chosen to minimise the coefficient in (43).) On the other 
hand, if (f){r)^0 we can use (37) and (41) to conclude that 

Q ^ 178.03 ( A / r ) ' / ^ (44) 

Clearly, (43) is the worst case, and this gives theorem 1. Note, however, that if it were 
to be shown that 0(r) =̂  0, then the bound (44) would be valid, and, using the physical 
values of A and y, one would obtain Q ^ 0.49. 

Molecular case. Equation (36) is still valid, except that p is subharmonic only on the 
set X9^ Rj (all 7 = 1 , . . . , X). Equations (37) and (39) are also valid. Equation (38) 
must be replaced by (21) on the set 

D^ = W |x - / ? ; !> /? for al l ; = 1 , . . . , A:}. (45) 

Now choose r, R and A as in (42) and consider the smaller domain 

Dr = {x\ \x - Rj\ > r for all ; = 1 , . . . , K}. (46) 

Consider the following function which is harmonic on D/. 

P(x) = Q, I \x-Rjr (47) 

where Qi is the right-hand side of (43), namely the value of the upper bound for rp(r) 
computed in the atomic case under the assumption <f){r)^0. As explained above, if 
we can show that P{x)^p{x) for all x on the boundary of D^, then P{x)^p(x) for 
all X 6 Dr. Taking the limit |x| -> 00 yields 

Q = l im |x |p (x )^ Vim \x\P(x) = KQI (48) 
|x|-»-oo |.x|^oo 

which is the desired result. 
Let X be on the boundary of D„ so that \x-Rj\ = r for some j (say j = m). If 

</>(x)^0, the bound (37) is valid and p(x)^Q2/r, where (?2<<?i is the right-hand 
side of (44). However, P{x) ^Qy\x-Rj~^ = QJr, so P{x) > p{x). On the other hand, 
suppose </>(x)^0, in which case we can use (21) and (39). Now use proposition 5 
below with the choices r = §, 5 = 2 and 

aj = 8i\x-Rj\-Ry^ bj = aj{A7TAfi^ I yk (oTJ9^m 

a^ = 6 ( | x - R ^ | - i ? ) - V A 7 r ' / ? - ^ 

b^ = {a^ + c(A)A^r-^)(47rA)^/VrA. 
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Recalling that \x- R^\ = r we have 

p{x)^pM+ S p{x-Rj) (49) 

where pi{r) is precisely the number we calculated before in the atomic case and 

p{x-Rj) = {by'+ajy'\ (50) 

By construction, P]{r) = Qi/r. Thus, p(x)^P(x) if we can show that p{x-Rj)^ 
Qi/\x-Rj\ for j9^ m. Let |x-Rj\ = u^r. We require that 

u\A7TA{y\)-^^^8-^\u-R)-''+8\u-R)-^]^Ql (51) 

However, the functions u^{u-R)~^ and u^{u-R)~^ are monotonically decreasing in 
M for M > R. Hence, the left-hand side of (51) is less than its value at u = r. But this 
is obviously less than r^p^irY which is Q]. D 

Proposition 5. Let 0^5=^2, 0=^^=^2 and let a , , . . . , aj<, fe,,..., /J^ be 2X non-negative 
numbers. Then 

^ Z ( a ; + / > j ) ' / ^ (52) [{I'^il'l 
Proof. It suffices to prove the proposition for X = 2 namely, for a, A,b,B^ 0, 

[(a + Ay + ib-\-Byf^^(a' + b'y^'-\-{A' + B'y^\ (53) 

If (53) holds then simply take a = a, ,A = S f O; (and similarly for b, B) and use 
induction. Now {a + Ay = (a-\- Af/ia + A)'"^ ^ (a ' + 2aA + A') /max(a '"^ A^'') ^ 
a ' + 2a'/^A'^^ + A'. A similar inequality holds for (6 + B)'. Squaring (53) and using 
these inequalities, it suffices to prove that 

This, however follows from the Cauchy-Schwarz inequality. D 

3. Behaviour of N^ for small Z or small y or large A 

Although theorem 1 gives an upper bound for all values of the ẑ , it is primarily useful 
for the large-Z behaviour of Q. In fact, the comparison function / we chose in the 
proof of lemma 4, (i.e. f{x) = 8(\x\-R)'"^ may be too big when we consider small z. 
Since the atomic </)(x) is bounded from above by V{x) = z|x|"' and the function g has 
support on a ball of radius R and total mass 1, <^(x) ^ z|x|~' for \x\ ̂  R. In particular 
^{R) ^ z | /? |" \ whereas the comparison function/goes to infinity at |x| = R. Therefore 
it is somewhat better to choose/(x) = 6 ( | x | - a / ? ) " ^ where a = a(z) = \ - (8/zR^y^"^ 
is such that f{R) = zR~\ Then, proceeding as in the proof of theorem 1, one gets a 
Zj-dependent bound for Q. Although we do not give any details here, we point out 
that as z goes to zero, for an atom, this upper bound goes to 3.057A^^^ with y = yp^ys. 
We know, however, that as Z goes to zero, Q vanishes because Q<Z (Lieb 1981, 
theorem 7.23). Thus, the previous bound is not good for small Z. Getting the behaviour 
of Q as a function of Z for small Z is the subject of this section. The main result for 
Q is contained in equation (63) below. 
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We begin with a normalisation convention. Choose z ? , . . . , z^ > 0 such that 

i 2 ; = i (54) 

and let / ? ? , . . . , R^K be fixed, distinct points in ^^. Let Z > 0 be the total nuclear charge 
in a molecule in which 

Zj^Zz', Rj = iA/Z)Rl. (55) 

In this molecule the length scale is A/Z. In TF theory, by comparison, it is Z~'^^. As 
Z ^ O the atoms move apart. One can also treat the case in which the Rj remain fixed 
as Z-^0; we do not do so explicitly here, but note that in the limit Z ^ O this is 
obviously the same as placing all the Rj at one common point. 

Let us write the solution to (5) as 

iP(x) = Z^A-'/^iii{{Z/A)x) (56) 

whence 

ilj{xfdx = Z ipixydx. (57) 

The TFW equation (5) then reads 

(-A+fiAW/^-0W)(A(x) = O (58) 

with 

y = yZ^^'/A (59) 

^ix)=V(x)-{\xr*p){x) (60) 

V{x)=tz^\x-Ry' (61) 

With this scaling there is only one non-trivial parameter in the problem, y. The potential 
V is that of a molecule with unit total nuclear charge and A = 1. Our goal is to elucidate 
the behaviour of (58) as y^O. From now on we shall omit the tilde on the various 
quantities in (58)-(61). 

Formally, at least, as y ^ O the solution ijjy to (58) approaches the solution ip^ to 
the Hartree equation 

( -A-( />(X))«AH = 0 (62) 

with (f) given by (61) and (60) with J/̂ H- This equation (which was also used in Benguria 
and Lieb 1983) has a unique positive solution, I/̂ H, because tfie proof in Benguria et 
al (1981), Lieb (1981), that (1) has a unique minimum and that this minimum is the 
unique solution to (5) only uses the fact that y^O. Assuming that JJA^^IJAH, (57) 
tells us that 

lim Q / Z = itjl,{x)dx-\. (63) 
z^o J 

Proving (63) is the goal of this section. 
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As stated earlier, 1 < J I / ^ H < 2 . For the atomic case K = \, z?= 1, (62) has been 
solved numerically (Baumgartner 1983) with the result that 

J iAH(^)'dx=1.21. (64) 

Thus, as Z-»0, Q=^0.21Z for an atom. The right-hand side of (63) is not known for 
a molecule, but we conjecture that 

J .AH(x)'dx^ 1+0.21 K. (65) 

The point y = 0 is not special. We shall prove the following general theorem which 
says that if y -» F ̂  0 then the solution if/y -»(/̂ p in a very strong sense. In particular 
there is strong L^ convergence so that (63) is justified. 

Theorem 6. Let tpy (and Py = ilf\) denote the unique positive solution to the TFW 
equation (5) for y ^ 0 , with A fixed and with V in equation (3) fixed. (Note: condition 
(54) is irrelevant here.) Let F^O be fixed. Then, as y-^F, xjjy^ijjy in the following 
senses: 

Vipy^Vipr strongly in L l (66) 

if/y -^ il/r and Py -> pr strongly in L^ (67) 

for all 1 ^ p ^ 00. 

Ixl"' * lAr-> l^r^ * «Ar strongly in L'' (68) 

for all 3 < / 7 ^ 00. 

Diil^lil^D-^Diiphil^l) (69) 

(cf(2)). 

Proof. Let y„ ^ 0 be any sequence with y„ ^ F and let il/„ = (/̂ ^ . Since if/r is unique, it 
suffices to show that some subsequence of il/„ converges to i/̂ r in the indicated senses. 
In the appendix it is proved that ||i/ry||oo< Coo = constant, independent of y. Since 
| |IAY||2<2, then for all 2^ /?^oo we have ||«A^||p< C^ = constant. With ^y given by (1) 
and with Ey being the minimum of f̂  we easily find, by considering ^yiipl) and iri^l), 
that 

lim Ey = Er (70) 

and also that ipi is a minimising sequence for ^r- By the proof in Lieb (1981) and 
Benguria etal {\9S\) of the existence of a minimum for ^r, and the lower semicontinuity 
of fr, we conclude that there is a subsequence (which we continue to denote by i//„) 
such that 

V(A„ -> Vi/̂ r strongly in L^ (71) 

Diil^lipD-^Diiljlilfl) (72) 

ij/n -» ipY almost everywhere (73) 

This proves (66) and (69). ((73) follows from the Rellich-Kondrachov theorem.) 
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Not only is ipnM ^ Coo for all x, but we also have the bound (with some constants 
M and a) 

ijj,{x)^Mtxp{-a\xy^') (74) 

for |r„ - r | small enough and for |x| > R for some fixed R. To prove (74) we note that 
for some Rx and some Q > 0 

(Ar (^ ) ' dx>Z+Q/2 
J B 

with B = {x\\x\<Rx}. Since H\B) is compactly imbedded in L^{B) (Rellich-
Kondrachov), there is a further subsequence such that ip^^ifj^ strongly in L^{B). 
Hence the entire sequence (see the remark at the beginning of the proof) converges 
strongly to ipr in L^{B). Thus, 

( / /„(x) 'dx>Z + Q/4 (75) 
f B 

for n large enough. (74) follows by the proof in Benguria et al (1981), lemma 8 or 
Lieb (1981), lemma 7.24(ii). Consequently, ip„(x)^ F(x) for all x and n large enough, 
where F{x) = Coo for |x| ^ R and F{x) is the right-hand side of (74) for |x| > R. Since 
FeU for 1 ^ /7^oo, (67) follows from (73) for 1 ^ p < o o by dominated convergence. 

The upper bound F and (73) also imply (by dominated convergence) that the 
convergence in (68) is pointwise almost everywhere and that g^ = |x|~' * \p\ is bounded 
by a function of the form G = min(5, t/\x\) for suitable s and t Again, by dominated 
convergence, we obtain strong convergence in (68) in U for 3 < p < o o . The L°° 
convergence in (68) follows easily from the L^ convergence of Py to pr together with 
the large |x| bound (74). 

To prove the L°° convergence in (67) note that in view of (74) it suffices to prove 
L°° convergence on bounded sets. But this follows from the fact (Benguria et al 1981, 
lemma 7, or Lieb 1981, theorem 7.9) that for any bounded set S and all x.yeS, 
\ipn{x)-ilJn{y)\<M\x-y\^^^ for some constant M which depends on S but (it is easy 
to see from the proof) not on n. D 

4. Lower bound for the chemical potential of a neutral atom or molecule 

Here, we prove a result which is somewhat related to the bound on N^. We shall show 
that the chemical potential of a neutral system {K not necessarily one) is bounded 
from below by a constant independent of the nuclear charge. We conjecture that a 
similar bound from above should hold. 

The chemical potential, -)Lt(N) = d £ / d N , as a function of N is nonpositive, 
continuous and monotonically increasing in N (for fixed nuclear charges) since E{N) 
is convex in N in TFW theory (Lieb 1981, theorem 7.2 and theorem 7.8(iii)). Therefore 
the binding energy AF (or affinity) satisfies |AE| </xoQ, where Q is the added charge 
((?= 1 for an electron). 

The fact that the chemical potential, -JJLQ^ -/JL(Z), for a neutral atom or molecule 
is bounded independent of the nuclear charges agrees with what is believed to be the 
case for the Schrodinger equation. 
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Consider the TFW equation for a neutral system (which is a generalisation of (5)), 
i.e. 

-AAilj + {yiP''^'-(l>)ip = -fjio^ (76) 

with (/> given by (6), (3), or equivalently, 

-A(/) =-47riA' X9^Ri,i-^\,2,...,K. (77) 

Here j j / /^ dx = Z = l / l , z,. Our bound is the following. 

Theorem 7. For a neutral system, i.e. for j ijj^ dx = Z, the chemical potential is bounded 
from below by, 

-fjLo^-llTT^A^y-' allZ (78) 

in the units chosen in the Introduction. In particular, for the value of A chosen in 
Lieb (1981) to fit the Scott term in the energy, i.e. A = 0.1859, and with r=rphys, 
/jLo^O.OlOS. 

Remark. Since Nc> Z (Lieb 1981, theorem 7.19), /JLO is strictly positive. 

Proof. First consider the TFW equation with arbitrary N = \ ijj^^ N^, in which case the 
right side of (76) is replaced by -fx{N)ilj. We know that fx{N) = -dE{N)/dN and 
that fJi{N) is continuous and monotonically decreasing (Lieb 1981, theorem 7.8(iii)). 
Therefore (78) will be proved if we can show that for every N> Z,IJL{N)< IITT^A^J'^. 
This, we shall now proceed to do. 

For every positive b and for all numbers (/^^O we have the algebraic inequality 

biP^^yil/'^'-^d{b)iP (79) 

with 

d(b) = 21 b^'y-'/256. (80) 

The TFW equation (with J i/̂ ^ = N > Z) implies 

-A^^|J + b^l/^-<f)l|/^{dib)-|Ji{N))^|/. 

Therefore, if )LA(N)^^(b) 

-A^^|/ + b^|/^-(f)^|/^0. (81) 

Now, as long as b is chosen so that 5>4(7rA)'/^ (77) and (81) imply that ip < P(f), all 
x e ^ ^ where P is the positive root of 6 = j8"' + 47r/3A To prove this, let S = 
{x\il/{x)>I3(l){x)}. Obviously Ri^S. Since ilz-pcf) is continuous in ^\{Ri}, S is 
open. On S, 

- A A(iA - j8(/)) ^-feiA^ +(/>iA + 47rAj8iA^ 

= p-\pcl>-l3{b-47TAl3)ip]iP 

where we have used the fact that b-47TAp = l3~\ Hence ip-ficf) is subharmonic on 
5. Moreover (/^-^(/> = 0 on a5u{oo}. Therefore S is empty and P(t>{x)^ ip{x) for all 
x G ^ ^ Since i/^^O, </> must be non-negative everywhere. On the other hand, </> = 
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V- |x | " ' * ijj^ and ji /^^>Z; consequently, </)(x)<0 for sufficiently large |x|. This is a 
contradiction, and we conclude that /jL{N)<d{b) whenever b = /3~' +47r/3A for some 
0</3<oo. Choosing /3 = (47rA)~'/^ yields the desired result, i.e. /JL{N) <277T^A^y~\ 

D 

Remark. From the asymptotics of the solution of equation (76) we see that /XQ'^^ 
somehow measures the range of the electronic density. If our conjecture is true, such 
a range would be independent of Z 
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Appendix 

Here, we give a bound for the L°° norm of the solution to the TFW equation. Such a 
bound is independent of y, the constant in front of the ip'^^^ term. This bound is used 
in §3. 

Lemma A. I. Let 4^ be the positive solution to the TFW equation for a molecule with 
V{x) given by (3). Then for all y>Q 

||^||oo^(27/167r)'/^(Z/A)^/^||(A||2 

with ||(A||2<(2Z)'/' (Lieb 1981, theorem 7.23). 

Proof. Because of lemma 9 in Benguria et al (1981), ipeL^. From equation (5), 
-A ^ipix)^ V{x){p{x). First, consider a single atom with V{x) = z\x\~\ In this case, 
therefore, 

z\ynx-y\-'iP{y)dy. (A.l) A(A(x)^(47r)~ 

Hence 

Srrz-'AiPix)^ | {\y\-'-^\x-y\-')ip{y) dy 

\yr\Hy) + ̂ ix-y))dy. (A.2) 

We decompose this last integral into two terms. One integral over .{|>'| < r} and the 
other over {\y\> r} for any fixed r>0. We have, 

\y\-\^{y) + Hx-y))dy^S7Tr\\iPU (A.3) 
| v | < r 

\y\~'my) + ̂ {x-y))dy^2M2{47T/ry^' (A.4) 
l>'l>r 
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by Holder's inequality. Thus, substituting (A.3) and (A.4) into (A.2), we have 

87rz"'A(A(x)^87rr||iA||ao + 2||iA||2(47r/r)'/' all r > 0 (A.5) 

and minimising the right-hand side with respect to r we get 

87rA(AU)^6z||(A||^/^||(A||2^'(27r)'/' all x. (A.6) 

In the molecular case 

A(A(x)^(47r)-' t \ Zj\y-Rj\-'\x-y\-'il^{y)dy. (A.7) 
7 = 1 J 

Using the same analysis (A.2)-(A.6) for each term on the right-hand side of (A.7) (but 
with {\y - Rj\^ r,} and with r, depending on j) we have that 

SnAHx)^6ZMm4'\\r{2^f''- (A.8) 

The lemma is proved by taking the supremum over x on the left-hand side of (A.8). 
D 

Remark. By making a similar decomposition, one can show that 

\\B^'\U^H^/2r'Mr\\4'r^'^Ml{Z/A)x9x2-''\ (A.9) 

where 

(x) = j | x (B(AO(x)= \x-yriPiyydy 

and ||(A||2<2Z (Lieb 1981, theorem 7.23). The second inequality in (A.9) comes from 
lemma A.l. Actually, the sharp constant in the middle term of (A.9) is 3(77/6)'^^ not 
3(77/2)^/^ One can show that the maximising p for ||Bp||eo/(||p|inip||^^') is P = 
characteristic function of a ball. 
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