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1. Introduction

Finding a consistent and predictive description of quatum gravity is a long standing

problem. Aside from the most popular approaches such as loop quantum gravity,

the technique of Exact Renormalization Groups (ERG) has recently attracted more

interest. This technique allows to derive equations for the running of couplings of

an effective average action without any power expansion in the couplings. It has

been conjectured that the non-renormalizability of gravity is actually an artefact of

the loop expansion in the gravitational coupling and that in an exact calculation the

(dimensionless) couplings actually run to non trivial ultra violet fixed points. Since

this running would countervail the divergencies it is called asymptotic safety scenario

[1]. In several analytical and numerical studies supporting evidence for this kind of

scenario has been found [2, 3, 4, 5, 6, 7, 8, 9]. In order to test the implications of this

approach it has been studied in a large variety of contexts: Cosmology and Astrophysics

[10, 11, 12, 13, 14, 15, 16], Brans Dicke theory [17], black holes [18, 19, 20, 21, 22],

black holes in extra dimensions [23, 24, 25, 26], interactions in extra dimensions [6],

modified dispersion relations [27], f(R) gravity [28], deformed special relativity [29], and

gravitational collapse [30]. This work contributes to the above studies in three ways:

In section 2 a simple expansion is used in order to derive a compact analytic form

for the running couplings Gk and Λk with two fixed point parameters g∗ and λ∗.

In section 3 a new approach for the choice of the cut-off scale k is proposed. In the

suggested choice, all solutions respect diffeomorphism invariance by construction. This

feature is the main difference from existing studies.

In section 4 the findings from the sections 2 and 3 are applied to cosmology and

conditions on the fixed point parameters g∗, λ∗ are derived and discussed.

2. An Approximate Analytical Solution to Exact Renormalization Group

Equations

The Exact Renormalization Group (ERG) was studied in the context of effective

potentials [31]. This lead to an Exact Renormalization Group Equation (ERGE)

∂tΓk =
1

2
Tr

(

Γ
(2)
k +R(0)

)−1
∂tR

(0) , (1)

where Γk stands for the effective average action, R(0) is the momentum-cut-off, and Tr

stands for the sum over all indices in DeWitt notation (see also [33] for a recent review).

For the case of quantum gravity in the Einstein-Hilbert tuncation the effective action

in four dimensions is given by,

Γk =
∫

d4x

√
g

16πGk
[R(g)− 2Λk] , (2)

where the subscript k denotes that G and Λ are scale-dependent functions [4]. For

the ERGE equations (1) and the effective action (2) one defines the dimensionless
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renormalized gravitational and cosmological constants,

gk = k2Gk , λk =
Λk

k2
. (3)

Using a sharp cut-off [5] the beta functions for those constants are found to be

βλ = ∂tλk =
P1

P2 + 4(4 + 2gk)
, (4)

βg = ∂tgk =
2gkP2

P2 + 4(4 + 2gk)
, (5)

where t = ln k and Pi are polynomials of gk and λk [4, 19]. Those equations have the

approximate analytical solution of the form

g(k) =
k2

1 + k2/g∗
, (6)

λ(g) =
g∗λ∗

g

(

(5 + e) [1− g/g∗]3/2 − 5 + 3g/(2g∗)(5− g/g∗)
)

, (7)

which directly defines λ(k). While the functional form of g(k) is frequently used, λ(g)

is a new approximation, which is the result of a Taylor expansion around λ ≪ 1. The

constant e arises as integration constant of the equations (4,5). As shown in the following

study on cosmology this constant can be fixed from the infrared behavior of λk and gk.

The constants λ∗ and g∗ are parameterizations of the UV fixed points

g(k2 → ∞) = g∗ and λ(k2 → ∞) = λ∗ . (8)

Numerical results [6, 7], reveal evidence for specific values for the fixed point, in this

work however λ∗ and g∗ will be treated as free parameters, that should be restricted or

determined by observational data. Figure 1 shows the behavior of the numeric and the

analytic solutions (6, 7). The numerical solution in figure 1b is however limited to the

curves on the left of the parabula, where the beta functions (4, 5) become infinite.

Although, those results are obtained in spaces with Euclidian signature

(+,+,+,+), they will also be used in metric spaces with the signature (−,+,+,+).

3. A consistent cut-off scale

Coupling the Einstein-Hilbert action to matter with scale dependent couplings Λk and

Gk gives

S[g] =
∫

d4x
√
−g

(

R− 2Λk

16πGk

+ Lm

)

. (9)

The equations of motion for the metric field in (9) are

Gµν = −gµνΛk + 8πGkTµν −∆tµν , (10)

where the possible coordinate dependence of Gk induces an additional contribution to

the stress energy tensor [12, 32]

∆tµν = Gk (gµν2 −∇µ∇ν)
1

Gk
. (11)
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(a) .

Analytical solution to the approximated ERGEs

for the values g∗ = 0.016 and λ∗ = 0.25.

Trajectories with e > 0 imply that λ > 0,

trajectories with e = 0 imply that λ → 0 in the

infrared, and trajectories with e < 0 give λ > 0 in

the ultra violet and λ < 0 in the infrared.

(b) .

Numerical solution to the ERGEs. The choice of

the constant e in the analytical case corresponds to

a different choice of initial conditions in the plane

λ-g.

Figure 1: Solutions to the ERGEs (4, 5). for G0 = 1.

The equations of motion (10) and their solution depend crucially on the choice of the

cut-off scale k. In particle physics such a scale would be chosen according to the energy

of the process that is examined. In a curved spacetime such a definition has no global

unique meaning and the choice of the local functional form of k(xµ) becomes tricky if not

even arbitrary. As explained in [34] k(xµ) has to be guessed for each specific problem.

Typically k ∼ 1/(
∫

ds) is used for black holes [19, 25] and k ∼ 1/t or k ∼ 1/H is used

for cosmology [11, 16]. Any such choice, however, implies further difficulties: General

covariance dictates that the equations of motion have to fulfill the Bianchi identities

G ;ν
µν = g ;ν

µν
= 0 . (12)

We will assume that the conservation of the matter stress energy tensor persists

T ;ν
µν = 0 . (13)

Although this assumption is plausible, it might not be generally true, for example it does

not hold whenever particles are created (as it is presumable the case for non extremal

black holes). By using (13) and (12) it follows for the right hand side of (10) that

(8πG′
k̄Tµν − gµνΛ

′
k̄) ∂

νk −∇ν∆tµν = 0 , (14)

where ∂µGk = (∂Gk/∂k)(∂µk) = G′
k∂µk was applied. In most existing studies

[10, 11, 12, 12], due the explicit choice of the functional form of k(x), one always had to

sacrifice either general covariance (12), or the conservation of the stress energy tensor

(13). In contrast to this, we propose to use the identity (14) in order to determine the

relation between k and xν . Thus, by choosing k(x) to be a solution of the consistency

equation (14), general covariance and conservation of the stress-energy tensor can be

perserved by construction. This procedure is analog to the one that was discussed in

[35, 36], here however also the induced stress-energy tensor ∆tµν is taken into account.
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In the spirit of [37] it would also be desirable to have a physical result which does

not depend on the local choice of the cut-off scale k. This can be achieved by treating

the function k like a classical field and minimizing the effective action (9) with respect

to this field. The corresponding equation of motion for k is

2
ΛkG

′
k

G2
k

−R
G′

k

G2
k

− 2
Λ′

k

Gk

= 0 . (15)

Although the “equation of motion” for k2 (15) and the consistency condition (14) were

derived from completely different motivations, they are equivalent. This equivalence

can be shown by using (12) and the identity

∇ν(∇µ∇ν − gµν2)
(

1

Gk

)

= Rνµ∇ν
(

1

Gk

)

, (16)

which allows to rewrite the consistency condition (14) in the form

R∇µ

(

1

Gk

)

− 2∇µ

(

Λk

Gk

)

= 0 . (17)

The above relation is equivalent to (15), since the only xµ dependence in the couplings

comes due to the functional form of k2. This can be seen by explicitly writing out the

covariant derivatives in (17). Although a minimal dependence of k and a consistency of

the equations of motion are desirable, it is not clear whether they corresponds to a well

defined limit in the framework of the exact renormalization group equation (1). This

issue arises since in this limit the effective average action becomes extremal and the

derivation of the ERGE as it is performed in [4] might not be valid any more. However,

in this work it will be supposed that the solutions (6, 7) are still valid.

4. Cosmology

In this section the concepts that were introduced in the previous sections will be applied

to spatially homogeneous universe, which can be parameterized by the metric

ds2 = −dt2 + a(t)2d~x2 . (18)

Like in the case of standard cosmology the matter stress energy tensor will be assumed to

be a perfect fluid. The homogeneity should also hold for the running coupling constants

and the scale parameter k = k(t). Having time dependencies only one finds that the

induced stress energy tensor takes the form

∆t00 = − 3Ġkȧ

Gka
(19)

∆tii =
a

G2
k

(aG̈kGk − 2Ġ2
ka+ 2ĠkȧGk)

∆tµ6=ν = 0 .

With this the Einstein equations reduce to generalizations of the Friedmann equations
(

ȧ

a

)2

=
8πGk

3

(

a40ρr
a4

+
a30ρm
a3

)

+
Λk

3
− κ

a2
+

Ġkȧ

Gka
, (20)

ä

a
= − 8πGk

3

(

a40ρr
a4

+
a30ρm
a3

)

+
Λk

3
+

Ġkȧ

2Gka
+

ĠkG̈k − 2Ġk

G2
k

. (21)
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The two equations (20, 21) would be equivalent for a fixed coupling Ġk = 0, but they

are not equivalent for the time dependent coupling Ġk 6= 0. Without abandoning the

conservation of energy and momentum this problem can be solved if both Gk and Λk

are time dependent quantities [38, 39]. In the context of ERGE it means that the

consistency condition (14) has to be imposed. For the above equations one finds

8πĠk

(

a40ρr
a4

+
a30ρm
a3

)

+ Λ̇k + 3Ġk
ȧĠk +Gkä

aG2
k

= 0 . (22)

One can show that this condition makes the two equations (20, 21) mathematically

equivalent and thus it is sufficient just to work with (20) and (22). By the use of

equation (20), the matter part in (22) can be replaced leading to a more compact form

of the consistency condition

3α(t)− Λk +Gk
Λ̇k

Ġk

= 0 , (23)

where we defined α(t) = (ȧ/a)2 + ä/a + κ/a2. Thus, the problem can in principle be

reduced to first solving (23) in order to find the functional relation for k = k(α) and

then inserting this into the first Friedman equation (20), which then has to be solved

analytically or numerically.

Before starting with this procedure it is interesting to return for a moment to

the equation which was obtained from demanding a minimal scale dependence of the

effective action. For the homogeneous metric (18) this equation (15) is exactly the same

as the consistency condition (23). This identity is not a coincidence but rather comes

from a deeper connection between (14) and (15) that was generally shown at the end of

the previous section.

For finding solutions of the system (23, 20) an explicit form of the running couplings

Λk and Gk has to be assumed. In order to maintain analytical feasibility of the problem

the approximated solutions (6, 7) will be used. The first task is to solve (23) in

order to find the functional form of k = k(α). The solution is however a relatively

large expression, which is not instructive in this form. Furthermore, this algebraic

expression has to be inserted into the generalized Friedman equation (20). This gives a

complicated non-linear differential equation of higher order, which can probably not be

solved analytically. Therefore, the model will be studied in the infrared (IR) and the

ultraviolet (UV) limit.

4.1. ERG cosmology in the IR

In this limit it is assumed that the energy scale is way below the Planck scale k2 ≪ 1/G0.

This allows to expand (23) in a Taylor series around k2 = 0

3α+
k2λ∗

4
(−3 + e) +

eλ∗g∗

2G0

= 0 +O(k4G2
0) . (24)

which is solved by k2
IR = (2eλ∗g∗−12G0α)/((−3+e)G0λ

∗). Since the constants λ∗, g∗, G0

are positive one sees that for e < 3 the numerator of this solution has to be less than
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zero for the square of the energy scale k2
IR to be positive. For decreasing α this does not

hold any more as soon as α ≤ eλ∗g∗/(6G0). The solution to this problem is that from

this moment on the IR limit is reached and the running of the couplings stops. Thus

the infrared solution for k(α) reads

k2
IR =







2eλ∗g∗−12G0α
(−3+e)G02λ∗

for α ≥ eλ∗g∗/(6G0)

0 for α < eλ∗g∗/(6G0) .
(25)

Given the typical values for g∗ and λ∗ [4, 5] of order one, todays value of α definitely

demands that k2
today = 0. In this limit the modified Friedmann equation (20) takes the

familiar form
(

ȧ

a

)2

=
8πG0

3

(

a40ρ
0
r

a4
+

a30ρ
0
m

a3

)

+
eg∗λ∗

3G0
− κ

a2
. (26)

This construction is necessary in order to avoid problems of the big rip type [40]. For

the model to agree with reality, this equation has to be the same as the standard

Friedmann equation [41]. Enforcing this identity one finds that the initially arbitrary

integration constant e of the exact renormalization group equations has to be adjusted

to the observed value of the cosmological constant

e = Λobserved ·
G0

g∗λ∗
. (27)

This is a very strong constraint since it reduces the infinite set of trajectories that

solve (1) to one single curve only. Within error bars this curve is characterized by the

positive value given in (27). This corresponds to a trajectory in the figure 1 where λ

is positive for all values of k. As suggested here, the transition between the cosmology

with a variable scale (20) and the IR limit (26) is not smooth. If one sticks to the

approximated analytical form of the couplings as shown in figure 1a it implies violation

of total energy and momentum. This is due to the fact, that the last term of eq. (20)

still is non zero at the moment of transition to k(α0) = 0. A straight forward way out of

the dilemma is to conjecture that this additional energy δE is transferred to the matter

and radiation content of the universe such that

ρr → ρ0r = ρr + δρr and ρm → ρ0m = ρm + δρm . (28)

Where ρx is the density before the transition and ρ0x is the density after the transition.

Such a process can be seen as the analog of reheating in standard cosmology. The value

of the transition energy will be calculated in the discussion section. There is however

numerical evidence for the curves in figure 1b that limα→0 k
2 = 0, which would make

the issue of negative k2 disappear.

4.2. ERG cosmology in the UV

The very early universe was presumably a very hot environment. Therefore one expects

that good estimates for the Planckian and pre-Planckian epoch can be obtained by an

expansion in (1/(k2G0) ≪ 1). In this limit the consistency condition (23) reads

3α− k2
UV 2λ

∗ +
10λ∗g∗

4G0

= 0 +O(1/(k4G2
0)) . (29)
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There is no maximal value for the scale k2 and thus the asymptotic solution of (23) is

k2
UV =

3α

2λ∗
. (30)

Inserting this solution back into the generalization of the first Friedman equation still

gives a non-linear differential equation of third order, which can not be trivially solved.

However, for asymptotically small times a solution can be found by making the linear

ansatz

a = C · t , (31)

where C is a constant that still has to be determined. With the relation (30) and the

ansatz (31) the differential equation (20) reduces to

1

t2
=

45C4 + a40πρrλ
∗32g∗ − 9κ

18C2t2(C2 + κ)
+O(t0) . (32)

This proves that (31) is a solution of the generalized Friedman equation and that the

only possibly positive linear expansion coefficient is

C =
1

3

√

−3κ+ 2
√

−24a40πρrλ
∗g∗ + 9κ2 . (33)

This, implies that this model only has a physical solution in the UV if the curvature is

different than zero and fulfills

κ >
4

3
a20

√

2πρrλ∗g∗ or (34)

κ < − 2a20

√

2

3
πρrλ∗g∗ .

The above inequalities can be translated to dimensionless matter parameters

Ωr =
8πG0

3H2
0

a40ρr , Ωk = − κ

H2
0

, ΩΛ =
Λ

3H2
0

. (35)

Thus, the relation (34) restricts the remaining parameters of the running couplings

3

4
G0H

2
0

Ω2
k

Ωr

> λ∗g∗ , (36)

where it is important to remember, that due to the energy transfer (28), the value of

Ωr is not necessarily the same as the one observed today Ω0
r .

5. Discussion

The behavior of the solution of the condition (23) can best be demonstrated graphically.

In figure 2, the dependence between the dimensionless quantities G0k
2 andG0α is shown.

The IR limit corresponds to the left region of the figure 2. One sees that it shows no

running of the couplings at the value k2 = 0, and a linear dependence between G0k
2

and G0α for small values of G0k
2. The UV limit corresponds to the far right hand side

of the plot, with large values of G0k
2. In this limit the linear growth continues as it is

already visible on the right hand side of the figure, which reflects directly the findings

of the approximation (30).
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Figure 2: Functional dependence of G0k
2 and G0α for e = 0.1. The blue line is the

complete solution of the condition (23), while the red-dotted line includes the condition

(25) in the infrared limit.

As explained in section 4.2, this UV dependence implies an epoch of linear expansion

in the early universe (31). A result which offers a potential explanation to the

homogeneity of the cosmic microwave background, alternative to inflation. This is due

to the fact that in a linearly expanding universe the causal horizon scales as

hc =
∫ tf

ti
dt

c

a(t)
=

c

C

[

ln
(

tf
ti

)]

. (37)

In contrast to this, the Hubble Horizon in this epoch scales as

hH =
1

tf − ti

∫ ti

tf

c

ȧ
=

c

C
. (38)

Therefore, the early epoch of linear expansion can create arbitrarily high homogeneities

for ti → 0.

Although this is a nice feature of the model, the drawbacks become obvious as

soon as one inserts numbers into the relation (36). Using the given limits on Ωk [42]

it reveals that the product of the fixed point parameters λ∗ and g∗ has to be of the

order of G0H
2
0 ≈ 10−122, if the original radiation density Ωr was of the same order of

magnitude as it is today! When working with the analytical solutions one has to study

whether one can evade this extreme bound by assuming that Ωr was extremely small,

and all of the radiation density observed today Ω0
r was produced during the transition

(25) from running couplings to constant couplings at k2 = 0. However, estimating the

last term in (20) in a linear expansion solution like (31) and comparing it at the moment

of transition to the radiation radiation term in (26) in the same solution gives

λ∗g∗ ≈ 64

3(3− e)
G0H

2
0

1

Ω0
r

. (39)

Thus, evidently, the idea that the observed radiation density is due to the IR transition

Ω0
r ≈ δΩr also implies values of the parameters g∗λ∗ ≈ 10−120. One last backdoor
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might lie in the possibility that e ≈ 3 and the numerator of (39) is going to zero. But

remembering the relation (27) this possibility implies

λ∗g∗ ≈ G0H
2
0ΩΛ . (40)

Like before this means that g∗λ∗ ≈ 10−122. Thus, in all possible scenarios one obtains

that the presented model only is in agreement with observational data in cosmology if

the parameters g∗ · λ∗ are extremely small (≈ 10−122).

6. Conclusion

A new approach for finding the optimal and consistent cut off scale k2 for Einstein-

Hilbert action is presented. This is achieved by taking the relation (15) as algebraic

condition for the local functional form of the scale k2(x). In this context it has been

shown that (15), which reflects a minimal k2 dependence as suggested by Weinberg [37],

implies the consistency condition (14) and vice versa. An elegant way of expressing this

condition is given by eq. (17)

R∇µ

(

1

Gk

)

− 2∇µ

(

Λk

Gk

)

= 0 . (41)

In order to test the new framework it is applied to cosmology for the case of the

approximate analytic ERG solutions (6,7). The cosmological model obtained by this

procedure offers some promising properties such as standard Friedmann cosmology in

the IR and a linear expansion in the UV. However, it is also found that the parameters

of the UV fixed point have to take take extreme values g∗λ∗ ≈ 10−120 for the model

to be in agreement with observed cosmological parameters. The order of magnitude of

the parameters reminds of the vacuum density problem in quantum field theory. Such

a small value for the fixed point parameters does not only appear to be extremely fine

tuned, it is also in disagreement with the findings from approximate numerical fixed

point searches [6, 7, 28, 9]. Thus, demanding to have a classically consistent effective

action (with demanding (13)) for running dimensionless couplings (6, 7) with a fixed

point at the order of 0.1 does not produce a good cosmological model. This allows for

at least three different types of conclusions:

• First, the findings could simply mean that a more complete cosmological model

including other fields (quintessence, inflaton, ...) is needed. This possibility can be

checked by trying more general models, but it is not very attractive, since one has

to introduce new parameters which reduces the predictive power of the theory.

• Second, the findings could be a hint that there is a generic problem with the

approach. For example it might be necessary to relax the assumption of a conserved

stress-energy tensor (13) in the presence of a horizon, where the production of

particles can be expected. This possibility should be checked by applying the

approach to other problems in general relativity such as black holes.

• Third, the findings could be a consequence of the particular choice that has been

made for the functional form of the running couplings (Gk & Λk). In this context,
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the numerical solution 1b should be studied in comparison with the analytical

approximation 1a. Since other candidates for effective theories of quantum gravity

predict different scaling behavior of the couplings [43, 44, 45], they should also be

checked directly within the given approach.

Many thanks to M. A. Diaz, A. Gomberoff, and M. Bañados for helpful hints and

discussions. This work was supported by CONICYT project PBCTNRO PSD-73 and

FONDECYT project 1090753.
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