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Motivation

Big quest:

Unify gravity with particle physics!

Simple question first:

What about particles in curved space-time?
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Motivation
Phenomenological question:

QG messengers have spin and travel in curved space-time

Up to now, all conclusions drawn by using geodesics

dpµ
dλ = 0 (1)

How wrong is this?
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Motivation

Formal question:
Almost all SM particles have spin

Exact motion in curved background?
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Introduction

Introduction
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Introduction

Three different approaches:
Using properties of T µν
Mathisson (1937), Papapetrou (1951), Dixon (1970)
Using Lagrangian formulation

Hanson-Regge (1974), Hojman (1975)
Solutions and limits of fields in curved space-time
... Hojman (2016)

Same outcome!
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Introduction
Lagrangian formalism

Variables:
Position xµ(λ)
Internal orientation eµ

a (λ) (with eµ
be

ν
a gµν = ηab)
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Introduction
Lagrangian formalism

Variables:
Position xµ(λ)
Internal orientation eµ

a (λ) (with eµ
be

ν
a gµν = ηab)

Velocities:
Position uµ = dxµ

dλ
Angular σµν = ηabeµ

a
Deν

b
Dλ = −σνµ (with Deν

b
Dλ = deν

b
dλ + Γνρτe

ρ
bu

τ )
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Introduction
Lagrangian formalism

Lagrangian: Function of invariants:

L = L(a1� a2� a3� a4) (2)

a1 = uµuµ
a2 = σµνσµν
a3 = uασαβσβγuγ
a4 = σαβσβγσγδσδα

with canonical momenta
Pµ = − ∂L

∂uµ
(3)

and
Sµν = − ∂L

∂σµν
(4)
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Introduction
Lagrangian formalism

Lagrangian: Function of invariants:

L = L(a1� a2� a3� a4) (5)

Variational calculus ...
EOM δxµ:

DPµ
Dλ = −1

2
Rµ

ναβuνSαβ (6)

EOM δθµν (parte independiente de eµ
a ):

DSµν
Dλ = Pµuν − Pνuµ (7)
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Introduction
Lagrangian formalism

EOMs:
DPµ
Dλ = −1

2
Rµ

ναβuνSαβ

DSµν
Dλ = Pµuν − Pνuµ

Note:
Same EOMs found in many different ways
Degrees of freedom do not match (coupled equations)
Three rotations in rest frame not 6
⇒ need functional form of L(ai )
⇒ need constraints!
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Introduction
Lagrangian formalism

Constraints:
Different approaches have different constraints (same EOMs).

Dixon: Sµνuν = 0
Tulczyjew: SµνPν = 0
Others ...
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Introduction
Lagrangian formalism

Constraints:
Different approaches have different constraints (same EOMs).

Dixon: Sµνuν = 0
Tulczyjew: SµνPν = 0
Others ...(invent for m = 0)
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Introduction
Lagrangian formalism

Finally:
EOMs:

DPµ
Dλ = −1

2
Rµ

ναβuνSαβ (8)

DSµν
Dλ = Pµuν − Pνuµ (9)

Constraints:

SµνPν = 0 (10)

(for m �= 0)
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Collisions of STOPs

Collisions of STOPs in Schwarzschild background

Astrophysical background:
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Collisions of STOPs

Astrophysical background:
(geodesics)

Black holes can in principle produce ECM → ∞, but one neds
Extremely rotating black hole
Collision at the horizon
Angular momentum l : critical

⇒ Unlikely, hard to observe
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Collisions of STOPs

Idea:
Let the particle rotate and the black hole be spherical

Can one produce ECM → ∞?
If yes:
Has the collision to be at the horizon?
Has the angular momentum l : to be critical?
Is there a notion of extremely rotating particle?

⇒ Solve equations (8-10) for

ds2 = −
�

1 − 2M
r

�
dt2 + dr2

1 − 2M/r + r2 dΩ2� (11)

and see ...
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Collisions of STOPs
Solution in equatorial plane (draw...):

Pt

m
=

�
1 − 2M

r

�−1 e − Mjs/r3

1 − Ms2/r3 � (12)

Pφ
m

= 1
r2

�
j − es

1 − Ms2/r3

�
� (13)

�
P r

m

�2
=

�
e − Mjs/r3

1 − Ms2/r3

�2

−
�

1 − 2M
r

� �
1 + 1

r2

�
j − es

1 − Ms2/r3

�2
�

�
(14)

with velocities
dr

dt
≡ ur

ut
= P r

Pt
� (15)

dφ
dt

≡ uφ
ut

=
�

1 + 2Ms2/r3

1 − Ms2/r3

�
Pφ
Pt

� (16)
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Collisions of STOPs

Collisions in equatorial plane (draw ...):
Collision energy:

E 2
cm = −( �P1 + �P2)2 = m2

1 + m2
2 − 2 �P1 · �P2� (17)

gives

E2
cm = 2m2

∆1∆2∆

�
r (r3 − Mj1s1)(r3 − Mj2s2) + ∆

�
∆1∆2 − r4(j1 − s1)(j2 − s2)

�

−
�
r (r3 − Mj1s1)2 − ∆[∆2

1 + r4(j1 − s1)2 ]
�
r (r3 − Mj2s2)2 − ∆[∆2

2 + r4(j2 − s2)2 ]
�

� (18)

where ∆ ≡ r − 2M and ∆i ≡ r3 − Ms2
i , i = 1, 2.

⇒ Poles! Trajectories reach poles?
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Collisions of STOPs

Radial turning points:
�
P r

m

�2
= a

�
1 − Ms2

r3

�−2

[e − V+(r )] [e − V−(r )] � (19)

where the effective potential is given by

V±(r ) = b ± Σ1/2
a

(20)

with
a = 1 −

�
1 − 2M

r

�
s2

r2
� b = − js

r2

�
1 − 3M

r

�
� (21)

and

Σ =
�
1 − 2M

r

� �
1 − Ms2

r3

�2 �
1 + j2

r2
−

�
1 − 2M

r

�
s2

r2

�
� (22)
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Collisions of STOPs

In analytic analysis one finds:
For retrograde (l < 0) trajectories
Spin: 8M2 ≤ s2 ≤ 27M2

Divergence can be reached and lie outside of BH!

Benjamin Koch (PUC, Chile) Graz, January 2017 23 / 34



Collisions of STOPs
In numerical analysis one finds:

ECM divergent for yellow region
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Massless STOPs

Massless STOPs
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Massless STOPs

Literature considers
SµνPµ = 0
SµνUµ = 0
SµνUµ = aUν and PµUµ = da

dτ
Always:

Massless STOPs travel on simple null geodesics

dPµ
dτ = 0 (23)

Nothing else?

Benjamin Koch (PUC, Chile) Graz, January 2017 26 / 34



Massless STOPs

Literature considers
SµνPµ = 0
SµνUµ = 0
SµνUµ = aUν and PµUµ = da

dτ
Always:

Massless STOPs travel on simple null geodesics

dPµ
dτ = 0 (23)

Nothing else?

Benjamin Koch (PUC, Chile) Graz, January 2017 26 / 34



Massless STOPs

Nothing else? Actually many possibilities ...
For simplicity define

V µ = SµνPν (24)
W µ = S∗µνPν (25)

J2 = 1
2
SµνSµν (26)

For example
W µ = λPµ|λ �=0� withV µ = αPµ (27)

(studied 21 cases and combinations)
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Massless STOPs

W µ = λPµ|λ �=0� withV µ = αPµ (28)

One finds algebraically for α �= 0:
P2 = W 2 = V 2 = 0 (indeed massless)
S∗S = αλ
J2 = α2 − λ2

Always nice to have non-trivial algebraic relations
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Massless STOPs

What does that mean for trajectories?

⇒ Not necessarily dPµ/dτ = 0

What does that mean: “Not necessarily dPµ/dτ = 0”

In principle �= 0,
but in some symmetric cases and initial conditions still might be ...

example

OK
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Massless STOPs

Example:
Massless radial Schwarzschild (draw)

Str = − ±α
c

� (29)

Sθφ = ±λ
r2

� (30)

Srθ = − C4
r

� (31)

Stθ = − ±cC4
gr

� (32)

Stφ = − ±cj

gr
� (33)

Srφ = − j

r
� (34)

ṙ

ṫ
= ±g

c
� (35)

Pt = 2cE − ±αg �
2cg

� (36)

Pr = ± 2cE − ±αg �
2c2

� (37)
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Massless STOPs

Example:
Massless radial Schwarzschild
Obviously still radial like null-geodesics but ...

∆E = α
c

1
2
g �|r+ (38)

Hawking relation!
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Massless STOPs
Massless radial Schwarzschild
Obviously still radial like null-geodesics but ...

∆E = α
c

1
2
g �|r+ (39)

Hawking relation!

Without QFT in curved space-time
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Conclusions

Take home messages:

Non-geodesic motion of STOPs
Window of visible effects
(collisions)
Window to QFT-QG link
(massless)
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Thank you

Thank you !
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