Non-geodesic motion with and without mass

Cristobal Armaza, Maximo Bañados, Sergio Hojman, and Nicolas Zalaquett bkoch@fis.puc.cl
${ }^{a}$ PUC, Chile
Graz

Benjamin Koch (PUC, Chile)

Outline

- Motivation
- Introduction
- Collisions of STOPs with mass
- STOP without mass
- Conclusion?

Based on:
*C. Armaza, M. Banados, B.K. Class.Quant.Grav. 33 (2016) no.10, 105014
**C.Armaza, S.Hojman, B.K., N. Zalaquett, Class.Quant.Grav. 33 (2016) no.14, 145011

Motivation

Big quest:
 Unify gravity with particle physics!

Simple question first:

Motivation

> Big quest:
> Unify gravity with particle physics!

Simple question first:
What about particles in curved space-time?

Motivation

Phenomenological question:
QG messengers have spin and travel in curved space-time

Up to now, all conclusions drawn by using geodesics

$$
\frac{d p^{\mu}}{d \lambda}=0
$$

How wrong is this?

Motivation

Formal question:
Almost all SM particles have spin

Exact motion in curved background?

Introduction

Introduction

Introduction

Three different approaches:

- Using properties of $T^{\mu \nu}$ Mathisson (1937), Papapetrou (1951), Dixon (1970)
- Using Lagrangian formulation Hanson-Regge (1974), Hojman (1975)
- Solutions and limits of fields in curved space-time
... Hojman (2016)

Same outcome!

Introduction

Lagrangian formalism

Variables:

- Position $x^{\mu}(\lambda)$
- Internal orientation $e_{a}^{\mu}(\lambda)$ (with $\left.e_{b}^{\mu} e_{a}^{\nu} g_{\mu \nu}=\eta_{a b}\right)$

Introduction

Lagrangian formalism

Variables:

- Position $x^{\mu}(\lambda)$
- Internal orientation $e_{a}^{\mu}(\lambda)$ (with $\left.e_{b}^{\mu} e_{a}^{\nu} g_{\mu \nu}=\eta_{a b}\right)$

Velocities:

- Position $u^{\mu}=\frac{d x^{\mu}}{d \lambda}$
- Angular $\sigma^{\mu \nu}=\eta^{a b} e_{a}^{\mu} \frac{D e_{b}^{\nu}}{D \lambda}=-\sigma^{\nu \mu}$ (with $\left.\frac{D e_{b}^{\nu}}{D \lambda}=\frac{d e_{b}^{v}}{d \lambda}+\Gamma_{\rho \tau}^{\nu} e_{b}^{\rho} u^{\tau}\right)$

Introduction

Lagrangian formalism
Lagrangian: Function of invariants:

$$
\begin{equation*}
L=L\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \tag{2}
\end{equation*}
$$

- $a_{1}=u^{\mu} u_{\mu}$
- $a_{2}=\sigma^{\mu v} \sigma_{\mu \nu}$
- $a_{3}=u^{\alpha} \sigma_{\alpha \beta} \sigma^{\beta \gamma} u_{\gamma}$
- $a_{4}=\sigma_{\alpha \beta} \sigma^{\beta \gamma} \sigma_{\gamma \delta} \sigma^{\delta \alpha}$
with canonical momenta

$$
P^{\mu}=-\frac{\partial L}{\partial u_{\mu}}
$$

and

$$
S^{\mu \nu}=-\frac{\partial L}{\partial \sigma_{\mu \nu}}
$$

Introduction

Lagrangian formalism

Lagrangian: Function of invariants:

$$
\begin{equation*}
L=L\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \tag{5}
\end{equation*}
$$

Variational calculus ...
EOM δx^{μ} :

$$
\begin{equation*}
\frac{D P^{\mu}}{D \lambda}=-\frac{1}{2} R_{v \alpha \beta}^{\mu} u^{v} S^{\alpha \beta} \tag{6}
\end{equation*}
$$

$\mathrm{EOM} \delta \theta^{\mu \nu}$ (parte independiente de e_{a}^{μ}):

$$
\frac{D S^{\mu v}}{D \lambda}=P^{\mu} u^{v}-P^{v} u^{\mu}
$$

Introduction

Lagrangian formalism

EOMs:

$$
\begin{aligned}
& \frac{D P^{\mu}}{D \lambda}=-\frac{1}{2} R_{v \alpha \beta}^{\mu} u^{v} S^{\alpha \beta} \\
& \frac{D S^{\mu v}}{D \lambda}=P^{\mu} u^{v}-P^{v} u^{\mu}
\end{aligned}
$$

Note:

- Same EOMs found in many different ways
- Degrees of freedom do not match (coupled equations)
- Three rotations in rest frame not 6
- \Rightarrow need functional form of $L\left(a_{i}\right)$
- \Rightarrow need constraints!

Introduction

Lagrangian formalism

EOMs:

$$
\begin{aligned}
& \frac{D P^{\mu}}{D \lambda}=-\frac{1}{2} R_{v \alpha \beta}^{\mu} u^{v} S^{\alpha \beta} \\
& \frac{D S^{\mu v}}{D \lambda}=P^{\mu} u^{v}-P^{v} u^{\mu}
\end{aligned}
$$

Note:

- Same EOMs found in many different ways
- Degrees of freedom do not match (coupled equations)
- Three rotations in rest frame not 6
- \Rightarrow need functional form of $L\left(a_{i}\right)$
- \Rightarrow need constraints!

Introduction

Lagrangian formalism

Constraints:
Different approaches have different constraints (same EOMs).

- Dixon: $S^{\mu v} u_{v}=0$
- Tulczyjew: $S^{\mu \nu} P_{v}=0$
- Others ...

Introduction

Lagrangian formalism

Constraints:
Different approaches have different constraints (same EOMs).

- Dixon: $S^{\mu v} u_{v}=0$
- Tulczyjew: $S^{\mu \nu} P_{v}=0$
- Others ...(invent for $m=0$)

Introduction

Lagrangian formalism

Finally:
EOMs:

$$
\begin{align*}
& \frac{D P^{\mu}}{D \lambda}=-\frac{1}{2} R_{v \alpha \beta}^{\mu} u^{v} S^{\alpha \beta} \tag{8}\\
& \frac{D S^{\mu v}}{D \lambda}=P^{\mu} u^{v}-P^{v} u^{\mu} \tag{9}
\end{align*}
$$

Constraints:

$$
\begin{equation*}
S^{\mu v} P_{v}=0 \tag{10}
\end{equation*}
$$

(for $m \neq 0$)

Collisions of STOPs

Collisions of STOPs in Schwarzschild background
Astrophysical background:

Collisions of STOPs

Astrophysical background:
(geodesics)

- Black holes can in principle produce $E_{C M} \rightarrow \infty$, but one neds
- Extremely rotating black hole
- Collision at the horizon
- Angular momentum /: critical
\Rightarrow Unlikely, hard to observe

Collisions of STOPs

Idea:
Let the particle rotate and the black hole be spherical

- Can one produce $E_{C M} \rightarrow \infty$? If yes:
- Has the collision to be at the horizon?
- Has the angular momentum /: to be critical?
- Is there a notion of extremely rotating particle?
\Rightarrow Solve equations (8-10) for

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\frac{d r^{2}}{1-2 M / r}+r^{2} d \Omega^{2}
$$

and see ...

Collisions of STOPs

Solution in equatorial plane (draw...):

$$
\begin{align*}
\frac{P^{t}}{m} & =\left(1-\frac{2 M}{r}\right)^{-1} \frac{e-M j s / r^{3}}{1-M s^{2} / r^{3}} \tag{12}\\
\frac{P^{\phi}}{m} & =\frac{1}{r^{2}}\left(\frac{j-e s}{1-M s^{2} / r^{3}}\right) \tag{13}
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{P^{r}}{m}\right)^{2}=\left(\frac{e-M j s / r^{3}}{1-M s^{2} / r^{3}}\right)^{2}-\left(1-\frac{2 M}{r}\right)\left[1+\frac{1}{r^{2}}\left(\frac{j-e s}{1-M s^{2} / r^{3}}\right)^{2}\right] \tag{14}
\end{equation*}
$$

with velocities

$$
\begin{aligned}
& \frac{d r}{d t} \equiv \frac{u^{r}}{u^{t}}=\frac{P^{r}}{P^{t}} \\
& \frac{d \phi}{d t} \equiv \frac{u^{\phi}}{u^{t}} \\
&=\left(\frac{1+2 M s^{2} / r^{3}}{1-M s^{2} / r^{3}}\right) \frac{P^{\phi}}{P^{t}} .
\end{aligned}
$$

Collisions of STOPs

Collisions in equatorial plane (draw ...):
Collision energy:

$$
\begin{equation*}
E_{\mathrm{cm}}^{2}=-\left(\vec{P}_{1}+\vec{P}_{2}\right)^{2}=m_{1}^{2}+m_{2}^{2}-2 \vec{P}_{1} \cdot \vec{P}_{2} \tag{17}
\end{equation*}
$$

gives

$$
\left.\begin{array}{rl}
E_{\mathrm{cm}}^{2}=\frac{2 m^{2}}{\Delta_{1} \Delta_{2} \Delta} & \left\{r\left(r^{3}-M_{11} s_{1}\right)\left(r^{3}-M j_{2} s_{2}\right)+\Delta\left[\Delta_{1} \Delta_{2}-r^{4}\left(j_{1}-s_{1}\right)\left(j_{2}-s_{2}\right)\right]\right. \\
& \left.-\sqrt{r\left(r^{3}-M_{1} s_{1}\right)^{2}-\Delta\left(\Delta_{1}^{2}+r^{4}\left(j_{1}-s_{1}\right)^{2}\right]}\right] \sqrt{r\left(r^{3}-M_{2} s_{2}\right)^{2}-\Delta\left[\Delta_{2}^{2}+r^{4}\left(j_{2}-s_{2}\right)^{2}\right]} \tag{18}
\end{array}\right\},
$$

where $\Delta \equiv r-2 M$ and $\Delta_{i} \equiv r^{3}-M s_{i}^{2}, i=1,2$.
\Rightarrow Poles! Trajectories reach poles?

Collisions of STOPs

Radial turning points:

$$
\begin{equation*}
\left(\frac{P^{r}}{m}\right)^{2}=a\left(1-\frac{M s^{2}}{r^{3}}\right)^{-2}\left[e-V_{+}(r)\right]\left[e-V_{-}(r)\right] \tag{19}
\end{equation*}
$$

where the effective potential is given by

$$
\begin{equation*}
V_{ \pm}(r)=\frac{b \pm \Sigma^{1 / 2}}{a} \tag{20}
\end{equation*}
$$

with

$$
\begin{equation*}
a=1-\left(1-\frac{2 M}{r}\right) \frac{s^{2}}{r^{2}}, \quad b=-\frac{j s}{r^{2}}\left(1-\frac{3 M}{r}\right) \tag{21}
\end{equation*}
$$

and

$$
\Sigma=\left(1-\frac{2 M}{r}\right)\left(1-\frac{M s^{2}}{r^{3}}\right)^{2}\left[1+\frac{j^{2}}{r^{2}}-\left(1-\frac{2 M}{r}\right) \frac{s^{2}}{r^{2}}\right]
$$

Collisions of STOPs

In analytic analysis one finds:

- For retrograde $(I<0)$ trajectories
- Spin: $8 M^{2} \leq s^{2} \leq 27 M^{2}$

Divergence can be reached and lie outside of BH!

Collisions of STOPs

In numerical analysis one finds:

$E_{C M}$ divergent for yellow region

Massless STOPs

Massless STOPs

Massless STOPs

Literature considers

- $S^{\mu \nu} P_{\mu}=0$
- $S^{\mu \nu} U_{\mu}=0$
- $S^{\mu \nu} U_{\mu}=a U^{\nu}$ and $P^{\mu} U_{\mu}=\frac{d a}{d \tau}$

Always:
Massless STOPs travel on simple null geodesics

$$
\begin{equation*}
\frac{d P^{\mu}}{d \tau}=0 \tag{23}
\end{equation*}
$$

Massless STOPs

Literature considers

- $S^{\mu v} P_{\mu}=0$
- $S^{\mu \nu} U_{\mu}=0$
- $S^{\mu \nu} U_{\mu}=a U^{\nu}$ and $P^{\mu} U_{\mu}=\frac{d a}{d \tau}$

Always:
Massless STOPs travel on simple null geodesics

$$
\begin{equation*}
\frac{d P^{\mu}}{d \tau}=0 \tag{23}
\end{equation*}
$$

Nothing else?

Massless STOPs

Nothing else? Actually many possibilities ...
For simplicity define

$$
\begin{align*}
V^{\mu} & =S^{\mu v} P_{v} \tag{24}\\
W^{\mu} & =S^{* \mu v} P_{v} \tag{25}\\
J^{2} & =\frac{1}{2} S^{\mu v} S_{\mu v} \tag{26}
\end{align*}
$$

For example

$$
\begin{equation*}
W^{\mu}=\left.\lambda P^{\mu}\right|_{\lambda \neq 0}, \text { with } V^{\mu}=\alpha P^{\mu} \tag{27}
\end{equation*}
$$

(studied 21 cases and combinations)

Massless STOPs

$$
\begin{equation*}
W^{\mu}=\left.\lambda P^{\mu}\right|_{\lambda \neq 0,} \text { with } V^{\mu}=\alpha P^{\mu} \tag{28}
\end{equation*}
$$

One finds algebraically for $\alpha \neq 0$:

- $P^{2}=W^{2}=V^{2}=0$ (indeed massless)
- $S^{*} S=\alpha \lambda$
- $J^{2}=\alpha^{2}-\lambda^{2}$

Always nice to have non-trivial algebraic relations

Massless STOPs

What does that mean for trajectories?

Massless STOPs

What does that mean for trajectories?

$$
\Rightarrow \text { Not necessarily } d P^{\mu} / d \tau=0
$$

but in some symmetric cases and initial conditions still might be

Massless STOPs

What does that mean for trajectories?

$$
\Rightarrow \text { Not necessarily } d P^{\mu} / d \tau=0
$$

What does that mean: "Not necessarily $d P^{\mu} / d \tau=0$ "
but in some symmetric cases and initial conditions still might be

Massless STOPs

What does that mean for trajectories?

$$
\Rightarrow \text { Not necessarily } d P^{\mu} / d \tau=0
$$

What does that mean: "Not necessarily $d P^{\mu} / d \tau=0$ "

$$
\text { In principle } \neq 0 \text {, }
$$

but in some symmetric cases and initial conditions still might be ...

Massless STOPs

What does that mean for trajectories?

$$
\Rightarrow \text { Not necessarily } d P^{\mu} / d \tau=0
$$

What does that mean: "Not necessarily $d P^{\mu} / d \tau=0$ "

$$
\text { In principle } \neq 0 \text {, }
$$

but in some symmetric cases and initial conditions still might be ...
example

Massless STOPs

What does that mean for trajectories?

$$
\Rightarrow \text { Not necessarily } d P^{\mu} / d \tau=0
$$

What does that mean: "Not necessarily $d P^{\mu} / d \tau=0$ "

$$
\text { In principle } \neq 0 \text {, }
$$

but in some symmetric cases and initial conditions still might be ...
example

OK

Massless STOPs

Example:
Massless radial Schwarzschild (draw)

$$
\begin{align*}
S^{t r} & =-\frac{ \pm \alpha}{c}, \tag{29}\\
S^{\theta \phi} & =\frac{ \pm \lambda}{r^{2}}, \tag{30}\\
S^{r \theta} & =-\frac{C_{4}}{r}, \tag{31}\\
S^{t \theta} & =-\frac{ \pm c C_{4}}{g r}, \tag{32}\\
S^{t \phi} & =-\frac{ \pm c j}{g r}, \tag{33}\\
S^{r \phi} & =-\frac{j}{r}, \tag{34}\\
\dot{r} & =\frac{ \pm g}{c}, \tag{35}\\
\bar{t} & =\frac{2 c E- \pm \alpha g^{\prime}}{2 c g}, \\
P^{t} & = \pm \frac{2 c E- \pm \alpha g^{\prime}}{2 c^{2}} .
\end{align*}
$$

Massless STOPs

Example:

Massless radial Schwarzschild
Obviously still radial like null-geodesics but ...

Hawking relation!

Massless STOPs

Example:
Massless radial Schwarzschild
Obviously still radial like null-geodesics but ...

$$
\begin{equation*}
\Delta E=\left.\frac{\alpha}{c} \frac{1}{2} g^{\prime}\right|_{r^{+}} \tag{38}
\end{equation*}
$$

Hawking relation!

Massless STOPs

Massless radial Schwarzschild Obviously still radial like null-geodesics but ...

$$
\begin{equation*}
\Delta E=\left.\frac{\alpha}{c} \frac{1}{2} g^{\prime}\right|_{r^{+}} \tag{39}
\end{equation*}
$$

Hawking relation!

Without QFT in curved space-time

Conclusions

Take home messages:

Non-geodesic motion of STOPs

- Window of visible effects (collisions)
- Window to QFT-QG link (massless)

Thank you

Thank you!

