Cosmic Censorship
 in a Gravitational Collapse in Quantum Einstein Gravity

Benjamin Koch
in colaboraion with
Alfio Bonanno and Alessia Platania bkoch@fis.puc.cl

${ }^{a}$ PUC, Chile

Leiden

February 2017

Outline

- Motivation
- Black holes in Asymptotic Safety
- Cosmic Censorship in Asymptotic Safety
- Conclusion
[*]Based on: A. Bonanno, B.K., A. Platania, e-Print: arXiv:1610.05299

Motivation

FRGE solutions:

[*/M. Reuter, F. Saueressig, Phys.Rev. D65 (2002) 065016; probably also all people present here...

- What does this mean for physical systems?

Motivation

FRGE solutions:

[*]M. Reuter, F. Saueressig, Phys.Rev. D65 (2002) 065016; probably also all people present here...

- What does this mean for physical systems?

e.g. BLACK HOLES

Black Holes

Black Holes

Black Holes

Black Holes

Black Holes

Singularitiy

Black Holes

Black Holes

Black holes in Asymptotic Safety

Black Holes

Black holes in Asymptotic Safety

Black Holes

Black holes in Asymptotic Safety:
Two approaches borrowed from QFT

- Improving solutions (Uehling potential textbook QED)
- Improving action and eom (gap equations in QFT)

Black Holes

Improving solutions:
Classical eom's

$$
\begin{equation*}
G_{\mu \nu}+g_{\mu \nu} \Lambda=8 \pi G_{k} T_{\mu \nu} \tag{1}
\end{equation*}
$$

Classical solution for $d s^{2}=f(r) d t^{2}+f^{-1} d r^{2}+d \Omega\left(\right.$ with $\left.\Lambda_{k} \approx 0\right)$

$$
\begin{equation*}
f(r)=1-\frac{2 G_{k} M}{r} \tag{2}
\end{equation*}
$$

Quantum improvement G_{k} with $k \neq c t e$.

$$
\begin{equation*}
k=k(r)=\frac{\xi}{d(r)} \tag{3}
\end{equation*}
$$

where $d(r)$ physical cut-off like proper distance * [*] A. Bonanno, M. Reuter, Phys. Rev. D62, 043008 (2000)

Black Holes

Improving solutions:*

- No Singularity
- Stable remnant
- Similar for different scale setting, extra dimensions, charge, or angular momentum but
[*] A. Bonanno, M. Reuter Phys.Rev. D62 (2000) 043008; figure from B.K., F. Saueressig, Int.J.Mod.Phys. A29 (2014) no.8, 1430011

Black Holes

Improving solutions:*

but if one considers

$$
\begin{equation*}
\Lambda_{k} \mid u v=\lim _{k \rightarrow \infty} k^{2} \lambda^{*} \tag{4}
\end{equation*}
$$

\Rightarrow the neglected term $\sim \Lambda_{k}$ in lapse function

$$
\begin{equation*}
f(r)=1-\frac{2 G_{k} M}{r}+r^{2} \Lambda_{k} \tag{5}
\end{equation*}
$$

can become divergent for $r \rightarrow 0$ *

Black Holes

Gap equations:*

Effective Einstein-Hilbert action

$$
\begin{equation*}
\Gamma_{k}\left[g_{\mu \nu}\right]=\int_{M} d^{4} x \sqrt{-g}\left(\frac{R-2 \wedge_{k}}{16 \pi G_{k}}\right) \tag{6}
\end{equation*}
$$

eom $\delta g_{\mu \nu}$:

$$
\begin{equation*}
G_{\mu \nu}=-g_{\mu \nu} \wedge_{k}-\Delta t_{\mu \nu}+8 \pi G_{k} T_{\mu \nu} \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta t_{\mu \nu}=G_{k}\left(g_{\mu \nu} \square-\nabla_{\mu} \nabla_{\nu}\right) \frac{1}{G_{k}} \tag{8}
\end{equation*}
$$

scale setting $\delta k:[*]$

$$
\left[R \partial_{k}\left(\frac{1}{G_{k}}\right)-2 \partial_{k}\left(\frac{\Lambda_{k}}{G_{k}}\right)\right]=0
$$

[*] B.K., P. Rioseco, C. Contreras Phys.Rev. D91 (2015) no.2, 025009

Black Holes

Gap equations:
Complicated equations \Rightarrow no analytic BH solution Trick: Impose Null Energy Condtion

$$
\begin{equation*}
\nabla_{\mu} \Delta t^{\mu v}=0 \tag{10}
\end{equation*}
$$

Trick implies Schwarzschild ansatz $g_{00}=1 / g_{11}=f(r)$ \Rightarrow generalized de Sitter solution, also Reissner Nordstrom, and BTZ:[*]

$$
\begin{align*}
G(r) & =\frac{G_{0}}{\epsilon r+1} \tag{11}\\
f(r) & =1+3 G_{0} M_{0} \epsilon-\frac{2 G_{0} M_{0}}{r}-\left(1+6 \epsilon G_{0} M_{0}\right) \epsilon r-\frac{\Lambda_{0} r^{2}}{3}+r^{2} \epsilon^{2}\left(6 \epsilon G_{0} M_{0}+1\right) \ln \left(\frac{c_{4}(\epsilon r+1)}{r}\right) \tag{12}
\end{align*}
$$

Constants of integration: $G_{0}, M_{0}, \Lambda_{0}, \epsilon, c_{4}$
[*] B.K., P. Rioseco, Class.Quant.Grav. 33 (2016) 035002,
B.K. I. Reyes, A. Rincon, Class.Quant.Grav. 33 (2016) no.22, 225010.

Black Holes

Gap equations:

- Has singularity ...

Black Holes

Fair to say:

Question of singularity is still open!

Black Holes

Fair to say:

Question of singularity is still open!

What is the problem with such singularities?

Black Hole Formation

Black Hole Formation

Black Hole Formation

Remember classical BH

Black Hole Formation

Remember classical BH

Singularitiy

Black Hole Formation

Remember classical BH

Singularities

Censorship hypothesis

Black Holes dressed singularity might not be the problem
study naked singularities (e.g. BH formation)

클

Black Hole Formation

Remember classical BH

Singularities

Censorship hypothesis

Black Holes
dressed singularity might not be the problem
\Rightarrow
study naked singularities (e.g. BH formation)

Black Hole Formation

Classical Kuroda-Papapetrou model

Black Hole formationt

Black Hole Formation

Classical Kuroda-Papapetrou model

Singularity

Black Hole Formation

Classical Kuroda-Papapetrou model

Singularity

Censorship hypothesis comes "late"

Black Hole formationt

Black Hole Formation

Classical Kuroda-Papapetrou model

Singularity

Censorship "late", AS can help?

Black Hole formationt

Black Hole Formation

Classical Kuroda-Papapetrou model
Classical Vaidya metric

$$
\begin{equation*}
d s^{2}=-f(r, v) \cdot d v^{2}+2 d v d r+r^{2} d \Omega^{2} \tag{13}
\end{equation*}
$$

with advanced ingoing null coordinate v.
Null geodesics:

$$
\begin{gather*}
\frac{d r}{d v}=\frac{1}{2}\left(1-\frac{2 G_{0} m(v)}{r}\right) . \tag{14}\\
f(r, v)=1-\frac{2 G_{0} m(v)}{r} \tag{15}
\end{gather*}
$$

Mass inflow modeled by:

$$
m(v)= \begin{cases}0 & v<0 \\ \lambda v & 0 \leq v<\bar{v} \\ \bar{m} & v \geq \bar{v}\end{cases}
$$

Black Hole Formation

Classical Kuroda-Papapetrou model

Horizons:

- High mass inflow

$$
\begin{equation*}
\lambda>\lambda_{c}=\frac{1}{16 G_{0}} \tag{17}
\end{equation*}
$$

\Rightarrow Singularity at $r=0$ always covered by an horizon

- Low mass inflow

$$
\begin{equation*}
\lambda<\lambda_{c}=\frac{1}{16 G_{0}} \tag{18}
\end{equation*}
$$

\Rightarrow Singularity at $r=0$ can be naked
Can be seen in phase diagram:

Black Hole Formation

Classical Kuroda-Papapetrou model

Phase diagram:

$\lambda<\lambda_{c}$

Singularity covered
Singularity naked
blue apparent horizon, purple event horizon

Black Hole Formation

AS improved Kuroda-Papapetrou model

Improved Vaidya metric

$$
\begin{equation*}
d s^{2}=-f_{k}(r, v) \cdot d v^{2}+2 d v d r+r^{2} d \Omega^{2} \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{k}(r, v)=1-\frac{2 G_{k} m(v)}{r} \tag{20}
\end{equation*}
$$

Identify IR cut-off scale with scale imposed by infalling radiation

$$
\begin{equation*}
k \sim T \sim \rho^{1 / 4} \tag{21}
\end{equation*}
$$

ξ : proportionality constant, ρ given from classical field equations $\left(G_{v, v}\right)$

$$
\begin{equation*}
\frac{\dot{m}(v)}{4 \pi r^{2}}=\rho(v, r) . \tag{22}
\end{equation*}
$$

Thus,

$$
f_{k}(r, v)=1-\frac{2 \lambda G_{0} v}{r+\alpha \sqrt{\lambda}}, \quad \text { with } \quad \alpha=\frac{\xi^{2} G_{0}}{\sqrt{4 \pi} g_{*}}
$$

Black Hole Formation

AS improved Kuroda-Papapetrou model

Note: $[$ |*

- Improved lapse function $f_{k}(r, v)$ is well defined in the limit $r \rightarrow 0$

$$
\begin{equation*}
\lim _{r \rightarrow 0} f_{k}(r, v)=1-\frac{\sqrt{16 \pi \lambda}}{\omega \xi^{2}} v \tag{24}
\end{equation*}
$$

- However singular curvatures in $r \rightarrow 0$ e.g.

$$
R=-\frac{G_{0} \sqrt{\lambda} v}{\alpha r^{2}}+O\left(1 / r^{2}\right), \quad K=\frac{16 G_{0} \sqrt{\lambda} v}{\alpha^{2} r^{4}}+O\left(1 / r^{3}\right) .
$$

- One might invent cut-off identification without singularity, but don't want to do reverse engineering
- Like in all improving solutions schemes (24) does not solve eoms

[^0]
Black Hole Formation

AS improved Kuroda-Papapetrou model

From (24) apparent horizon shifted by the constant $\alpha \sqrt{\lambda}$

$$
\begin{equation*}
r_{\mathrm{AH}}(v)=2 m(v) G_{0}-\alpha \sqrt{\lambda}=2 m(v) G_{0}-\frac{G_{0} \xi^{2}}{g_{*}} \sqrt{\frac{\lambda}{4 \pi}}, \tag{25}
\end{equation*}
$$

from $r_{\mathrm{AH}} \geq 0$ and matching to improved Schwarzschild \rightarrow minimum "time" \bar{v} of irradiation, necessary to actually form a black hole

$$
\begin{equation*}
r_{S}=2 \lambda \bar{v} G_{0}-\alpha \sqrt{\lambda} \geq 0 \quad \Rightarrow \quad \bar{v} \geq v_{\min }(\lambda) \equiv \frac{\xi^{2}}{2 g_{*}} \sqrt{\frac{1}{4 \pi \lambda}} \tag{26}
\end{equation*}
$$

Black Hole Formation

AS improved Kuroda-Papapetrou model

Null geodesics from

$$
\begin{equation*}
\dot{r}(v)=\frac{1}{2}\left(1-\frac{2 \lambda v G_{0}}{r(v)+\alpha \sqrt{\lambda}}\right), \tag{27}
\end{equation*}
$$

Integrating (e.g. for $\lambda \leq \frac{1}{16 G_{0}}$) gives implicit equation

$$
\begin{equation*}
\frac{\left|r(v)+\alpha \sqrt{\lambda}-\mu_{-} v\right|^{\mu_{-}}}{\left|r(v)+\alpha \sqrt{\lambda}-\mu_{+} v\right|^{\mu_{+}}}=\tilde{C} \tag{28}
\end{equation*}
$$

with two linear solutions

$$
r_{ \pm}(v)=-\alpha \sqrt{\lambda}+\mu_{ \pm} v,
$$

Black Hole Formation

AS improved Kuroda-Papapetrou model

Phase diagram:

blue apparent horizon, purple event horizon
Singularity always naked

Black Hole Formation

AS improved Kuroda-Papapetrou model

Phase diagram:

blue apparent horizon, purple event horizon
Singularity always naked but how bad is it?

Black Hole Formation

AS improved Kuroda-Papapetrou model

Nature of the singularity (how bad is it?)
Study geodesics as dynamical system ${ }_{[*]}$

$$
\left\{\begin{array}{l}
\frac{\mathrm{dv}(t)}{\mathrm{d} t}=N(r, v) \tag{30}\\
\frac{\mathrm{dr}(t)}{\mathrm{d} t}=D(r, v)
\end{array}\right.
$$

where t is a parameter and the functions $N(r, v)$ and $D(r, v)$ are defined as

$$
\begin{equation*}
N(r, v)=2 r \quad D(r, v)=r-2 M(r, v) . \tag{31}
\end{equation*}
$$

Singularities are fixed points (e.g. $r=0$ and $M(0, v)=0$)
Expand near the singularity

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} v(t)}{\mathrm{d} t}=\dot{N}_{\mathrm{FP}}\left(v-v_{\mathrm{FP}}\right)+N_{\mathrm{FP}}^{\prime}\left(r-r_{\mathrm{FP}}\right) \\
\frac{\mathrm{d} r(t)}{\mathrm{d} t}=\dot{D}_{\mathrm{FP}}\left(v-v_{\mathrm{FP}}\right)+D_{\mathrm{FP}}^{\prime}\left(r-r_{\mathrm{FP}}\right)
\end{array}\right.
$$

[*] M. D. Mkenyeleye, R. Goswami, and S. D. Maharaj, Phys. Rev. D 90, 064034 (2014).

Black Hole Formation

AS improved Kuroda-Papapetrou model

Nature of the singularity classified by eigenvalues of the stability matrix J of the system (32)

$$
\begin{equation*}
\chi_{ \pm}=\frac{1}{2}\left(\operatorname{Tr} J \pm \sqrt{(\operatorname{Tr} J)^{2}-4 \operatorname{det} J}\right) \tag{33}
\end{equation*}
$$

where

$$
\begin{align*}
& \operatorname{Tr} J=\dot{N}_{F P}+D_{F P}^{\prime}=1-2 M_{F P}^{\prime} \tag{34}\\
& \operatorname{det} J=\dot{N}_{F P} D_{F P}^{\prime}-\dot{D}_{F P} N_{F P}^{\prime}=4 \dot{M}_{F P} . \tag{35}
\end{align*}
$$

Black Hole Formation

AS improved Kuroda-Papapetrou model

Strength of the singularity is

$$
\begin{equation*}
S=\frac{\dot{M}_{F P} X_{F P}^{2}}{2}=0 \tag{36}
\end{equation*}
$$

where $X_{F P} \equiv \lim _{(r, v) \rightarrow F P} \frac{v(r)}{r}$.
\Rightarrow singularity is integrable "harmless".
Interesting:

- $S \rightarrow 0$ does not depend on cut-off identification as long as

$$
\lim _{r \rightarrow 0} G_{k(r)}=\lim _{k \rightarrow \infty} G_{k}=0
$$

Summary

Summary

Summary

- Quantum gravity and Asymptotic Safety
- Black holes in AS: singularity unsure
- Naked singularities e.g. Kuroda-Papapetrou model
- AS improved Kuroda-Papapetrou model

Summary

Take home messages:

- Important test QG candidate with problematic solutions of GR
- In different attempts, the singularity might go away or persist
- Even if naked singularities don't go away in AS, at least they become integrable

Thank you

Thank you!

[^0]: [*] B. Bonanno, B.K., A. Platania, arXiv:1610.05299.

