

Vacuum energy, Casimir effect, and Newton's non-constant

B. Koch

with R. Sedmik, M. Pitschmann, and C. Käding

Nottingham 26.10,2022 Based on arXiv:SOON

Content

- What we would like to know
- Vacuum energy density in the lab
- Vacuum energy density in the Universe
- Vacuum energy density combined
- Scale-dependent framework
- Towards experiment
- Discussion and Conclusion

Vacuum energy

What we know so far?

rimordial / uctuations

smic microwave background

Quantum vacuum:

 ρ_Q

accelerates plates

accoloratos I Inizoro

Cosmological vacuum:

accelerates Universe

 ρ_{Λ}

Reionization

Reionized universe

*https://physicsworld.com/a/the-casimir-effect-a-force-from-nothing/

3

Vacuum energy

How are they related?

In the lab

Casimir effect

Predicted 1948 ref [10] Observed 1997

$$\rho_{C} = -\frac{\hbar\pi^{2}}{720a^{4}}$$

$$\Rightarrow \quad \frac{F_{Q}}{A} \approx \rho_{Q} \cdot a$$

Albert Einstein

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

 \Rightarrow Friedman eq.

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3} \equiv 0$$

S. Perlmutter, A. Riess, B. Schmidt, & others

 $\dot{a} \neq 0$

 $\ddot{a} > 0 \Rightarrow \Lambda > 0$

Λ as an energy density $\rho_{\Lambda,0} = \frac{\Lambda_0 c^4}{8\pi G_0} = 5.35 \times 10^{-10} J/m^3$

Quantum origin?

Yakov Zeldovich, 1967

Steven Weinberg, 1998

ref [4] Big theoretical puzzle

Big theoretical puzzle

In short QFT with cutoff $\rho_Q \sim c\kappa_0^4/\hbar^3$ As ratio

$$\Upsilon_0 \equiv \frac{\rho_{\Lambda_0}}{\rho_{Q,0}(\kappa)} = \frac{\Lambda_0 c^3 \hbar^3}{8\pi G_0 \kappa_0^4} = \begin{cases} 10^{-121} & \text{for } \kappa_0 = c \sqrt{\frac{c\hbar}{G_0}} \\ 10^{-55} & \text{for } \kappa_0 = cm_Z. \end{cases}$$

Big theoretical puzzleexperimental input neededuse Casimir experiment to gain insightChange ρ_Q See whether ρ_Λ

changes

Scale Dependent Framework

Gravity as effective QFT

variable couplings

Weinberg, Wetterich, Donoghue,

16

scale-dependent (SD) couplings $\Lambda = \Lambda(k)$, G = G(k), two main consequences:

• Modified Einstein equations $G_{\mu\nu} = 8\pi G(k)T_{\mu\nu} - \Lambda(k)g_{\mu\nu} - \Delta t_{\mu\nu}$

Couplings are connected in RG flow

Couplings are connected in RG flow

We are only interested in SD small modifications of the couplings in the IR:

Expand: $G(k) = G_0(1 + g(k)) = G_0 \left(1 + C_1 G_0 k^2\right) + \mathcal{O}(k^4)$ $\Lambda(k) = \Lambda_0(1 + \lambda(k)) = \Lambda_0 \left(1 + C_3 G_0 k^2\right) + \mathcal{O}(k^4)$

Theorist:Phenomenologist:Experimentalist:predictuse to predictmeasure

Couplings are connected in RG flow

We are only interested in SD small modifications of the couplings in the IR: Expand: $G(k) = G_0(1 + g(k)) = G_0 (1 + C_1 G_0 k^2) + \mathcal{O}(k^4)$ $\Lambda(k) = \Lambda_0(1 + \lambda(k)) = \Lambda_0 (1 + C_3 G_0 k^2) + \mathcal{O}(k^4)$

19

In density $\rho_{\Lambda}(k) = \frac{c^4 \Lambda(k)}{8\pi G(k)} = \rho_0 + k^2 c^4 \frac{(C_1 - C_3)}{8\pi} \Lambda_0 + \mathcal{O}(k^4)$

Derivatives of Modified Einstein equations $G_{\mu\nu} = 8\pi G(k)T_{\mu\nu} - \Lambda(k)g_{\mu\nu} - \Delta t_{\mu\nu}$

Does Casimir/SD affect Newton?

Trace trick

$$R^{\mu}_{\nu} = 8\pi \frac{G(k)}{c^4} \left(T^{\mu}_{\nu} - \frac{1}{2} g^{\mu}_{\nu} T \right) + \Lambda(k) g^{\mu}_{\nu} + G(k) \left(\frac{1}{2} g^{\mu}_{\nu} \nabla^2 + \nabla^{\mu} \nabla_{\nu} \right) \frac{1}{G(k)}$$

 $G(k(\overrightarrow{x}))$

With non-relativistic matter

$$\left(T^{\mu}_{\nu} - \frac{1}{2}g^{\mu}_{\nu}T\right) = \frac{\rho_{M}}{2}\operatorname{diag}(-1, 1, 1, 1)$$

• Modified Einstein equations $G_{\mu\nu} = 8\pi G(k)T_{\mu\nu} - \Lambda(k)g_{\mu\nu} - \Delta t_{\mu\nu}$ Derivatives of $G\left(k(\vec{x})\right)$

Weak field and weak SD expansion...

$$\begin{split} ds^2 &= -\left(1 + 2\epsilon_{\Phi}\Phi(r,\theta,\phi)\right)c^2dt^2 + \left(1 - 2\epsilon_{\Phi}\Psi(r,\theta,\phi)\right)dr^2 + \left(1 + 2\epsilon_{\Phi}\Xi(r,\theta,\phi)\right)r^2d\Omega^2 + \mathcal{O}(\epsilon_{\Phi}^2)\\ G(k) &= \epsilon_{\Phi}\left(G_0 + \epsilon_G\Delta G(k) + \mathcal{O}(\epsilon_{\Phi}^2)\right) \end{split}$$

 $\Lambda(k) \to \epsilon_{\Phi} \Lambda(k)$

$R_0^0 \text{ component}$ $\overrightarrow{\nabla}^2 \Phi(r,\theta,\phi) = \frac{4\pi}{c^4} G_0 \rho_M(r,\theta,\phi) + \frac{\epsilon_G}{\epsilon_\Phi} \frac{\overrightarrow{\nabla}^2 \Delta G(k)}{2G_0} - \Lambda(k) + \mathcal{O}(\epsilon_\Phi,\epsilon_G)$

Solution...

• Modified Einstein equations $G_{\mu\nu} = 8\pi G(k)T_{\mu\nu} - \Lambda(k)g_{\mu\nu} - \Delta t_{\mu\nu}$

Derivatives of $G(k(\vec{x}))$

 $\frac{\nabla^2 \rho_C(\vec{x})}{4(C - C)}$

Solution

$$\Phi(\overrightarrow{x}) = \frac{G_0}{c^4} \int_{V_1} d^3 x_1 \frac{\widetilde{\rho}_M(\overrightarrow{x}_1)}{|\overrightarrow{x} - \overrightarrow{x}_1|} + \mathcal{O}(\epsilon_{\Phi})$$

For extended objects...

 $\alpha c^2 C_1$

 $G(k(\vec{x}))$

 $\alpha c^2 C_1 \frac{\nabla^2 \rho_C(\vec{x})}{c^4 (C_1 - C_1) \Lambda}$

Derivatives of Modified Einstein equations $G_{\mu\nu} = 8\pi G(k)T_{\mu\nu} - \Lambda(k)g_{\mu\nu} - \Delta t_{\mu\nu}$

with

 $\tilde{\rho}_M = \rho_m +$

For extended objects: Newton

$$\overrightarrow{\mathcal{F}}_{G,12} = -\overrightarrow{\mathcal{F}}_{G,21} = G_0 \int_{V_2} d^3 x_2 \int_{V_1} d^3 x_1 \frac{\widetilde{\rho}_M(\overrightarrow{x}_1) \widetilde{\rho}_M(\overrightarrow{x}_2) (\overrightarrow{x}_2 - \overrightarrow{x}_1)}{|\overrightarrow{x}_2 - \overrightarrow{x}_1|^3}$$

 $^2 V^2 G(k)$

- Modified Einstein equations &
- Couplings are connected in RG flow

⇒ Gravitational attraction between plates changes

$$\alpha c^2 C_1 \frac{\overrightarrow{\nabla}^2 \rho_C(\overrightarrow{x})}{c^4 (C_1 - C_3) \Lambda_6} \longrightarrow \overrightarrow{\mathcal{F}}_{G,12} \neq \overrightarrow{F}_{G,12}$$

Hypothesis can be tested by experiment: Verify, or set bounds on α ...

Gravitational attraction between plates changes

What that means

Change ρ_Q

Hypothesis

 $\alpha c^2 C_1 \frac{\overrightarrow{\nabla}^2 \rho_C(\overrightarrow{x})}{c^4 (C_1 - C_2) \Lambda c} \rightarrow \overrightarrow{\mathcal{F}}_{G,12} \neq \overrightarrow{F}_{G,12}$

ρ_{Λ} not measurable

SD & flow

 $\rho_M \to \tilde{\rho}_M$ measurable

Towards experiment

Cannex planned experiment

Towards experiment

Results (preliminary estimate):

$$1 \ll (8\pi G_0^2) \frac{\int_{a/2}^D dz \,\rho_M(z)}{\int_{a/2}^D dz c^2 \,\overrightarrow{\nabla}^2 G}$$

 $\alpha \frac{C_1}{C_1 - C_3} \ll 10^{-32}$

 $\alpha < small$

heading towards ultra small

²⁸ potentially excludes models

Interpretation

$$\alpha \frac{C_1}{C_1 - C_3} \ll 10^{-32}$$

A. ρ_0 contribution to ρ_Λ strongly suppressed ($\alpha \ll 1$) B. $\Lambda(k)$ has very weak RG coupling to G(k)C. Effective Einstein equations have additional fields, contributions, stuff, leading to cancellations... For each interpretation many possible subcategories, e.g.

- B. 1. Λ is not a coupling but a field 2. *G* is not a coupling but a field

 - 3. RG group is not universal
 - 4. Hierarchy in QG parameters: $C_3 \gg C_1$
 - 5. ...

Interpretation

A: ($\alpha \ll 1$) Implications for the CCP

 $\Upsilon_0 \equiv \frac{\rho_{\Lambda_0}}{\rho_{Q,0}(\kappa)} = \frac{\Lambda_0 c^3 \hbar^3}{8\pi G_0 \kappa_0^4} = \begin{cases} 10^{-121} & \text{for } \kappa_0 = c \sqrt{\frac{c\hbar}{G_0}} \\ 10^{-55} & \text{for } \kappa_0 = cm_Z. \end{cases}$ Problem comes from the ambition $\rho_{\Lambda} = \Upsilon(\rho_Q) \cdot \rho_Q,$ Casimir can contribute to both $\rho_O = \rho_{O,0} + \beta \cdot \rho_C$ $\rho_{\Lambda} = \rho_{\Lambda_0} - \alpha \cdot \rho_C$ hypothesis, Should be $\beta = 1$, but who knows ... 30 α

Interpretation

A: $(\alpha \ll 1)$ Implications for the CCP Look at changes of the CCP $\Upsilon'_0 \equiv \frac{d\Upsilon(\rho_Q)}{d\rho_C}\Big|_{\rho_C=0}$

 $\alpha = \Upsilon'_0 + \beta \Upsilon_0 \qquad \Rightarrow$ Measure changes in CCP

Under construction

-2

Some References

- 0) F. Canales, B. Koch, C. Laporte, A. Rincon JCAP no1 26, 2020
- 1) E. Hubble, Proceedings of the National Academy of Sciences of USA,
 - Volume 15, Issue 3, pp. 168-173
- 2) Supernova Search Team (A. G. Riess (UC, Berkeley, Astron. Dept.) et al.). May 1998. 36 pp Published in Astron.J. 116 (1998) 1009-1038
- 3) R. J. Adler, B. Casey and O. C. Jacob, Am. J. Phys. 63, 620 (1995);
- H. Martel, P. R. Shapiro and S. Weinberg, Astrophys. J. 492, 29 (1998);
- S. Weinberg, Rev. Mod. Phys. 61, 1 (1989);
- J. Martin Comptes Rendus Physique 13 (2012) 566-665.
- 4) M. Reuter, F. Saueressig, Phys.Rev. D65 (2002) 065016; and many others
- 5) e.g. M. Niedermaier and M. Reuter, Living Rev. Rel. 9, 5 (2006)
- 6) S.J. Brodsky and R. Shrock, Proc. Nat. Acad.Sci. 108, 45 (2011)
- 7) H. Fritzsch, Nucl. Phys. Proc. Suppl. 203-204, 3 (2010)
- 8) B.K., P. Rioseco, Carlos Contreras, PRD 91 (2015) no2, 025009.
- 9) R. Sedmik, M. Pitschann, Universe, 7, 234, (2021)
- G. Bimonte, B. Spreng, P. A. Maia Neto, G.-L. Ingold, G. L. Klimchitskaya, V. M. Mostepanenko, and R. S. Decca, Universe 7, 93 (2021).
 B. V. Derjaguin, I. I. Abrikosova, and E. M. Lifshitz, Q. Rev. Chem. Soc. 10, 295 (1956).
 S. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
 U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 4549 (1998).
 A. Roy, C.-Y. Lin, and U. Mohideen, Phys. Rev. D 60, 111101 (1999).
 G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
 R. S. Decca, D. López, E. Fischbach, and D. E. Krause, Phys. Rev. Lett. 91, 050402 (2003).
 J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, Physical Review Letters 98, 063201 (2007).
 - H. B. Chan, Y. Bao, J. Zou, R. A. Cirelli, F. Klemens, W. M. Mansfield, and C. S. Pai, Physical Review Letters 101, 030401 (2008).
 - W. J. Kim, A. O. Sushkov, D. A. R. Dalvit, and S. K. Lamoreaux, Phys. Rev. Lett. 103, 060401 (2009).
 - P. Zuurbier, S. de Man, G. Gruca, K. Heeck, and D. Iannuzzi, New Journal of Physics 13, 023027 (2011), ISSN 1367-2630.
 - R. H. Schafer, Ph.D. thesis, UC Riverside (2020).

Thank You!

Backup stuff

Scale-Dependent & FRG

Scale Dependent Framework

Gravity as effective QFT

$$\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2\frac{\Lambda_{k}}{G_{k}} \right) + \dots$$

Non renormalizable? Yes, but ... Could still be predictive QFT (Asymptotic Safety)

Asymptotic Safety in a nutshell $\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2 \frac{\Lambda_{k}}{G_{k}} \right) + \dots$

• Idea: works if non trivial UV-fixed points for finite number of couplings (S.W)

Asymptotic Safety in a nutshell $\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2 \frac{\Lambda_{k}}{G_{k}} \right) + \dots$

Tool: Functional renormalization group equation

$$\partial_k \Gamma_k = \frac{1}{2} Tr \left(\frac{\partial_k R_k}{\Gamma_k^{(2)} + R_k} \right)$$

two point regulator function

C. Wetterich

Asymptotic Safety in a nutshell $\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2 \frac{\Lambda_{k}}{G_{k}} \right) + \dots$

Results: Plenty of evidence supporting idea

Albert Einstein

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

NP 1921

Albert Einstein

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) \neq 0$$
$$\Rightarrow \dot{a} \neq 0 \text{ not static}$$

Albert Einstein

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu}$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3} \equiv 0$$
static possible $\dot{a} \equiv 0$

The CCP 2.0

The CCP 2.0

Edwin Hubble, Georges Lemaítre

measurement:

The CCP 2.0

Edwin Hubble measurement: not static $\dot{a} > 0$ later: *Mpc* (Planck collaboration 2018)

The CCP 2.0, Albert Einstein $R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda_{\mu\nu} = 8\pi G T_{\mu\nu}$ K. $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + -\frac{\Lambda}{3}$ a not static $\dot{a} \neq 0$ $\ddot{a} < 0$ "biggest blunder"

49

S. Perlmutter, A. Riess, B. Schmidt, & others

51

Yakov Zeldovich

Quantum fluctuations predict value of Λ

1967

Steven Weinberg

Quantum fluctuations predict value of Λ ref [3] Problem since 1998

Quantum fluctuations predict value of Λ

Highest physical mass scale

 $(\Lambda)_{eff} \sim \frac{M^4}{M_P^2} (1 + \dots)$

Observed value

 $\Lambda_o = \frac{\rho_c}{M_P^2} \approx \frac{10^{-47} GeV^4}{M_P^2}$

57

observed critical energy density

Problem as a ratio:

$$\frac{(\Lambda)_{eff}}{\Lambda_0} \sim \frac{1}{G_N \cdot \Lambda_0} \sim \frac{M_P^4}{\rho_c} \approx 10^{120}$$

we try to address this problem

assuming there are quantum fluctuations of gravity associated to the Planck scale

