(Un) expected Frontiers of Fundamental Physics

 ¿X17?Benjamín Koch
TU Vienna
based on arxiv.org/abs/2003.05722

> String group meeting TU Vienna O9.11.2020

Outline

- Expected and unexpected frontiers
- X17 anomaly: Observation and interpretation
- Idea: Hard $\gamma+\gamma$ process
- Conclusion
- Expected and unexpected frontiers

From a phenomenological perspective ...
Lagrangían

- Expected and unexpected frontiers
unknown sector

$$
\begin{aligned}
S= & \int_{-T}^{T} d t \int_{-L}^{L} d^{3} x\left\{\left[\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{2}\right]+\phi \cdot g \cdot \psi+\left[\left(\partial_{\mu} \psi\right)\left(\partial^{\mu} \psi\right)-M^{2} \psi^{2}\right]\right\} \\
& +\int_{\text {Bound }, L, T}\left(\phi \partial^{\mu} \phi\right)
\end{aligned}
$$

For large M:
"high energy frontier"
"high energy frontier"

Search strategy

$$
\frac{1}{\Delta x} \sim E \geq M
$$

Increase energy find new things
Long lasting sucess story
"high energy frontier"
Long lasting sucess story

"high energy frontier"

Future:

- Expected and unexpected frontiers
unknown sector

$$
\begin{aligned}
& S= \int_{-T}^{T} d t \int_{-L}^{L} d^{3} x\left\{\left[\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{2}\right]+\phi \cdot g \cdot \psi\right. \\
&+\int_{\text {Bound ,L,T }}\left(\phi \partial^{\mu} \phi\right) \\
& \text { known sector }
\end{aligned}
$$

"small coupling frontier"
Search strategies

- High precision
- Large statistics
- Resonant effects
- Accumalative effects
- Low background (null experiments)
- ...

"small coupling frontier"

Prominent success

Neutrino oscillation

Graviational wave detection
"small coupling frontier"

Neutrinos, graviational waves, dark matter, multí-messanger

- Expected and unexpected frontiers

$$
S=\int_{-T}^{T} d t \int_{-L}^{L} d^{3} x\left\{\left[\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{2}\right] \quad+\int_{\text {Bound }, L, T}\left(\phi \partial^{\mu} \phi\right)\right.
$$

known sector
"Boundary frontier"
Strategy:
Use dualities like AdS/CFT to study
"theories in complicated regime (stongly coupled)
in terms of
other theories in simple limit (weakly coupled)
"Boundary frontier"

success:

The Large N limit of superconformal field theories and supergravity
Juan Martin Maldacena (Harvard U.) (Nov 28, 1997)
Published in: Int.J.Theor.Phys. 38 (1999) 1113-1133, Adv.Theor.Math.Phys. 2 (1998) 231-252 •
e-Print: hep-th/9711200 [hep-th]
国 pdf DOI \square
$\ni 16,079$ citations

Ads/QCD

Ads/CMT

Information theory

- Expected and unexpected frontiers

$$
S=\int_{-T}^{T} d t \int_{-L}^{L} d^{3} x\left\{\left[\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{2}\right] \quad\right. \text { +surprise }
$$

"unexptected Experímental evidence frontier"

Strategy:

Be sceptical, but open for surprises

"How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth?"

> "unexptected Experimental evidence frontier"

Prominent success

Röntgen: röntgen

Penzias, Wilson: CMB
"unexptected Experimental evidence frontier"
Prominent failure

Opera:

Superluminal neutrinos = loose cable

Bicep2: gravitational waves $=$ dust

Outline

- Expected and unexpected frontiers
- X17 anomaly: Observation and interpretation:
- Idea: Hard $\gamma+\gamma$ process
- Conclusion

- X17 anomaly: Observation and interpretation:

Observation of Anomalous Internal Pair Creation in ${ }^{8} \mathrm{Be}$

 A Possible Signature of a Light, Neutral BosonA.J. Krasznahorkay,* M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B.M. Nyakó, L. Stuhl, J. Timár, T.G. Tornyi, and Zs. Vajta

Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

$$
\begin{aligned}
& \text { T.J. Ketel } \\
& \text { Nikhef National Institute eor Subatomic Physics, } \\
& \text { Science Park 105, } 1098 \text { XG Amsterdam, The Netherlands }
\end{aligned}
$$

A. Krasznahorkay

CERN, Geneva, Suitzerland and
Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary
Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV state $\left(J^{\pi}=1^{+}, T=1\right) \rightarrow$ ground state $\left(J^{\pi}=0^{+}, T=0\right)$ and the isoscalar magnetic dipole $18.15 \mathrm{MeV}\left(J^{\pi}=1^{+}, T=0\right)$ state \rightarrow ground state transitions in ${ }^{8} \mathrm{Be}$. Significant deviation from the internal pair creation was observed at large angles in the angular correlation for the isoscalar
transition with a confidence level of $>5 \sigma$. This observation might indicate that, in an intermediate transition with a confidence level of $>5 \sigma$. This observation might indicate that, in an intermediate
step, a neutral isoscalar particle with a mass of 16.70 ± 0.35 (stat) ± 0.5 (sys) MeV / c^{2} and $J^{\pi}=1^{+}$ step, a neutr
was created.

PACS numbers: $23.20 . \mathrm{Ra}, 23.20 . \mathrm{En}, 14.70 . \mathrm{Pw}$

- X17 anomaly: Observation and interpretation:

Collide $p+{ }^{7} L i$, some processes go through excited ${ }^{8} B e^{*}$

Most images in this section from Fornal Int. J. Mod. Phys. A 32 (2017) 1730020

- X17 anomaly: Observation and interpretation:

EM transition from nuclear spectroscpoy tables

- X17 anomaly: Observation and interpretation:

$$
{ }^{8} \mathrm{Be}^{*} \rightarrow{ }^{8} \mathrm{Be}
$$

Measured coincídent charged lepton pairs

- X17 anomaly: Observation and interpretation:
all as planned: " $2741+1$ pages"

- X17 anomaly: Observation and interpretation:

unexpected bump at large e^{+}, e^{-}relative angles
homogenous background
- X17 anomaly: Observation and interpretation:

Interpretation in terms of massive intermediate state ... fits

$$
M_{X} \sim 17 \mathrm{MeV}
$$

- X17 anomaly: Observation and interpretation:

SM background:

- Internal pair creation
- External pair creation
- Multiple lepton scattering
- Nuclear interference

BSA:

Benjamin Koch; TU-Vienna

- X17 anomaly: Observation and interpretation:

BSM:

Type: "weak coupling frontier"

$$
L \sim L_{S M}+\epsilon_{e} \bar{\psi} \psi \gamma^{\mu} A_{\mu}^{*}-\frac{1}{4 \pi}\left(F^{*}\right)^{2}+M_{X}^{2}\left(A^{*}\right)^{2}
$$

numerous models ...

- X17 anomaly: Observation and interpretation:

BSA:

Most important parameters:
ϵ_{e} and M_{X}

Outline

- Expected and unexpected frontiers
- X17 anomaly: Observation and interpretation
- Idea: Hard $\gamma+\gamma$ process
- Conclusion
- Idea: Hard $\gamma+\gamma$ process

Usual background consider at least one soft γ from electric/magnetic background field

Bethe-Heitler process

internal pair creation

- Idea: Hard $\gamma+\gamma$ process

With two hard γs the large angle distribution should change

Where could the

2nd hard γ come from?

- Idea: Hard $\gamma+\gamma$ process
where could the and hard γ come from?
\Rightarrow Intermediate state

Two hard γ one intermediate state

- Idea: Hard $\gamma+\gamma$ process
where could the and hard γ come from?
\Rightarrow Intermediate state

$2^{+} @ 3.03 \mathrm{MeV}$
- Idea: Hard $\gamma+\gamma$ process

Conditions

1. Broad intermediate state
2. Angular orientation of multiple moments
3. Conservation con energy/momentum
4. Realistic emission and conversion rate

- Idea: Hard $\gamma+\gamma$ process

1. Broad intermediate state

area covered by first γ

$$
A \approx \pi t^{2} \approx \frac{\pi}{\Gamma^{2}}
$$

- Idea: Hard $\gamma+\gamma$ process

2. Angular orientation of radiation due to multiple moments

$$
\begin{aligned}
& \frac{d P_{l 0}}{d \theta} \sim \sin (\theta)\left|a_{l 0}\right|^{2}\left|\vec{X}_{l 0}(\theta)\right|^{2} \\
& \theta_{\text {rel }} \pm \delta \theta_{\text {rel }}=\begin{array}{l}
(144 \pm 14)^{o} \text { for } N=3 \\
(152 \pm 11)^{o} \text { for } N=4
\end{array}
\end{aligned}
$$

- Idea: Hard $\gamma+\gamma$ process

3. Conservation con energy/momentum

For small asymmetries and large nuclear mass $\left.p_{i}^{2} \gg\left(p_{i}-p_{j}\right)\right|_{i \neq j} ^{2} \gg m^{2}$,

$$
m_{X}^{2}=\left(q_{1}+q_{3}\right)^{2}=4\left(\Delta M_{12}\right)\left(E_{13}-\Delta M_{12}\right) \sin ^{2}\left(\frac{\theta}{2}\right)
$$

- Idea: Hard $\gamma+\gamma$ process

Results for 1-3

- Idea: Hard $\gamma+\gamma$ process

4. conversion probability $=$ spoiler alert

$$
\sigma \approx 4 \pi \frac{\alpha_{0}^{2}}{E_{C M}^{2}}
$$

Compare cross section to impact area estimated before:

$$
p_{\gamma+\gamma \rightarrow e^{+}+e^{-}} \approx \frac{\sigma}{A} \approx 4 \frac{\alpha_{0}^{2} \Gamma^{2}}{E_{C M}^{2}} \approx 10^{-5}
$$

- Idea: Hard $\gamma+\gamma$ process

4. conversion probability $=$ spoiler alert

$$
p_{\gamma+\gamma \rightarrow e^{+}+e^{-}} \approx \frac{\sigma}{A} \approx 4 \frac{\alpha_{0}^{2} \Gamma^{2}}{E_{C M}^{2}} \approx 10^{-5}
$$

Expect huge $\gamma+\gamma$ background, and strongly suppressed rate

- Idea: Hard $\gamma+\gamma$ process

Summary:

	Supporting	To be seen	Not supporting
Broadness of intermediate state			
Angular spectrum			
Kinematics			
Isospin			
Emission probability			
Conversion probability			
Complementary experimental evidence			

Outline

- Expected and unexpected frontiers
- X17 anomaly: Observation and interpretation
- Idea: Hard $\gamma+\gamma$ process
- Conclusion
- Conclusion

"... eliminated the impossible, whatever remains, however improbable, must be the truth?"

Simple hard $\gamma+\gamma$ process from intermediate nuclear state seems to add to the list of excluded ("impossible") explanations of the X17 puzzle

Question still open...

Thanks!

