Cosmological Constant Problem: Deflation During Inflation

B. Koch with F. Canales, C. Laporte, & A. Rincon, based on: ArXiv:1812.10526.

TU Wien

Collaboration

• Angel Rincon, Cristobal Laporte, & Felipe Canales

Content

- Cosmological constant problem, status
- Conceptual problem, in evolving Universe
- Scale dependent framework & evolving Universe
- Possible solution: Deflation during inflation
- Link to Asymptotic Safety
- Conclusion

Albert Einstein

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Alexander Friedmann $ds^2 = a(t)ds_3^2 - dt^2$ $\frac{\dot{a}^2 + k}{a^3} = \frac{1}{3} 8\pi G\rho$ $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p)$

Albert Einstein

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) \neq 0$$
$$\Rightarrow \dot{a} \neq 0 \text{ not static}$$

Albert Einstein

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu}$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3} \equiv 0$$
static possible $\dot{a} \equiv 0$

The CCP 2.0

The CCP 2.0

Edwin Hubble, Georges Lemaítre

measurement:

The CCP 2.0

Edwin Hubble measurement: not static $\dot{a} > 0$ later: $\dot{a} = 67.66 \pm 0.42 \frac{km/s}{m}$ *Mpc* (Planck collaboration 2018)

14

S. Perlmutter, A. Riess, B. Schmidt

 $\dot{a} \neq 0$ $\ddot{a} > 0$

Yakov Zeldovich

Quantum fluctuations predict value of Λ

1967

Steven Weinberg

Quantum fluctuations predict value of Λ ref [3] Problem since 1998

Quantum fluctuations predict value of Λ

Highest physical mass scale

 $(\Lambda)_{eff} \sim \frac{M^4}{M_P^2} (1 + \dots)$

Observed value

 $\Lambda_o = \frac{\rho_c}{M_P^2} \approx \frac{10^{-47} GeV^4}{M_P^2}$

20

observed critical energy density

Problem as a ratio:

$$\frac{(\Lambda)_{eff}}{\Lambda_0} \sim \frac{1}{G_N \cdot \Lambda_0} \sim \frac{M_P^4}{\rho_c} \approx 10^{120}$$

we try to address this problem

assuming there are quantum fluctuations of gravity associated to the Planck scale

Evolving Universe Issue

Evolving Universe Issue

Evolving Universe Issue

Scale Dependent Framework

Gravity as classical theory

$$S = \int d^4x \sqrt{-g} \left(\frac{R}{G_N} - 2\frac{\Lambda_0}{G_N}\right)$$

Gravity as effective QFT

$$\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2\frac{\Lambda_{k}}{G_{k}} \right) + \dots$$

Scale Dependent Framework

Gravity as effective QFT

$$\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2\frac{\Lambda_{k}}{G_{k}} \right) + \dots$$

Non renormalizable? Yes, but ... Could still be predictive QFT (Asymptotic Safety)

Asymptotic Safety in a nutshell $\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2 \frac{\Lambda_{k}}{G_{k}} \right) + \dots$

• Idea: works if non trivial UV-fixed points for finite number of couplings (S.W)

Asymptotic Safety in a nutshell $\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2 \frac{\Lambda_{k}}{G_{k}} \right) + \dots$

Tool: Functional renormalization group equation

$$\partial_k \Gamma_k = \frac{1}{2} Tr \left(\frac{\partial_k R_k}{\Gamma_k^{(2)} + R_k} \right)$$

two point regulator
function

C. Wetterich

Asymptotic Safety in a nutshell $\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2 \frac{\Lambda_{k}}{G_{k}} \right) + \dots$

Results: Plenty of evidence supporting idea

Scale Dependent
Framework
$$(M, n) \in \mathbb{R}$$
 $(M, n) \in \mathbb{R}$ $($

$$\Gamma_{k} = \int d^{4}x \sqrt{-g} \left(\frac{R}{G_{k}} - 2\frac{\Lambda_{k}}{G_{k}} \right)$$

Need to solve gap equations

with

$$G_{\mu\nu} = -\Lambda_k g_{\mu\nu} - \Delta t_{\mu\nu}$$
not constant!
$$\Delta t_{\mu\nu} = G_k \left(g_{\mu\nu} \nabla^{\alpha} \nabla_{\alpha} - \nabla_{\mu} \nabla_{\nu} \right) \frac{1}{G_k}$$

Assume homogenous background

$$ds^{2} = -dt^{2} + a(t)\left(\frac{1}{1 - \kappa r^{2}}dr^{2} + r^{2}d\Omega_{2}^{2}\right)$$

Gap equations

spatial curvature

$$\left(\frac{\dot{a}}{a}\right)^{2} + \frac{\kappa}{a^{2}} - \frac{\Lambda_{k}}{3} = \frac{1}{3}\rho_{SD} \qquad \text{scale}$$

$$\frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^{2} + \frac{\kappa}{a^{2}} - \Lambda_{k} = -p_{SD}$$

Gap equations

Gap equations

 $\left(\frac{\dot{a}}{a}\right)^2 + \frac{\kappa}{a^2} - \frac{\Lambda(t)}{3} = \left(\frac{\dot{a}}{a}\right) \left(\frac{\dot{G}}{G}\right)$ $2\frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2 + \frac{\kappa}{a^2} - \Lambda(t) = -2\left(\frac{\dot{G}}{G}\right)^2 + \frac{\ddot{G}}{G} + 2\left(\frac{\dot{G}}{G}\right)\left(\frac{\dot{a}}{a}\right)$

Problem: 2 equations

3 unknown functions: a(t), G(t), $\Lambda(t)$

Solution: Impose energy condition!

Null Energy Condition (NEC):

 $\Delta t_{\mu\nu}\ell^{\mu}\ell^{\nu}=0$

where

$$\frac{d\ell^{\mu}}{dt} + \Gamma^{\mu}_{\alpha\beta}\ell^{\alpha}\ell^{\beta} = 0 \quad \longrightarrow \quad \ell^{\mu} = c_0 \frac{1}{a} \left(1, \frac{1}{\sqrt{1 - \kappa r^2}}, \frac{1}{a}, 0, 0 \right)$$

thus

$$-2\left(\frac{\dot{G}}{G}\right)^{2} + \left(\frac{\ddot{G}}{G}\right) - \left(\frac{\dot{G}}{G}\right)\left(\frac{\dot{a}}{a}\right) = 0$$

Gap equations

3 unknowns, 3 equations

Solution:

 $a(t) = a_i e^{\frac{t}{\sqrt{\Lambda_0/3}}}$ $G(t) = \frac{G_0}{1 + \xi a(t)}$

still inflation

 $\Lambda(t) = \Lambda_0 \left[\frac{1 + 2\xi a(t)}{1 + \xi a(t)} \right]$

3 integration constants:

 G_0, Λ_0, ξ controls SD

3 integration constants:

controls SD

 G_0, Λ_0, ξ

 $\lim \Lambda(t) = \Lambda_0$

 $\xi \rightarrow 0$

 $\lim_{\xi \to 0} G(t) = G_0$

 $\lim_{\xi \to 0} a(t) = a_i e^{\frac{t}{\sqrt{\Lambda_0/3}}}$

Solution:

Solution:

 $a(t) = a_i e^{\sqrt{\Lambda_0/3}}$ $G(t) = \frac{G_0}{1 + \xi a(t)}$

$$\Lambda(t) = \Lambda_0 \left[\frac{1 + 2\xi a(t)}{1 + \xi a(t)} \right]$$

3 integration constants:

 G_0, Λ_0, ξ

What does this mean for the CCP?

What does this mean for the CCP?

$G_k \cdot \Lambda_k = G(t) \cdot \Lambda(t)$

What does this mean for the CCP?____

Looks good, conditions?

CCP conditions on parameters

• Initial a

 $a(t_i) = 1$

 $\Lambda(t_i) \cdot G(t_i) = 1$

Initial CCP

• Final G

- Final CCP
- Flatness

 $G(t_f) = G_N$ $G(t_f) \cdot \Lambda(t_f) = 10^{-(120\pm 5)}$ $N_e \ge 60; \quad t_f - t_i = N_e \sqrt{\Lambda_0/3}$

CCP conditions on parameters

Remember:

For CCP need:

$$G_k \cdot \Lambda_k = \frac{\hat{g}_k}{k^2} k^2 \hat{\lambda}_k = \hat{g}_k \cdot \hat{\lambda}_k$$

insert & plot

looks familiar?

AS renormalization flow $G_k \cdot \Lambda_k = \frac{\hat{g}_k}{k^2} k^2 \hat{\lambda}_k = \hat{g}_k \cdot \hat{\lambda}_k$

looks familiar! SD & NEC $G(t) \cdot \Lambda(t)$

why, how?

Remember:

For

$$\hat{g}(\hat{t}) \cdot \hat{\lambda}(\hat{t}) = \frac{g_0 e^{2\hat{t}}}{1 + g_0 \left(e^{2\hat{t}} - 1\right)/g^*} \cdot \frac{g^* \lambda_0 + e^{-2\hat{t}} \left(e^{4\hat{t}} - 1\right) g_0 \lambda^*}{1 + g_0 \left(e^{2\hat{t}} - 1\right)/g^*}$$

Approximate to UV FP & separatrix

$$\hat{g}(\hat{t})\hat{\lambda}(\hat{t}) = g^*\lambda^* \left(\frac{g^*\lambda_0}{g_0\lambda^*} + e^{2\hat{t}}\right) \left(e^{2\hat{t}} + \frac{g^*}{g_0}\right)^{-2} = G(t) \cdot \Lambda(t)$$

$$g^*\lambda^* \to G_0\Lambda_0$$

$$g_0 \to G_0/(a_i\xi)$$

$$\hat{t} \to -t/(2\tau)$$

Comments on matching: $\hat{g}(\hat{t})\hat{\lambda}(\hat{t}) \equiv G(t) \cdot \Lambda(t)$

AS RG

 $g^* \lambda^* \to G_0 \Lambda_0$ $g_0 \to G_0 / (a_i \xi)$ $\hat{t} \to -t / (2\tau)$

SD & NEC

- Non trivial "coincidence"
- Works for many flow truncations
- UV FP @ inflation makes sense
- Separatrix special flow trajectory
- scale setting makes sense $\frac{k}{k_0} = e^{-t/(2\tau)}$

Thank You!

Literature

0) F. Canales, B. Koch, C. Laporte, A. Rincon arXiv:1812.10526

- 1) E. Hubble, Proceedings of the National Academy of Sciences of USA, Volume 15, Issue 3, pp. 168-173
- 2) Supernova Search Team (A. G. Riess (UC, Berkeley, Astron. Dept.) et al.). May 1998. 36 pp Published in Astron.J. 116 (1998) 1009-1038
- 3) R. J. Adler, B. Casey and O. C. Jacob, Am. J. Phys. 63, 620 (1995);
- H. Martel, P. R. Shapiro and S. Weinberg, Astrophys. J. 492, 29 (1998);
- S. Weinberg, Rev. Mod. Phys. 61, 1 (1989);
- J. Martin Comptes Rendus Physique 13 (2012) 566-665.
- 4) M. Reuter, F. Saueressig, Phys.Rev. D65 (2002) 065016; and many others
- 5) e.g. M. Niedermaier and M. Reuter, Living Rev. Rel. 9, 5 (2006)
- 6) S.J. Brodsky and R. Shrock, Proc. Nat. Acad.Sci. 108, 45 (2011)
- 7) H. Fritzsch, Nucl. Phys. Proc. Suppl. 203-204, 3 (2010).