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DM Evidence

DM Evidence
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DM Evidence

Galaxy rotation curves:
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DM Evidence

Gravitational lensing, clusters of galaxies:

Something dark and transparent and massive
between galaxy cluster and us (DM).
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DM Evidence

Gravitational lensing, collision of galaxies:

Something dark and transparent and massive in 2 galaxies.
But also tells the DM interacts weaker than interstellar gas. @
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DM Evidence

CMB fluctuations:

Escape from plasma — neutral matter in recombination.
Only can model power spectrum of perturbations if one assumes certain

amount of dark energy and dark matter.
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DM Evidence

Barionic accoustig oscillations:

8.

e

Remain from plasma — neutral matter in recombination.
Only can model power spectrum of densities if one assumes certain
amount of dark energy and dark matter. @
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DM Evidence

Lyman alpha forrest:
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Model hydrogen absorption lines (without redshift 1216A).
Only works with dark energy and dark matter

Q
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DM Evidence

Structure formation:

Numerical simulation of structure
needs also DM
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DM Non-Evidence

DM Non-Evidence
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DM Non-Evidence

Direct passive detection:

Many experiments, Xenon, Edelweiss, ...

Big detectors, low background, no signal @
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DM Non-Evidence

Direct passive detection:

Many more experiments
Bigger detectors, lower background ... no signal?
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DM Non-Evidence

Produce and detect:

Several experlments ATLAS CMS, .
No signal
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DM Non-Evidence

Indirect passive detection:

Several experiments, Fermi-LAT, CTA ... @
No signal
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Difference

What is the difference?
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Difference

What is the difference?
The non-detections involve SM interactions only
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Difference

What is the difference?
The non-detections involve SM interactions only
The yes-detections involve SM interactions AND Gravity

@ Newton U = G@

e Newton F = GMr’" & geodesics ¢ dt2 = l_”Bu uP

o Universe evolution H? = H3(Qum(1 + 2)3 + Q. (1 + 2)? + Qn)
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Within gravity

Within gravity
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Within gravity

Maybe something wrong with Gravity
(remember evidence only from Newton and Hubble)

2
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Within gravity

Maybe something wrong with Gravity
(remember evidence only from Newton and Hubble)

Ideas in this direction
e MOND
o Extra fields in EH action “Scalar-Tensor” ...
o Non-local operators S = [dx*R+ RLR + ...
(]
@ Our idea in this direction: “Scale dependence of gravitational

. "
couplings
*B.K. and Paola Rioseco, arXiv:1501.00904;

JCAP 1004 (2010) 020.
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Within gravity

Scale dependence

Allow for “Scale dependence of gravitational couplings” modifies
Einstein’s field equations.

De Sitter case:
eom g,y:

Gy = —gu/\k — Aty (1)
eom k

Rvu(le)—zv,,(gi)zo . 2)

can be solved with “Schwarzschild Ansatz”
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Within gravity

Scale dependence

generalized de Sitter solution:

Go

G(r) = er+1 (3)
2
fir) = 1+3GoMoe— 20M0 _ (1 . 6eGoMo)er — A"T’ +r2e2(66GoMo + 1) In ( M) (4)
r r
—72€2r(er +1) (er + 1) (GoMoe + %) In (M) +4r3No€? + (12¢3 + 6/Aoe + 7264 Go Mo ) r?
A = 2r(er + 1)2 )
N (7263 GoMo + 1162 + 270 r + 662 Go Mo

2r(er + 1)2

Constants of integration: Go, My, Ao, €, ca
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Within gravity

Scale dependence

Effect on rotation curves

| Isothermal

Velocity (km/s)

Velocity (km/s)

g i g s
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Comparison with MOND, DM, ...
promising
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Within gravity

Scale dependence

Effect on lensing

.. not so promising
Could be there but unlikely to explain it all

9
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Within gravity

Scale dependence

Effect on lensing

.. not so promising
Could be there but unlikely to explain it all

Try particles

9
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Particles

Particles
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Particles

New particles, new game:

Anything goes as long as...
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Particles

New particles, new game:

Anything goes as long as...

Right masses (not too light, rotation curves; not too heavy
abundance and observability)

right couplings (abundance, stability)
right “non-couplings” collider and indirect detection constraints

Our contribution in this direction, Higgs sector”, Susy-gravitino
sector™”

*MA. Diaz, BK., S. Urrutia-Quiroga arXiv:1511.04429

“*MA. Diaz, S. Garcia, B.K., Phys.Rev. D84 (2011) 055007 @
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Particles
Higgs

Simple SM extension: Inert Higgs Doublet Model (IDM) by N. G.
Deshpande y E. Ma en 1978

@ In addition to the usual SM Higgs doublet (®s) one introduces an
additional doublet (®p)

@ Discrete symmetry Z; such that

bs — bg
bp — —Pp
SM — SM

@ Thus ®p has no tree level couplings to SM fermions
@ Phenomenology compatible with SM @
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Particles
Higgs

IDM potential:

A
V = 11%A + 15°B + AA? + 1,B? + A3AB + 4CD + ?5 (C2 + D2)
where A, B, C, D are given by

A =dsTds, B=dpTdp, C=D" = dsTop

@ Only s acquires VEV since want to perserve Zy symmetry

@ Degrees of freedom:
8 (two doublets) — 3 (Goldstone) = 5 (Physical scalars)

o Parameters:
7 (potential) — 2 (Mz, My) =5 (free parameters)
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Particles
Higgs

Physical content:

e s : h, SM-like, with Yukawa couplings

e ®p: H, A D%, inert scalars with interior couplings and couplings to
EW gauge bosons through kinetic term

@ Zy symmetry

— Lightest inert scalar stabel
— DM candidate

o Parameters:

My, Ma, Mp y Ao, Azas = A3+ Mg + A5 @
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Particles
Higgs

Restrictions:

@ Positive potential, minimum, perturbativity and unitarity, inert
vacuum

@ Several electroweak precision tests

© Width of electroweak gauge bosons Z and W
@ DM candidate has to be H (neutral)

© LHC restrictions: Br(h — invisible) < 0,43

Now scan within those restrictions

Q
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Particles
Higgs

Parameter scan and DM density:

@ Random scan over previously mentioned parameters within
restrictions

@ Mass range 1GeV < My ap < 1TeV
e Check relic density (WMAP, Planck) Qpp h*> = 0,1181 =+ 0,0012
@ Cosmological parameters obtained with micrOMEGAs

@ Tolerance in relic density +30

Color coding
Relic density too low < ppy + 30
Relic density within 30

Relic density too high > ppy + 30 @
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Particles
Higgs

Results scan:
Projection to (My, A3ss5) plane

12,

10

10° 10' 10° 10°
MH [GGV]

Note: Upper line from inert vacuum, lower line from vacuum stability @
condition O @ =« 94
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Particles
Higgs

For collider signals also study BR inert decays:

Y|

(a) (b)

@ Only depend on inert scalar masses + SM (No A...)
@ Take scalar masses on-shell
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Particles
Higgs

Results inert decays (no A dependence):
———A—->DiVVjF
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Particles

Higgs
Results inert decays (no A dependence):
0 — D* - HW+* —— D — AW#*
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No crossover, decay to DM H always larger
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Particles
Higgs

Results direct detection:

@ Scattering DM-nucleon en el IDM (“Higgs portal”)

q q

oS oy = A345° Mn* fi?
a (47T/\/Ih4) (My + MN)2

@ fy comes from QCD take conservative small values

@ Tree level calculation

@ Compare to upper limits from recent experiments @
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Particles
Higgs

Results direct detection (only take right DM density):

2
10 TR T " T T.2.CDMSlite upper limit T
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Drop when my = 2my, (efficient h production),
model will be largely testable
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Light particles high energy signals

Light particles high energy signals

Benjamin Koch (PUC, Chile) Graz, Dez 2015 37 / 44



Light particles high energy signals

“High energy” signals

DM particles and “high energy” signals
@ Collider production (just saw example)
@ Annihilation work in progress
@ Decay studied example®
@ Acceleration of light DM particles™

*M. Diaz, S. Garcia, B.K. Phys.Rev. D84 (2011) 055007 **C. Armaza, M. Banados, B.K. arXiv:1510.01223
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Light particles high energy signals

“High energy” signals

@ Black holes can in principle produce Ecpy — oo, but one neds
@ Extremely rotating black hole
@ Collision at the horizon

@ Angular momentum /: critical

= Unlikely, hard to observe

&
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Light particles high energy signals

Idea:
Let the particle rotate and the black hole be spherical

@ Can one produce Ecy — o0?
If yes:

@ Has the collision to be at the horizon?
@ Has the angular momentum /: to be critical?

@ Is there a notion of extremely rotating particle?

= Solve Papapetru equations (geodesics modified by spin) and see ...

””%:Q’
2

Q

Benjamin Koch (PUC, Chile) Graz, Dez 2015 40 | 44




Light particles high energy signals

Result-1:

7%

Ecpm divergent for region
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Particles
“High energy” signals

That was the good news,

what are the bad news?

e For solar mass object and spin 1/2 need mpy; =~ 1071° eV

e Papapetru equations allow for solutions withsuperluminal regime???
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Take home message

DM is still mysterious,
but the good thing is that
a lot of observational evidence coming up!
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Thank you

Thank you !
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