Theory and Phenomenology at and beyond the Terascale

Benjamin Koch bkoch@fis.puc.cl

Pontificia Universidad Católica, Chile

Santiago, September 2011

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 1 / 71

- The "Daedalus" problem of a unified theory
- Approach: Supersymmetry
- Approach: Large extra dimensions
- Approach: Exact renormalization
- Summary

Greek Mythology

The Daedalus Problem

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 3 / 71

Greek Mythology

Benjamin Koch (PUC, Chile)

2

Greek Mythology

Benjamin Koch (PUC, Chile)

< ロ > < 回 > < 回 > < 回 > < 回 >

Greek Mythology

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 6 / 71

< ロ > < 回 > < 回 > < 回 > < 回 >

Greek Mythology

Where is the physics?

Benjamin Koch (PUC, Chile)

э

< ∃→

< (T) >

Greek Mythology

Where is the physics?

Benjamin Koch (PUC, Chile)

э

< 30

< 合型

Physics Analogy

Mechanics

Benjamin Koch (PUC, Chile)

2

< ロ > < 回 > < 回 > < 回 > < 回 >

Physics Analogy

Benjamin Koch (PUC, Chile)

< ロ > < 回 > < 回 > < 回 > < 回 >

Physics Analogy

Physics Analogy

Physics Analogy

Physics Analogy

Physics Analogy

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 14 / 71

Physics Analogy

Points to remember

- Hierarchy problem
- Quantization problem
- Stay close to experiment

Approach: Supersymmetry

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 17 / 71

イロト イボト イヨト イヨト

Supersymmetry Susy General

Supersymmetry Susy General

• Superpartners for known particles

- Improves renormalization behavior (alleviates quantization problem)
- Unifies SM couplings at 10¹⁵GeV (alleviates hierarchy problem)
- Provides good dark matter candidates (experiment)
- Many predictions at TeV scale (experiment)

- Superpartners for known particles
- Improves renormalization behavior (alleviates quantization problem)
- Unifies SM couplings at 10¹⁵GeV (alleviates hierarchy problem)
- Provides good dark matter candidates (experiment)
- Many predictions at TeV scale (experiment)

- Superpartners for known particles
- Improves renormalization behavior (alleviates quantization problem)
- Unifies SM couplings at 10¹⁵GeV (alleviates hierarchy problem)
- Provides good dark matter candidates (experiment)
- Many predictions at TeV scale (experiment)

- Superpartners for known particles
- Improves renormalization behavior (alleviates quantization problem)
- Unifies SM couplings at 10¹⁵GeV (alleviates hierarchy problem)
- Provides good dark matter candidates (experiment)
- Many predictions at TeV scale (experiment)

- Superpartners for known particles
- Improves renormalization behavior (alleviates quantization problem)
- Unifies SM couplings at 10¹⁵GeV (alleviates hierarchy problem)
- Provides good dark matter candidates (experiment)
- Many predictions at TeV scale (experiment)

Supersymmetry: Our Contribution Link to Experiment

Neutrino oscillation experiments like Super Kamiokande [51, 52]

Neutrino masses Δm_i Mixing angles θ_i

[S1] M. A. Diaz, F. Garay, B. Koch, Phys.Rev.D80, 113005 (2009)
 [S2] M. A. Diaz, B. Panes, B. Koch, Phys.Rev.D79, 113009 (2009)

Sattelite Fermi-LAT that measures cosmic rays [53]

[53] M. A. Diaz, S. G. Saenz, B. Koch, Accepted for publication in PRD, (2011)

Cosmic γ -ray flux dJ/dE

Partial Split Supersymmetry

We used the model Partial Split Supersymmetry [*, **]

[*] M. A. Diaz, P. Perez, C. Mora, Phys. Rev. D 79, 013005 (2009)
 [**] R. Sundrum, JHEP 1101, 062 (2011)

Possible violation of R parity

 $\mathcal{L}_{PSS}^{RpV} = -i\epsilon_i \widetilde{H}_u^T \sigma_2 L_i \ - \ \frac{i}{\sqrt{2}} b_i H_u^T \sigma_2 (\tilde{g}_d \sigma \widetilde{W} - \tilde{g}_d' \widetilde{B}) L_i \ + \ h.c.,$

Mixing of neutralinos induces neutrino mass matrix

- S-quarks and S-leptons heavy
- Abandon Higgs naturalness
- Keep unification
- Solve proton decay
- Solve FCNC and CP violation

Neutrinos in Partial Split Susy

At tree level not sufficient but at one loop level:

Neutrino mass matrix, where $\Lambda_i = \mu b_i v_u + \epsilon_i v_d$

Fits *v*-masses and *v*-angles: [52]

Dark Matter Partial Split Susy → Gravitino

Two body decay:

Three body decay:

 \tilde{G} \tilde{G} $\tilde{\gamma}, \tilde{Z}$ $\tilde{\gamma}, \tilde{Z}$ ν_i (Dominant for $m_{3/2}$ small)

$$\Gamma(\tilde{G} \to \gamma \nu) = \frac{m_{3/2}^3}{32\pi M_P^2} |U_{\tilde{\gamma}\nu}|^2 \quad (3)$$

with

$$U_{\tilde{\gamma}v_i} \simeq \frac{\mu}{2(\det M_{\chi^0})} \left(\tilde{g}_d M_1 s_W - \tilde{g}'_d M_2 c_W \right) \Lambda_i$$

Branching ratio

Branching ratio

Supersymmetry: Our Contribution Gravitino ⇒ Induced Photon Flux

Two body decay should induce photon flux

Flux from dark matter halo dominant: (where dy constant)

$$E^{2} \frac{dJ_{halo}}{dE} = d_{\gamma} \Gamma(\tilde{G} \to \gamma \nu) \frac{m_{3/2}}{2} \delta\left(E - \frac{m_{3/2}}{2}\right)$$
(4)

Compare to observed photon flux:

⇒ Constraint on gravitino lifetime

$$\left(\frac{\tau_{3/2}}{10^{27} \text{ s}}\right) > B \frac{0.851}{p} \left(\frac{m_{3/2}}{1 \text{ GeV}}\right)^{0.41}$$

Santiago, Sept. 2011

B: two body branching ratio p: detector efficiency at $E = p_{3/2}$

← FermiLAT, PRL 103,251101(2009)

25 / 71

Combined Constraints from Neutrino Model with Gravitino DM

Demand:

- Reproduce all neutrino masses and mixings (blue-green)
- Dark matter $m_{3/2}$ that agrees with γ flux (red- ∞)

(a) Allowed region for $M_1 = 100$ GeV.

Maximal value for $m_{3/2}$ (Low) [53]

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 26 / 71

Large Extra Dimensions

Approach: Large Extra Dimensions

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 27 / 71

< 回 > < 三 > < 三 >

Large Extra Dimensions LXD General

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 28 / 71

< 17 ►

Large Extra Dimensions LXD General

Large Extra Dimensions

Idea:

Gravity looks weaker than it is. Hidden dimensions d cause this effect

$$G_N = \frac{1}{M_{Pl}^2} \tag{5}$$

True gravity scale M_f in d + 4 dimensions [*]

[*] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys.Lett. B436, 257-263 (1998)

[**] L. Randall, R. Sundrum, Phys.Rev.Lett. 83 3370-3373, 4690-4693 (1999)

Large Extra Dimensions LXD General

If really

$M_f \approx TeV \approx M_Z \approx 0.1 TeV$

- Explains hierarchy
- Does not solve quantization
- A lot of observables at ~TeV

(8)

Benjamin Koch (PUC, Chile)

< <p>Image: A marked black
Large Extra Dimensions LXD General

If really

$M_f \approx TeV \approx M_Z \approx 0.1 TeV$

• Explains hierarchy

- Does not solve quantization
- A lot of observables at ~TeV

(8)

Benjamin Koch (PUC, Chile)

∃⇒ < ∃⇒

< <p>Image: A matrix and a matr

Large Extra Dimensions

If really

$M_f \approx TeV \approx M_Z \approx 0.1 TeV$

- Explains hierarchy
- Does not solve quantization
- A lot of observables at ~TeV

(8)

Benjamin Koch (PUC, Chile)

⊒⇒ ∢∃⇒

< 67 ►

Large Extra Dimensions LXD General

If really

$M_f \approx TeV \approx M_Z \approx 0.1 TeV$

- Explains hierarchy
- Does not solve quantization
- A lot of observables at ~TeV

(8)

< E

< 合型

Link to Experiment 1

Spectrum of cosmic rays (like Auger observatory)

Predict deviation from expected high energy spectrum [x1]

Gravitational Radiation from Cosmic Rays

If $M_f \sim TeV$ elastic scattering of cosmic rays \Rightarrow gravitational radiation

$$\frac{dE}{dk_d d\vec{k}} = \frac{t}{2^{d-1}\pi^{d/2}\Gamma(d/2)M_f^{d+2}} \frac{k_d^{d-2}\vec{k}^2(2k_d^2+3\vec{k}^2)}{(k_d^2+\vec{k}^2)^2} \ . \tag{9}$$

Allows to calculate average relative energy loss

Gravitational Radiation from Cosmic Rays

Energy loss \rightarrow missed in spectrum Monte Carlo

LXD's can provoke strong miss interpretation of actual cosmic ray flux. [x1]

Link to Experiment 2

Large Hadron Collider (LHC) [X2, X3]

Cross sections $\frac{d\sigma}{dEd\Omega}$ event rates N_i [R2, R3]

[X2] T. Humanic, B. Koch, H. Stoecker, Int.J.Mod.Phys. E16, 841-852, (2007)
 [X3] B. Koch, M. Bleicher, S. Hossenfelder, JHEP 0510, 053 (2005)

< ロ > < 同 > < 回 > < 回 >

The energy of every collision defines event horizon (R_H black hole)

Integrate cross section $\sigma(E) \approx R_H^2 \theta(E - M_f) \Rightarrow$ Possibly many black holes produced at TeV energy

< ロ > < 同 > < 回 > < 回 >

LXD: Our Contribution Mini Black Holes

The energy of every collision defines event horizon (R_H black hole)

Can be large!

Integrate cross section $\sigma(E) \approx R_H^2 \theta(E - M_f) \Rightarrow$ Possibly many black holes produced at TeV energy

Mini Black Holes

Analyzed observable: Multiplicity

Black holes radiate with low temperature

⇒ Higher multiplicities in Monte Carlo simulation

Mini Black Holes

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 38 / 71

< A

Approach: Exact Renormalization Group

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 39 / 71

ERGE General

Benjamin Koch (PUC, Chile)

ERGE General

Benjamin Koch (PUC, Chile)

What exactly is the quantization problem?

"Gravity is not renormalizable"

What is renormalizable?

"Well ..."

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 42 / 71

∃⇒ < ∃⇒

What exactly is the quantization problem?

"Gravity is not renormalizable"

What is renormalizable?

"Well ..."

Benjamin Koch (PUC, Chile)

∃⇒ < ∃⇒

< <p>Image: A matrix and a matr

What exactly is the quantization problem?

"Gravity is not renormalizable"

What is **renormalizable**?

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 42 / 71

⊒⇒ ∢∃⇒

- ∢ /⊐ >

What exactly is the quantization problem?

"Gravity is not renormalizable"

What is **renormalizable**?

"Well ..."

Benjamin Koch (PUC, Chile)

What is renormalizable?

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 43 / 71

イロト イボト イヨト イヨト

Feynman method: g^2 Power expansion in coupling g $\mathsf{Result} = c_1 \cdot g^2 + c_2 \cdot g^4 \cdot \infty + \dots$ (12)

Gravity: $N_G
ightarrow \infty$ for $g
ightarrow \infty$

Benjamin Koch (PUC, Chile)

< ロ > < 同 > < 回 > < 回 >

Santiago, Sept. 2011 43 / 71

∃⇒ < ∃⇒

< < >> < <</>

Gravity: $N_G \rightarrow \infty$ for $g \rightarrow \infty$

⊒⇒ ∢∃⇒

<<p>(日)

Exact Renormalization Group ERGE for Gravity

Weinbergs Idea [*]

Maybe expansion wrong! \rightarrow needs the whole functional $\Gamma[\psi]$? (possible if there are UV-fixed points)

Wetterichs realization [**]

$$\partial_t \Gamma[\psi] = \frac{1}{2} \operatorname{Tr} \left[\partial_t R_k ((\Gamma^{(2)}[\psi] + R_k)^{-1}) \right]$$
(14)

Flow equation where ψ are fields, $\Gamma^{(2)} = \delta^2 \Gamma / \delta \psi^2$), $t = \ln(k)$, and R_k cut-off function.

⇒ running couplings

[*] S. Weinberg, "General Relativity" Cambridge University Press
 [**] M. Reuter, C. Wetterich, Nucl.Phys. B417, 181 (1994)

Exact Renormalization Group ERGE for Gravity

Running gravitational couplings [*]

$$\beta_{\lambda} = \partial_t \lambda_k = \frac{P_1}{P_2 + 4(d + 2g_k)}$$
$$\beta_g = \partial_t g_k = \frac{2g_k P_2}{P_2 + 4(4 + 2g_k)}$$

(15)

(16)

45 / 71

Santiago, Sept. 2011

with the dimensionless couplings defined as

$$g_k = k^2 G_k$$
 , $\lambda_k = rac{\Lambda_k}{k^2}$

 G_0 : Newtons constant, Λ_0 : Cosmological constant

[*] D. F. Litim, Phys. Rev. Lett. 92, 201301 (2004)

Benjamin Koch (PUC, Chile)

Exact Renormalization Group ERGE for Gravity

ERGE solutions:

Numerical solution of (15), [R1]

Analytical approximation of (15) using g , $\lambda \ll 1$, [R1]

We use analytical approximation

$$\begin{split} \lambda(g) &= \frac{g^* \lambda^*}{g} \left((5+e) \left[1-g/g^* \right]^{3/2} - 5 + 3g/(2g^*) (5-g/g^*) \right) \\ g(k) &= \frac{k^2}{1+k^2/g^*} \quad , \end{split}$$

With the UV fixed points λ^* and g^*

Link to Experiment 1

WMAP-satellite measured microwave temperature of the sky.

Variations of only $\frac{1}{100,000}$, even for causally disconnected regions (horizon problem)

Explanation:

- Usually one invents new field "inflaton"
- We used ERGE [R1]

[R1] B. Koch, I. Ramirez, Class.Quant.Grav. 28, 055008 (2011)

Early Universe

Homogeneous background

$$ds^{2} = -dt^{2} + a(t)^{2}d\vec{x}^{2} \quad . \tag{17}$$

Friedmann equations

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \left(\frac{a_{0}^{4}\rho_{r}}{a^{4}} + \frac{a_{0}^{3}\rho_{m}}{a^{3}}\right) + \frac{\Lambda}{3}$$
(18)
$$\frac{\ddot{a}}{a} = -\frac{8\pi G}{3} \left(\frac{a_{0}^{4}\rho_{r}}{a^{4}} + \frac{a_{0}^{3}\rho_{m}}{2a^{3}}\right) + \frac{\Lambda}{3} .$$
(19)

- Works in late universe
- Fails in early universe (horizon problem)
- Other issues ...

Benjamin Koch (PUC, Chile)

Early Universe

Homogeneous background

$$ds^2 = -dt^2 + a(t)^2 d\vec{x}^2 \quad . \tag{20}$$

Modified Friedmann equations

1

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G_{k}}{3} \left(\frac{a_{0}^{4}\rho_{r}}{a^{4}} + \frac{a_{0}^{3}\rho_{m}}{a^{3}}\right) + \frac{\Lambda_{k}}{3} - \frac{\kappa}{a^{2}} + \frac{\dot{G}_{k}\dot{a}}{G_{k}a} , \qquad (21)$$

$$\frac{\ddot{a}}{a} = -\frac{8\pi G_{k}}{3} \left(\frac{a_{0}^{4}\rho_{r}}{a^{4}} + \frac{a_{0}^{3}\rho_{m}}{2a^{3}}\right) + \frac{\Lambda_{k}}{3} + \frac{\dot{G}_{k}\dot{a}}{2G_{k}a} + \frac{G_{k}\ddot{G}_{k} - 2\dot{G}_{k}^{2}}{2G_{k}^{2}} (22)$$

- Works in late universe
- Good in early universe, solves horizon problem
- Shares other problems and open questions

Early Universe

UV solution of modified Friedmann equations

$$a = C \cdot t \tag{23}$$

٠

Santiago, Sept. 2011

Implies that Hubble horizon

$$h_{H} = \frac{1}{t_{f} - t_{i}} \int_{t_{f}}^{t^{i}} \frac{c}{\dot{a}} = \frac{c}{C} \quad .$$
 (24)

is smaller than causal horizon

$$h_{c} = \int_{t_{i}}^{t_{f}} dt \frac{c}{a(t)} = \frac{c}{C} \left[\ln \left(\frac{t_{f}}{t_{i}} \right) \right]$$

 $h_C > h_H \Rightarrow$ Solves horizon problem

50 / 71

Benjamin Koch (PUC, Chile)

Link to Experiment 2

Large Hadron Collider (LHC)

Cross sections $\frac{d\sigma}{dEd\Omega}$ event rates N_i [R2, R3]

[*R*2] T. Burschil, B. Koch, JETP Lett. 92, 4 (2010)
 [*R*3] B. Koch Phys.Lett. B. 663, 334 (2008)

Benjamin Koch (PUC, Chile)

< ロ > < 同 > < 回 > < 回 >

Black Holes in Extra Dimensions

Running fundamental scale $M_{f^{[*]}}$

$$\tilde{M}_{f}^{d+2}(k) = M_{f}^{d+2} \left[1 + \left(\frac{k}{tM_{f}} \right)^{d+2} \right]$$
(26)

Benjamin Koch (PUC, Chile)

Black Holes in Extra Dimensions

Temperature [R2]

$$T_{H} = \frac{1}{4\pi} (\partial_{r} f(r)) \bigg|_{r = Horizon}$$
(28)

Radiation spectrum [R2]

$$I(\omega, T_H) = N \frac{\omega^3}{\exp(\omega/T_H) + s} , \quad (29)$$
$$M_{fin} = \sqrt{M^2 + m_{\omega}^2 - 2E_{\omega}M} .$$
$$T_H = T_H(M_{fin}) , \quad (39)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Benjamin Koch (PUC, Chile)

2

Black Holes in Extra Dimensions

Cross section [R2, R3]

$$\tilde{\sigma}(\sqrt{s}) = \pi \tilde{R}_{H}^{2} \theta(\sqrt{s} - M_{c})$$
(32)

Black hole cross sections for d = 2 and $M_f = 1$ TeV, varying \tilde{t} Much less black holes than in the usual estimate

Benjamin Koch (PUC, Chile)

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

No prediction confirmed?

Yes one!

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 61 / 71

イロト イボト イヨト イヨト

No prediction confirmed?

Yes one!

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 61 / 71

イロト イボト イヨト イヨト

Summary A Little Extra

Using cosmic rays (Auger ...) & neutron stars (ALMA ...)

We found [A1]

[A1] B. Koch, M. Bleicher, H. Stoecker, Phys.Lett. B672, 71-76 (2009)

Benjamin Koch (PUC, Chile)

< 47 ►

LHC runs since 2009

We are still here

Prediction confirmed!

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 63 / 71

- 4 The h

LHC runs since 2009

We are still here

Prediction confirmed

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 63 / 71

A 34 h

LHC runs since 2009

We are still here

Prediction confirmed!

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 63 / 71

4 E 1

Thank you!

Benjamin Koch (PUC, Chile)

Santiago, Sept. 2011 64 / 71

<ロ> (四) (四) (三) (三) (三)

Backups BBC

BBC news 27.08.2011*:

- ... LHC results put supersymmetry theory "on the spot".
- ... simplest version of the theory has in effect bitten the dust.
- ... experts working in the field are "disappointed" by the results or rather, the lack of them.
- and so on ...

What is behind that?

*http://www.bbc.co.uk/news/mobile/science-environment-14680570?SThisFB

Backups Behind BBC news:

Thousands of models \Rightarrow nature decides \Rightarrow ideally there is only one!

Benjamin Koch (PUC, Chile)

Backups: Supersymmetry

Popular observables

S-quark, anti s-quart production and observable at LHC

Benjamin Koch (PUC, Chile)

イロト イポト イヨト イヨト

Backups: Supersymmetry Results

Constraints on parameterspace for the MSSM Higgs sector

Search for superpartners in the di-lepton channel

CERN-PH-EP-2011-104

Backups: Large Extra Dimensions Results

Constraints on Randall Sundrom graviton mass for various values of $k/M_{\bar{P}l}$

CERN-PH-EP-2011-123

Benjamin Koch (PUC, Chile)

Backups: Standard Model Higgs Results

Constraints and evidence on SM Higgs

today on www.atlas.ch

Backups: Supersymmetry Our Contribution

Connecting Neutrino Model with Gravitino DM

Link due to neutrino photino mixing:

$$\underbrace{\Gamma(\widetilde{G} \to \gamma \nu)}_{\text{determines } \gamma-\text{flux}} \sim |U_{\widetilde{\gamma}\nu_i}|^2 \simeq \underbrace{\left(\frac{\mu}{2(\text{det}M_{\chi^0})} \left(\tilde{g}_d M_1 s_W - \tilde{g}_d' M_2 c_W\right) \Lambda_i\right)^2}_{\text{parameters of neutrino model}}$$

Numerical parameter scan, values of $U_{\tilde{\gamma}\nu_i}$

$$\begin{array}{|c|c|c|c|c|c|c|} \hline M_1 & |U_{\widetilde{\gamma}\nu}|^2(\min) & |U_{\widetilde{\gamma}\nu}|^2(\max) \\ \hline 100 \ {\rm GeV} & 2 \times 10^{-16} & 4 \times 10^{-13} \\ \hline 300 \ {\rm GeV} & 2 \times 10^{-17} & 3 \times 10^{-14} \\ \hline 500 \ {\rm GeV} & 1 \times 10^{-17} & 1 \times 10^{-14} \\ \hline \end{array}$$