Theory and Phenomenology at
 and beyond the Terascale
 Benjamin Koch bkoch@fis.puc.cl

Pontificia Universidad Católica, Chile
Santiago, September 2011

Outline

- The "Daedalus" problem of a unified theory
- Approach: Supersymmetry
- Approach: Large extra dimensions
- Approach: Exact renormalization
- Summary

The Daedalus Problem

Greek Mythology

The Daedalus Problem

The Daedalus Problem

Greek Mythology

Where is the physics?

The Daedalus Problem

Physics Analogy

Mechanics

The Daedalus Problem

Physics Analogy

Gravity

The Daedalus Problem

Physics Analogy

Gravity
Quantum Mechanics

The Daedalus Problem

Physics Analogy

The Daedalus Problem

Points to remember

- Hierarchy problem
- Quantization problem
- Stay close to experiment

Supersymmetry

Susy General

Approach: Supersymmetry

Supersymmetry

Susy General

Supersymmetry

Susy General

Supersymmetry

Susy General

Possible symmetry between bosons and fermions

- Superpartners for known particles

Supersymmetry

Susy General

Possible symmetry between bosons and fermions

- Superpartners for known particles
- Improves renormalization behavior (alleviates quantization problem)

Supersymmetry

Susy General

Possible symmetry between bosons and fermions

- Superpartners for known particles
- Improves renormalization behavior (alleviates quantization problem)
- Unifies SM couplings at $10^{15} \mathrm{GeV}$ (alleviates hierarchy problem)

Supersymmetry

Susy General

Possible symmetry between bosons and fermions

- Superpartners for known particles
- Improves renormalization behavior (alleviates quantization problem)
- Unifies SM couplings at $10^{15} \mathrm{GeV}$ (alleviates hierarchy problem)
- Provides good dark matter candidates (experiment)

Supersymmetry

Susy General

Possible symmetry between bosons and fermions

- Superpartners for known particles
- Improves renormalization behavior (alleviates quantization problem)
- Unifies SM couplings at $10^{15} \mathrm{GeV}$ (alleviates hierarchy problem)
- Provides good dark matter candidates (experiment)
- Many predictions at TeV scale
 (experiment)

Supersymmetry: Our Contribution

Link to Experiment
Neutrino oscillation experiments like Super Kamiokande ${ }_{\left[1, S_{2}\right]}$
Neutrino masses Δm_{i}
Mixing angles θ_{i}
[S1] M. A. Diaz, F. Garay, B. Koch, Phys.Rev.D80, 113005 (2009)
[S2] M. A. Diaz, B. Panes, B. Koch, Phys.Rev.D79, 113009 (2009)

Sattelite Fermi-LAT that measures cosmic rays [s3]

Cosmic γ-ray flux $d J / d E$
[S3] M. A. Diaz, S. G. Saenz, B. Koch, Accepted for publication in PRD, (2011)

Supersymmetry: Our Contribution

Partial Split Supersymmetry

We used the model Partial Split Supersymmetry ${ }_{[x, * *]}$

[*] M. A. Diaz, P. Perez, C. Mora, Phys. Rev. D 79, 013005 (2009)
[**] R. Sundrum, JHEP 1101, 062 (2011)

- S-quarks and S-leptons heavy
- Abandon Higgs naturalness
- Keep unification
- Solve proton decay
- Solve FCNC and CP violation

Possible violation of R parity

$$
\mathcal{L}_{P S S}^{R p V}=-i \epsilon_{i} \widetilde{H}_{u}^{T} \sigma_{2} L_{i}-\frac{i}{\sqrt{2}} b_{i} H_{u}^{T} \sigma_{2}\left(\tilde{g}_{d} \sigma \widetilde{W}-\tilde{g}_{d}^{\prime} \widetilde{B}\right) L_{i}+\text { h.c., }
$$

Mixing of neutralinos induces neutrino mass matrix

Supersymmetry: Our Contribution

Neutrinos in Partial Split Susy

At tree level not sufficient but at one loop level:

Neutrino mass matrix, where $\Lambda_{i}=\mu b_{i} v_{u}+\epsilon_{i} v_{d}$

$$
\begin{equation*}
M_{P S S}^{i j}=A \Lambda^{i} \Lambda^{j}+B\left(\epsilon^{i} \Lambda^{j}+\epsilon^{j} \Lambda^{i}\right)+C \epsilon^{i} \epsilon^{j} \tag{2}
\end{equation*}
$$

Fits v-masses and v-angles: [S2]

Graph2D

Supersymmetry: Our Contribution

Dark Matter Partial Split Susy \rightarrow Gravitino

Two body decay:

Three body decay:
(Dominant for $m_{3 / 2}$ small)

$$
\begin{equation*}
\Gamma(\tilde{G} \rightarrow \gamma v)=\frac{m_{3 / 2}^{3}}{32 \pi M_{P}^{2}}\left|U_{\tilde{\gamma} v}\right|^{2} \tag{3}
\end{equation*}
$$

with
$U_{\tilde{\gamma}_{i}} \simeq \frac{\mu}{2\left(\operatorname{det} M_{x^{0}}\right)}\left(\tilde{g}_{d} M_{1} s_{W}-\tilde{g}_{d}^{\prime} M_{2} c_{W}\right) \Lambda_{i}$
Branching ratio

Supersymmetry: Our Contribution

Gravitino \Rightarrow Induced Photon Flux

Two body decay should induce photon flux

Flux from dark matter halo dominant: (where d_{y} constant)

$$
\begin{equation*}
E^{2} \frac{d J_{\text {halo }}}{d E}=d_{\nu} \Gamma(\widetilde{G} \rightarrow \gamma v) \frac{m_{3 / 2}}{2} \delta\left(E-\frac{m_{3 / 2}}{2}\right) \tag{4}
\end{equation*}
$$

Compare to observed photon flux:

\Rightarrow Constraint on gravitino lifetime

$$
\left(\frac{\tau_{3 / 2}}{10^{27} \mathrm{~s}}\right)>B \frac{0,851}{p}\left(\frac{m_{3 / 2}}{1 \mathrm{GeV}}\right)^{0,41}
$$

B : two body branching ratio
p : detector efficiency at $E=\boldsymbol{p}_{\mathbf{3 / 2}}$
\leftarrow FermiLAT, PRL 103,251101(2009)

Supersymmetry: Our Contribution

Combined Constraints from Neutrino Model with Gravitino DM

Demand:

- Reproduce all neutrino masses and mixings (blue-green)
- Dark matter $m_{3 / 2}$ that agrees with γ flux (red- ∞)

Maximal value for $m_{3 / 2}$ (Low) [s3]
(a) Allowed region for $M_{1}=100 \mathrm{GeV}$.

Found surprising and testable prediction

Large Extra Dimensions
LXD General

Approach: Large Extra Dimensions

Large Extra Dimensions LXD General

Large Extra Dimensions LXD General

Large Extra Dimensions
 LXD General

Idea:
Gravity looks weaker than it is. Hidden dimensions d cause this effect

$$
\begin{equation*}
G_{N}=\frac{1}{M_{P I}^{2}} \tag{5}
\end{equation*}
$$

True gravity scale M_{f} in $d+4$ dimensions ${ }_{[*]}$

$$
\begin{equation*}
M_{P I}^{2}=M_{f}^{2+d} R^{d} \tag{6}
\end{equation*}
$$

Also less simplistic models $[* *]$
[*] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys.Lett. B436, 257-263 (1998)
[**] L. Randall, R. Sundrum, Phys.Rev.Lett. 83 3370-3373, 4690-4693 (1999)

Large Extra Dimensions

LXD General

If really

$$
\begin{equation*}
M_{f} \approx T e V \approx M_{Z} \approx 0,1 \mathrm{TeV} \tag{8}
\end{equation*}
$$

Large Extra Dimensions
 LXD General

If really

$$
\begin{equation*}
M_{f} \approx T e V \approx M_{z} \approx 0,1 \mathrm{TeV} \tag{8}
\end{equation*}
$$

- Explains hierarchy
- Does not solve quantization

Large Extra Dimensions
 LXD General

If really

$$
\begin{equation*}
M_{f} \approx T e V \approx M_{Z} \approx 0,1 \mathrm{TeV} \tag{8}
\end{equation*}
$$

- Explains hierarchy
- Does not solve quantization

Large Extra Dimensions
 LXD General

If really

$$
\begin{equation*}
M_{f} \approx T e V \approx M_{z} \approx 0,1 \mathrm{TeV} \tag{8}
\end{equation*}
$$

- Explains hierarchy
- Does not solve quantization
- A lot of observables at $\sim \mathrm{TeV}$

LXD: Our Contribution

Link to Experiment 1
Spectrum of cosmic rays (like Auger observatory)

Predict deviation from expected high energy spectrum [x1]

[X1] B. Koch, H. Drescher, M. Bleicher, Astropart.Phys. 25, 291-297 (2006)

LXD: Our Contribution

Gravitational Radiation from Cosmic Rays

If $M_{f} \sim \mathrm{TeV}$ elastic scattering of cosmic rays \Rightarrow gravitational radiation

$$
\begin{equation*}
\frac{d E}{d k_{d} d \vec{k}}=\frac{t}{2^{d-1} \pi^{d / 2} \Gamma(d / 2) M_{f}^{d+2}} \frac{k_{d}^{d-2} \vec{k}^{2}\left(2 k_{d}^{2}+3 \vec{k}^{2}\right)}{\left(k_{d}^{2}+\vec{k}^{2}\right)^{2}} . \tag{9}
\end{equation*}
$$

Allows to calculate average relative energy loss

Using Glauber hadron profile

$$
\begin{equation*}
\frac{d E}{d x}(s, d)=\frac{\int_{0}^{\sqrt{s} / 2} d t \frac{d \sigma_{\text {aA }}^{0}}{d t} E(t, s, d)}{\lambda \int_{0}^{\sqrt{s} / 2} d t \frac{d o_{\text {oA }}^{0}}{d t}} \tag{10}
\end{equation*}
$$

LXD: Our Contribution

Gravitational Radiation from Cosmic Rays

Energy loss \rightarrow missed in spectrum Monte Carlo

LXD's can provoke strong miss interpretation of actual cosmic ray flux. [x_{1}]

LXD: Our Contribution

Link to Experiment 2

Large Hadron Collider (LHC) [x2, $\left.x_{3}\right]$

Cross sections $\frac{d \sigma}{d E d \Omega}$ event rates N_{i} [R2, R3]

[$X 2$ 2] T. Humanic, B. Koch, H. Stoecker, Int.J.Mod.Phys. E16, 841-852, (2007) [X3] B. Koch, M. Bleicher, S. Hossenfelder, JHEP 0510, 053 (2005)

LXD: Our Contribution

Mini Black Holes

The energy of every collision defines event horizon (R_{H} black hole)
Usually very small But LXD:

$$
R_{H}^{d+1}=\frac{16 \pi}{(d+2) A_{d+2}} \frac{M}{M_{f}^{d+2}}
$$

(11)

LXD: Our Contribution

Mini Black Holes

The energy of every collision defines event horizon (R_{H} black hole)
Usually very small But LXD:

$$
\begin{equation*}
R_{H}^{d+1}=\frac{16 \pi}{(d+2) A_{d+2}} \frac{M}{M_{f}^{d+2}} \tag{11}
\end{equation*}
$$

Can be large!
Integrate cross section
$\sigma(E) \approx R_{H}^{2} \theta\left(E-M_{f}\right) \Rightarrow$
Possibly many black holes produced at TeV energy

LXD: Our Contribution

Mini Black Holes

Analyzed observable: Multiplicity

Black holes radiate with low temperature
\Rightarrow Higher multiplicities in Monte Carlo simulation

LXD: Our Contribution

Mini Black Holes

Analyzed observable: Asymmetry

Black holes replace back to back jets \Rightarrow crate angular asymmetry

Exact Renormalization Group

Approach: Exact Renormalization Group

Exact Renormalization Group

ERGE General

Exact Renormalization Group
 ERGE General

Exact Renormalization Group

ERGE General

What exactly is the quantization problem?

"Gravity is not renormalizable"

Exact Renormalization Group

ERGE General

What exactly is the quantization problem?
"Gravity is not renormalizable"

Exact Renormalization Group

ERGE General

What exactly is the quantization problem?

> "Gravity is not renormalizable"

What is renormalizable?

Exact Renormalization Group

ERGE General

What exactly is the quantization problem?
"Gravity is not renormalizable"
What is renormalizable?
"Well ..."

Exact Renormalization Group

ERGE General

What is renormalizable?

Feynman method:
Power expansion in coupling g

(b)

Exact Renormalization Group

ERGE General

What is renormalizable?

Feynman method:
Power expansion in coupling g

$$
\begin{equation*}
\text { Result }=c_{1} \cdot g^{2}+c_{2} \cdot g^{4} \cdot \infty+\ldots \tag{12}
\end{equation*}
$$

Exact Renormalization Group
 ERGE General

What is renormalizable?

Feynman method:
Power expansion in coupling g

$$
\begin{equation*}
\text { Result }=c_{1} \cdot g^{2}+c_{2} \cdot g^{4} \cdot \infty+\ldots \tag{12}
\end{equation*}
$$

Problem ∞ canceled by N adjustments

(b)
(a)
 ($N=$ small for any order g^{m})

$$
\begin{equation*}
\text { Result }^{\prime}=c_{1} \cdot g^{2}+c_{2}^{\prime} \cdot g^{4}+\ldots \tag{13}
\end{equation*}
$$

Exact Renormalization Group

ERGE General

What is renormalizable?

Feynman method:
Power expansion in coupling g

$$
\begin{equation*}
\text { Result }=c_{1} \cdot g^{2}+c_{2} \cdot g^{4} \cdot \infty+\ldots \tag{12}
\end{equation*}
$$

Problem ∞ canceled by N adjustments ($N=$ small for any order g^{m})

$$
\begin{equation*}
\text { Result }^{\prime}=c_{1} \cdot g^{2}+c_{2}^{\prime} \cdot g^{4}+\ldots \tag{13}
\end{equation*}
$$

(b)
(a)

Gravity: $N_{G} \rightarrow \infty$ for $g \rightarrow \infty$

Exact Renormalization Group

ERGE for Gravity

Weinbergs Idea [*]

> Maybe expansion wrong!
> \rightarrow needs the whole functional $\Gamma[\psi]$?
> (possible if there are UV-fixed points)

Wetterichs realization [**]

$$
\begin{equation*}
\partial_{t} \Gamma[\psi]=\frac{1}{2} \operatorname{Tr}\left[\partial_{t} R_{k}\left(\left(\Gamma^{(2)}[\psi]+R_{k}\right)^{-1}\right)\right] \tag{14}
\end{equation*}
$$

Flow equation where ψ are fields, $\left.\Gamma^{(2)}=\delta^{2} \Gamma / \delta \psi^{2}\right), t=\ln (k)$, and R_{k} cut-off function.

$$
\Rightarrow \text { running couplings }
$$

[*] S. Weinberg, "General Relativity" Cambridge University Press
[**] M. Reuter, C. Wetterich, Nucl.Phys. B417, 181 (1994)

Exact Renormalization Group

ERGE for Gravity

Running gravitational couplings [*]

$$
\begin{align*}
& \beta_{\lambda}=\partial_{t} \lambda_{k}=\frac{P_{1}}{P_{2}+4\left(d+2 g_{k}\right)} \tag{15}\\
& \beta_{g}=\partial_{t} g_{k}=\frac{2 g_{k} P_{2}}{P_{2}+4\left(4+2 g_{k}\right)}
\end{align*}
$$

with the dimensionless couplings defined as

$$
\begin{equation*}
g_{k}=k^{2} G_{k} \quad, \quad \lambda_{k}=\frac{\Lambda_{k}}{k^{2}} \tag{16}
\end{equation*}
$$

G_{0} : Newtons constant, Λ_{0} : Cosmological constant
[*] D. F. Litim, Phys. Rev. Lett. 92, 201301 (2004)

Exact Renormalization Group

ERGE for Gravity

ERGE solutions:

Numerical solution of (15), [R1]

Analytical approximation of (15) using $g, \lambda \ll 1,[R 1]$

We use analytical approximation

$$
\begin{aligned}
\lambda(g) & =\frac{g^{*} \lambda^{*}}{g}\left((5+e)\left[1-g / g^{*}\right]^{3 / 2}-5+3 g /\left(2 g^{*}\right)\left(5-g / g^{*}\right)\right) \\
g(k) & =\frac{k^{2}}{1+k^{2} / g^{*}}
\end{aligned}
$$

With the UV fixed points λ^{*} and g^{*}

ERGE: Our Contribution

Link to Experiment 1
WMAP-satellite measured microwave temperature of the sky.

Variations of only $\frac{1}{100,000}$,
even for causally disconnected regions (horizon problem)
Explanation:

- Usually one invents new field "inflaton"
- We used ERGE [R1]
[R1] B. Koch, I. Ramirez, Class.Quant.Grav. 28, 055008 (2011)

ERGE: Our Contribution

Early Universe

Homogeneous background

$$
\begin{equation*}
d s^{2}=-d t^{2}+a(t)^{2} d \vec{x}^{2} \tag{17}
\end{equation*}
$$

Friedmann equations

$$
\begin{align*}
\left(\frac{\dot{a}}{a}\right)^{2} & =\frac{8 \pi G}{3}\left(\frac{a_{0}^{4} \rho_{r}}{a^{4}}+\frac{a_{0}^{3} \rho_{m}}{a^{3}}\right)+\frac{\Lambda}{3} \tag{18}\\
\frac{\ddot{a}}{a} & =-\frac{8 \pi G}{3}\left(\frac{a_{0}^{4} \rho_{r}}{a^{4}}+\frac{a_{0}^{3} \rho_{m}}{2 a^{3}}\right)+\frac{\Lambda}{3} . \tag{19}
\end{align*}
$$

- Works in late universe
- Fails in early universe (horizon problem)
- Other issues ...

ERGE: Our Contribution

Early Universe

Homogeneous background

$$
\begin{equation*}
d s^{2}=-d t^{2}+a(t)^{2} d \vec{x}^{2} \tag{20}
\end{equation*}
$$

Modified Friedmann equations

$$
\begin{align*}
\left(\frac{\dot{a}}{a}\right)^{2} & =\frac{8 \pi G_{k}}{3}\left(\frac{a_{0}^{4} \rho_{r}}{a^{4}}+\frac{a_{0}^{3} \rho_{m}}{a^{3}}\right)+\frac{\Lambda_{k}}{3}-\frac{k}{a^{2}}+\frac{\dot{G}_{k} \dot{a}}{G_{k} a} \tag{21}\\
\frac{\ddot{a}}{a} & =-\frac{8 \pi G_{k}}{3}\left(\frac{a_{0}^{4} \rho_{r}}{a^{4}}+\frac{a_{0}^{3} \rho_{m}}{2 a^{3}}\right)+\frac{\Lambda_{k}}{3}+\frac{\dot{G}_{k} \dot{a}}{2 G_{k} a}+\frac{G_{k} \ddot{G}_{k}-2 \dot{G}_{k}^{2}}{2 G_{k}^{2}} \tag{22}
\end{align*}
$$

- Works in late universe
- Good in early universe, solves horizon problem
- Shares other problems and open questions

ERGE: Our Contribution

Early Universe

UV solution of modified Friedmann equations

$$
\begin{equation*}
a=C \cdot t \tag{23}
\end{equation*}
$$

Implies that Hubble horizon

$$
\begin{equation*}
h_{H}=\frac{1}{t_{f}-t_{i}} \int_{t_{f}}^{t^{i}} \frac{c}{\dot{a}}=\frac{c}{C} \tag{24}
\end{equation*}
$$

is smaller than causal horizon

$$
\begin{aligned}
& h_{c}=\int_{t_{i}}^{t_{f}} d t \frac{c}{a(t)}=\frac{c}{C}\left[\ln \left(\frac{t_{f}}{t_{i}}\right)\right] . \\
& h_{C}>h_{H} \Rightarrow \text { Solves horizon problem }
\end{aligned}
$$

ERGE: Our Contribution

Link to Experiment 2

Large Hadron Collider (LHC)

Cross sections $\frac{d \sigma}{d E d \Omega}$ event rates N_{i} [R2, R3]

[R2] T. Burschil, B. Koch, JETP Lett. 92, 4 (2010)
[R3] B. Koch Phys.Lett. B. 663, 334 (2008)

ERGE: Our Contribution

Black Holes in Extra Dimensions

Running fundamental scale $M_{f[*]}$

$$
\begin{equation*}
\tilde{M}_{f}^{d+2}(k)=M_{f}^{d+2}\left[1+\left(\frac{k}{t M_{f}}\right)^{d+2}\right] \tag{26}
\end{equation*}
$$

Improve black hole solution

[*] J. Hewett and T. Rizzo, JHEP 0712, 009 (2007)

ERGE: Our Contribution

Black Holes in Extra Dimensions

Temperature [R2]

$$
\begin{equation*}
T_{H}=\left.\frac{1}{4 \pi}\left(\partial_{r} f(r)\right)\right|_{r=\text { Horizon }} \tag{28}
\end{equation*}
$$

$$
\begin{gathered}
I\left(\omega, T_{H}\right)=N \frac{\omega^{3}}{\exp \left(\omega / T_{H}\right)+s}, \\
M_{\text {fin }}=\sqrt{M^{2}+m_{\omega}^{2}-2 E_{\omega} M}, \\
T_{H}=T_{H}\left(M_{\text {fin }}\right),
\end{gathered}
$$

Radiation spectrum [R2]

ERGE: Our Contribution

Black Holes in Extra Dimensions

Cross section [R2, R3]

$$
\begin{equation*}
\tilde{\sigma}(\sqrt{s})=\pi \tilde{R}_{H}^{2} \theta\left(\sqrt{s}-M_{c}\right) \tag{32}
\end{equation*}
$$

Black hole cross sections for $d=2$ and $M_{f}=1 \mathrm{TeV}$, varying \tilde{t} Much less black holes than in the usual estimate

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

- Introduced problems of unification
- Studied three different approaches
- Compared to various experiments
- Obtained predictions or limits

Summary

A Little Extra

No prediction confirmed?

Summary

A Little Extra

No prediction confirmed?

Yes one!

Summary

A Little Extra

Using cosmic rays (Auger ...) \& neutron stars (ALMA ...)

We found ${ }_{[A 1]}$

\Rightarrow Prediction: Mini BHs are

- Not there or
- Not dangerous
[A1] B. Koch, M. Bleicher, H. Stoecker, Phys.Lett. B672, 71-76 (2009)

Summary

A Little Extra

LHC runs since 2009

Prediction confirmed!

Summary

A Little Extra

LHC runs since 2009

We are still here

Summary

A Little Extra

LHC runs since 2009

We are still here

Prediction confirmed!

The End

Thank you!

Backups
 BBC

BBC news 27.08.2011 ${ }^{\text {* }}$:

- ... LHC results put supersymmetry theory "on the spot".
- ... simplest version of the theory has in effect bitten the dust.
- ... experts working in the field are "disappointed" by the results or rather, the lack of them.
- and so on ...

What is behind that?

Backups

Behind BBC news:

Thousands of models \Rightarrow nature decides \Rightarrow ideally there is only one!

Backups: Supersymmetry

Popular observables

Large number of observables have been studied Example:

S-quark, anti s-quart production and observable at LHC

Backups: Supersymmetry

Results

Constraints on parameterspace for the MSSM Higgs sector

Search for superpartners in the di-lepton channel

Backups: Large Extra Dimensions

Results

Constraints on Randall Sundrom graviton mass

 for various values of $k / M_{\bar{P} I}$

Backups: Standard Model Higgs

Results

Constraints and evidence on SM Higgs

today on www.atlas.ch

Backups: Supersymmetry Our Contribution

Connecting Neutrino Model with Gravitino DM

Link due to neutrino photino mixing:

$$
\underbrace{\Gamma(\tilde{G} \rightarrow \gamma v)}_{\text {termines } \gamma \text {-flux }} \sim\left|U_{\tilde{\gamma} v_{i}}\right|^{2} \simeq \underbrace{\left(\frac{\mu}{2\left(\operatorname{det} M_{\chi^{0}}\right)}\left(\tilde{g}_{d} M_{1} s_{W}-\tilde{g}_{d}^{\prime} M_{2} c_{W}\right) \Lambda_{i}\right)^{2}}_{\text {parameters of neutrino model }}
$$

Numerical parameter scan, values of $U_{\widetilde{\gamma} v_{i}}$

| M_{1} | $\left\|U_{\tilde{\gamma} v}\right\|^{2}(\min)$ | $\left\|U_{\tilde{\gamma} v}\right\|^{2}$ |
| :---: | :---: | :---: |${ }^{2}$ max)

