Black holes and running couplings

Benjamin Koch ${ }^{\text {a }}$

collaboration with

Carlos Contreras ${ }^{b}$, Paola Rioseco ${ }^{a}$, Oliver Piatella ${ }^{c}$, and Davi Rodrigues ${ }^{\text {c }}$

bkoch@fis.puc.cl
a PUC, Chile
${ }^{5}$ UFSM, Chile
c UFES, Brasil

Outline

- Exact Renormalization Group for gravity (ERG)
- The ERG flow and "improved" black holes
- Going beyond "improved"
- Flow induced by new solution
- Status ... conclusion

Exact Renormalization Group: Motivation

 ERG GeneralThe quantization problem of gravity

"Gravity is not renormalizable"

Exact Renormalization Group: Motivation

 ERG General> The quantization problem of gravity

What is the quantization problem?
"Gravity is not renormalizable"

Exact Renormalization Group: Motivation

 ERG GeneralThe quantization problem of gravity

What is the quantization problem?
"Gravity is not renormalizable"

Exact Renormalization Group: Motivation

 ERG GeneralThe quantization problem of gravity

What is the quantization problem?
"Gravity is not renormalizable"
What is renormalizable?

Exact Renormalization Group: Motivation

 ERG GeneralThe quantization problem of gravity

What is the quantization problem?
"Gravity is not renormalizable"
What is renormalizable?

> "Well ... ask Claus Kiefer"

Exact Renormalization Group

ERG General

What is renormalizable?

Feynman method:
Power expansion in coupling g

($N=$ small for any order g^{m})

Exact Renormalization Group

ERG General

What is renormalizable?

Feynman method:
Power expansion in coupling g

$$
\begin{equation*}
\text { Result }=c_{1} \cdot g^{2}+c_{2} \cdot g^{4} \cdot \infty+\ldots \tag{1}
\end{equation*}
$$

(b)
(a)

Exact Renormalization Group

ERG General

What is renormalizable?

Feynman method:
Power expansion in coupling g

$$
\begin{equation*}
\text { Result }=c_{1} \cdot g^{2}+c_{2} \cdot g^{4} \cdot \infty+\ldots \tag{1}
\end{equation*}
$$

Problem ∞ canceled by N adjustments ($N=$ small for any order g^{m})

$$
\text { Result }^{\prime}=c_{1} \cdot g^{2}+c_{2}^{\prime} \cdot g^{4}+\ldots
$$

(b)
(a)

Exact Renormalization Group

ERG General

What is renormalizable?

Feynman method:
Power expansion in coupling g

$$
\begin{equation*}
\text { Result }=c_{1} \cdot g^{2}+c_{2} \cdot g^{4} \cdot \infty+\ldots \tag{1}
\end{equation*}
$$

Problem ∞ canceled by N adjustments ($N=$ small for any order g^{m})

$$
\text { Result }^{\prime}=c_{1} \cdot g^{2}+c_{2}^{\prime} \cdot g^{4}+\ldots
$$

Gravity: $N_{G} \rightarrow \infty$ for $g \rightarrow \infty$

Exact Renormalization Group

ERG for Gravity

Weinbergs Idea [*)

> Maybe expansion wrong!
> \rightarrow needs the whole functional $\Gamma[\psi]$?
> Important: Existence of non-trivial UV-fixed points (Issues \rightarrow Ilya Shapiro)

Wetterichs realization [**]

$$
\begin{equation*}
\partial_{t} \Gamma[\psi]=\frac{1}{2} \operatorname{Tr}\left[\partial_{t} R_{k} \cdot\left(\Gamma^{(2)}[\psi]+R_{k}\right)^{-1}\right] \tag{3}
\end{equation*}
$$

Flow equation where ψ are fields, $\left.\Gamma^{(2)}=\delta^{2} \Gamma / \delta \psi^{2}\right), t=\ln (k)$, and R_{k} cut-off function.
\Rightarrow running couplings
[*] S. Weinberg, "General Relativity" Cambridge University Press
[**] M. Reuter, C. Wetterich, Nucl.Phys. B417, 181 (1994)

Exact Renormalization Group

ERG for Gravity

Define dimensionless couplings

$$
\begin{equation*}
g_{k}=k^{2} G_{k} \quad \lambda_{k}=\frac{\Lambda_{k}}{k^{2}} \tag{4}
\end{equation*}
$$

G_{0} : Newtons constant, Λ_{0} : Cosmological constant

With Wetterichs equation one can get running gravitational couplings [*]

$$
\begin{align*}
& \beta_{\lambda}=\partial_{t} \lambda_{k}=\frac{P_{1}}{P_{2}+4\left(d+2 g_{k}\right)} \tag{5}\\
& \beta_{g}=\partial_{t} g_{k}=\frac{2 g_{k} P_{2}}{P_{2}+4\left(4+2 g_{k}\right)}
\end{align*}
$$

[*]Reuter ..., but here use: D. F. Litim, Phys. Rev. Lett. 92, 201301 (2004)

Exact Renormalization Group: Flow

ERG flow

Solve numerically:

Would be nice to have analytical expression to work with ...

Exact Renormalization Group: Flow

ERG flow

Expand beta functions for small couplings $g, \lambda \ll 1$:

$$
\begin{align*}
& \beta_{g}=g(k)(2-24 g(k)) \tag{6}\\
& \beta_{\lambda}=12 g(k)-2 \lambda(k) \tag{7}
\end{align*}
$$

Solve

$$
\begin{gather*}
g_{E R G}(k)=\frac{k^{2} G_{0} g_{U}^{*}}{g_{U}^{*}+G_{0} k^{2}} \tag{8}\\
\lambda(k)_{E R G}=\lambda_{U}^{*}+\frac{1}{k^{2}} \Lambda_{0}-\frac{g_{U}^{*} \lambda_{U}^{*}}{G_{0} k^{2}} \log \left[\left(1+G_{0} \frac{k^{2}}{g_{U}^{*}}\right)\right]
\end{gather*}
$$

with fixed points g_{U}^{*} and λ_{U}^{*} used as free parameters.

Exact Renormalization Group: Flow

ERG flow

Analytically approximated flow

Black holes, ERG improved

ERG black holes

Existing black hole studies
Take classical Schwarzschild solution

$$
\begin{gathered}
d s^{2}=f(r) d t^{2}-f^{-1}(r) d r^{2}-r^{2} d \Omega_{d+2} \\
\text { with } \quad f(r)=1-\frac{2 G M}{r^{1}} .
\end{gathered}
$$

Black holes, ERG improved

ERG black holes

Existing black hole studies
Take classical Schwarzschild solution

$$
\begin{gathered}
d s^{2}=f(r) d t^{2}-f^{-1}(r) d r^{2}-r^{2} d \Omega_{d+2} \\
\text { with } f(r)=1-\frac{2 G M}{r^{1}} .
\end{gathered}
$$

Remember, that coupling is scale dependent $G=G_{k}$

Black holes, ERG improved

ERG black holes

Existing black hole studies

Take classical Schwarzschild solution

$$
\begin{equation*}
d s^{2}=f(r) d t^{2}-f^{-1}(r) d r^{2}-r^{2} d \Omega_{d+2} \tag{11}
\end{equation*}
$$

$$
\text { with } \quad f(r)=1-\frac{2 G_{k} M}{r^{1}} .
$$

Remember, that coupling is scale dependent $G=G_{k}$

Black holes, scale setting

ERG black holes

Scale setting

 intuition \rightarrow something like 1 / distance$$
\begin{equation*}
k(r)=\frac{\xi}{d(r)} \tag{12}
\end{equation*}
$$

Something with r, M, G_{0}, usually ${ }^{[*]}$

$$
\begin{equation*}
d_{(2)}(r)=\int_{\mathcal{C}_{r}} \sqrt{\left|d s^{2}\right|} \approx \left\lvert\, u v \frac{1}{R_{H}^{\frac{1}{2}}} \frac{2}{3} r^{\frac{3}{2}}\right. \tag{13}
\end{equation*}
$$

Put this into $f(r)$
[*] A. Bonanno and M. Reuter, Phys. Rev. D 62, 043008 (2000) [arXiv:hep-th/0002196];

Black holes, improved solutions

ERG black holes

$f(r)$ for different values of M [*]
Nice:

Black holes, improved solutions

ERG black holes

$f(r)$ for different values of M [*]
Nice: no singularity,
[*] T. Burschil, B. Koch, JETP Lett. 92 (2010) 193-199 [arXiv:0912.4517 [hep-ph]]

Black holes, improved solutions

ERG black holes

$f(r)$ for different values of M [*]
Nice: no singularity, stable remnant,
[*] T. Burschil, B. Koch, JETP Lett. 92 (2010) 193-199 [arXiv:0912.4517 [hep-ph]]

Black holes, improved solutions

ERG black holes

$f(r)$ for different values of M [*]
Nice: no singularity, stable remnant, but no solution!
[*] T. Burschil, B. Koch, JETP Lett. 92 (2010) 193-199 [arXiv:0912.4517 [hep-ph]]

Black holes, improved solutions

ERG black holes

No solution
Plug improved solution $f(r)$ into Einstein equations

$$
\begin{equation*}
G_{\mu \nu} \neq-g_{\mu \nu} \wedge_{k}+8 \pi G_{k} T_{\mu \nu} \tag{14}
\end{equation*}
$$

Black holes, improved solutions

ERG black holes

No solution
Plug improved solution $f(r)$ into Einstein equations

$$
\begin{equation*}
G_{\mu \nu} \neq-g_{\mu v} \Lambda_{k}+8 \pi G_{k} T_{\mu \nu} \tag{14}
\end{equation*}
$$

Why?

Need take into account variable $G(r)$ when deriving the eoms,

Black holes, improved solutions

ERG black holes

No solution

Plug improved solution $f(r)$ into Einstein equations

$$
\begin{equation*}
G_{\mu \nu} \neq-g_{\mu v} \Lambda_{k}+8 \pi G_{k} T_{\mu \nu} \tag{14}
\end{equation*}
$$

Why?
Because $G \rightarrow G_{k} \rightarrow G(r)$

Black holes, improved solutions

ERG black holes

No solution

Plug improved solution $f(r)$ into Einstein equations

$$
\begin{equation*}
G_{\mu \nu} \neq-g_{\mu v} \wedge_{k}+8 \pi G_{k} T_{\mu \nu} \tag{14}
\end{equation*}
$$

Why?
Because $G \rightarrow G_{k} \rightarrow G(r)$
Need take into account variable $G(r)$ when deriving the eoms,

Black holes, improved solutions

ERG black holes

No solution

Plug improved solution $f(r)$ into Einstein equations

$$
\begin{equation*}
G_{\mu \nu} \neq-g_{\mu v} \wedge_{k}+8 \pi G_{k} T_{\mu \nu} \tag{14}
\end{equation*}
$$

Why?
Because $G \rightarrow G_{k} \rightarrow G(r)$
Need take into account variable $G(r)$ when deriving the eoms,

$$
\begin{aligned}
G_{\mu v} & \neq-g_{\mu \nu} \wedge_{k}+8 \pi G_{k} T_{\mu v}-\Delta t_{\mu v} \quad \text { with, } \\
\Delta t_{\mu \nu} & =G_{k}\left(g_{\mu v} \square-\nabla_{\mu} \nabla_{v}\right) \frac{1}{G_{k}}
\end{aligned}
$$

Still no solution

Black holes, beyond improved solutions

ERG black holes

New strategy

(Andrey Zelnikov)

Black holes, beyond improved solutions
ERG black holes

New strategy

Black hope physics

(Andrey Zelnikov)

Black holes, beyond improved solutions

ERG black holes

New strategy

Find improved black hole solution, that really is a solution

$$
\begin{align*}
G_{\mu v} & =-g_{\mu v} \Lambda_{r}+8 \pi G_{r} T_{\mu \nu}-\Delta t_{\mu \nu} \quad \text { with, } \tag{16}\\
\Delta t_{\mu v} & =G_{r}\left(g_{\mu v} \square-\nabla_{\mu} \nabla_{v}\right) \frac{1}{G_{r}}
\end{align*}
$$

But: Can compare this $g(r), \lambda(r)$ to ERG g_{k}, λ_{k}

Black holes, beyond improved solutions

ERG black holes

New strategy

Find improved black hole solution, that really is a solution

$$
\begin{align*}
G_{\mu v} & =-g_{\mu \nu} \Lambda_{r}+8 \pi G_{r} T_{\mu \nu}-\Delta t_{\mu \nu} \quad \text { with, } \tag{16}\\
\Delta t_{\mu v} & =G_{r}\left(g_{\mu v} \square-\nabla_{\mu} \nabla_{v}\right) \frac{1}{G_{r}}
\end{align*}
$$

A priory nothing to do with ERG

Black holes, beyond improved solutions

ERG black holes

New strategy

Find improved black hole solution, that really is a solution

$$
\begin{align*}
G_{\mu v} & =-g_{\mu \nu} \Lambda_{r}+8 \pi G_{r} T_{\mu \nu}-\Delta t_{\mu \nu} \quad \text { with, } \tag{16}\\
\Delta t_{\mu v} & =G_{r}\left(g_{\mu v} \square-\nabla_{\mu} \nabla_{v}\right) \frac{1}{G_{r}}
\end{align*}
$$

A priory nothing to do with ERG
But: Can compare this $g(r), \lambda(r)$ to ERG g_{k}, λ_{k}

Black holes, beyond improved solutions

ERG black holes

Equations of motion

$$
\begin{align*}
G_{\mu v} & =-g_{\mu \nu} \Lambda_{r}+8 \pi G_{r} T_{\mu \nu}-\Delta t_{\mu \nu} \quad \text { with, } \tag{17}\\
\Delta t_{\mu v} & =G_{r}\left(g_{\mu v} \square-\nabla_{\mu} \nabla_{\nu}\right) \frac{1}{G_{r}}
\end{align*}
$$

Ansatz

$$
\begin{equation*}
d s^{2}=-f(r) d t^{2}+1 / f(r) d r^{2}+r^{2} d \theta^{2}+r^{2} \sin (\theta) d \phi^{2} \tag{18}
\end{equation*}
$$

where

$$
f(r)=\left(1-2 \frac{M G(r)}{r}-\frac{l(r)}{3} r^{2}\right) .
$$

Black holes, beyond improved solutions

ERG black holes

Solution

$$
\begin{aligned}
G(r) & =-\frac{16 \pi c_{2}}{r-2 c_{1}} \\
\Lambda(r) & =\frac{-1}{12 r\left(r-2 c_{1}\right)^{2} c_{1}^{3}}\left\{\left(c_{1}^{2}\left(12 c_{1}^{2}+384 \Sigma \pi c_{2}+c_{3}\right)+24 r^{3} c_{1}^{3} c_{4}+\ldots\right\}\right. \\
I(r) & =c_{4}+\frac{1}{48 c_{1}^{4}}\left\{\frac{576 \Sigma \pi c_{1} c_{2}}{r-2 c_{1}}+\frac{8 c_{1}^{3}\left(12 c_{1}^{2}+96 \Sigma \pi c_{2}+c_{3}\right)}{r^{3}}+\ldots\right\}
\end{aligned}
$$

Four constants of integration $c_{1}, c_{2}, c_{3}, c_{4} \&$ time rescaling $t->q t$ to "play" with

Black holes, beyond improved solutions

Singularity

Calculate invariant quantity

$$
\begin{equation*}
R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}=\frac{144 c_{1}^{4}+9216 \Sigma \pi c_{1}^{2} c_{2}+147456 \Sigma^{2} \pi^{2} c_{2}^{2}+24 c_{1}^{2} c_{3}+768 \Sigma \pi c_{2} c_{3}+c_{3}^{2}}{27 c_{1}^{2} r^{6}}+\mathcal{O}\left(r^{-5}\right) \tag{21}
\end{equation*}
$$

Singularity persists like Schwarzschild, but can choose

$$
\begin{equation*}
\hat{c}_{2}=-\frac{12 c_{1}^{2}+c_{3}}{384 \Sigma \pi} \tag{22}
\end{equation*}
$$

Singularity improves

$$
\left.R_{\mu v \rho \sigma} R^{\mu v \rho \sigma}\right|_{\hat{c}_{2}}=\frac{2}{c_{1}^{2} r^{2}}+\mathcal{O}\left(r^{-1}\right)
$$

Black holes, beyond improved solutions

Singularity

$$
\begin{equation*}
R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma} \left\lvert\, \hat{c}_{2}=\frac{2}{c_{1}^{2} r^{2}}+\mathcal{O}\left(r^{-1}\right)\right. \tag{24}
\end{equation*}
$$

further choose

$$
\begin{equation*}
\hat{c}_{1}=c_{1} \rightarrow \infty \tag{25}
\end{equation*}
$$

Finite tensor density

$$
\begin{equation*}
\left.R_{\mu v \rho \sigma} R^{\mu v \rho \sigma}\right|_{\hat{c}_{2}, \hat{c}_{1}}=\frac{8}{3} c_{4}^{2} \tag{26}
\end{equation*}
$$

but simple metric

$$
\begin{equation*}
\left.f(r)\right|_{\hat{c}_{2}, \hat{c}_{1}}=1-\frac{c_{4}}{3} r^{2} \tag{27}
\end{equation*}
$$

\Rightarrow Either boring or singularity persists
At least learned that c_{4} something to do with Λ_{0}

Black holes, beyond improved solutions

ERG black holes

Reproduce Newtons law in certain regimes

g_{00} reproducing Newton for large r
g_{00} reproducing Newton for small r This is for g_{00} rescaled $t->B \cdot t$ but g_{11} is problematic

Hubu ... we have a problem

Problem with lensing

g_{11} problem:
Ignore Λ should get Bran Dick metric *
$d s^{2}=\left(1-2 \frac{M G}{r}+\frac{3 M^{2} G^{2}}{2 r^{2}}+\ldots\right) d t^{2}-\left(1+\frac{M G}{r}+\ldots\right) d r^{2}-r^{2} d \theta^{2}-r^{2} \sin ^{2} \theta d \phi^{2}$
Ignore in our solution c_{4} and expand in $1 / r$
$d s^{2}=\left(1-2 \frac{M G}{r}+\frac{3 M^{2} G^{2}}{2 r^{2}}+\ldots\right) d t^{2}-\left(2+2 \frac{M G}{r}+\ldots\right) d r^{2}-r^{2} d \theta^{2}-r^{2} \sin ^{2} \theta d \phi^{2}$ (29)

Bad for geodesics and gravitational lensing of relativistic trajectories

[^0]
Hubu ... we have a problem

Solve Problem with lensing

Try to find $c_{4} \neq 0$ such that get approximately classically (confirmed) solution

$$
\begin{equation*}
f_{s}(r)=1-2 \frac{G_{0} M_{0}}{r}-r^{2} \frac{\Lambda_{0}}{3} \tag{30}
\end{equation*}
$$

Demand for new solution

$$
\begin{equation*}
f\left(r_{m}\right)=1 \quad \text { and }\left.\quad f^{\prime}\right|_{r_{m}}=0 \tag{31}
\end{equation*}
$$

and appromxiate horizons

$$
r_{0} \approx 2 G_{0} M_{0} \quad \text { and } \quad r_{1} \approx \sqrt{\frac{3}{\Lambda_{0}}}
$$

with $G(r) \approx G_{0}$ for $r_{1} \gg r$

Hubu ... we have a problem

Solve Problem with lensing

four conditions, allow to fix four constants

$$
\begin{equation*}
c_{4, s}=\frac{12 c_{1}^{2}+\frac{4 \sqrt{3} \tilde{c}_{3} c_{1}}{\sqrt{\tilde{c}_{3}+12 c_{1}^{2}}}+\frac{16 \sqrt{3} c_{1}^{3}}{\sqrt{\tilde{c}_{3}+12 c_{1}^{2}}}-\tilde{c}_{3} \ln [3]-\tilde{c}_{3} \ln \left[\tilde{c}_{3}+12 c_{1}^{2}\right]+2 \tilde{c}_{3} \ln \left[-6 c_{1}+\sqrt{3} \sqrt{\tilde{c}_{3}+12 c_{1}^{2}}\right]}{32 c_{1}^{4}} \tag{33}
\end{equation*}
$$

where $\tilde{c}_{3}=c_{3}+382 \pi \Sigma c_{2}$.

$$
\begin{align*}
c_{1, s} & =\frac{3^{2 / 3}}{4\left(2 G_{0} M_{0} \Lambda_{0}^{2}\right)^{1 / 3}} \tag{34}\\
c_{3, s} & =\frac{12 \cdot 6^{2 / 3} G_{0}\left(G_{0} M_{0}\right)^{2 / 3}\left(-4 \Sigma+3 M_{0}\right) \Lambda_{0}^{4 / 3}-9 \cdot 6^{1 / 3}\left(G_{0} M_{0} \Lambda_{0}^{2}\right)^{1 / 3}}{8 G_{0} M_{0} \Lambda_{0}^{2}}
\end{align*}
$$

$c_{2, s}=\frac{G_{0}}{32 \pi\left(2 G_{0} M_{0} \Lambda_{0}^{2} / 9\right)^{1 / 3}}$

Hubu ... we have a problem

Solve Problem with lensing

This gives

$$
f(r)=u g l y \ldots
$$

but approximately
$f(r)=1-2 \frac{G_{0} M_{0}}{r}+\mathcal{O}\left(\Lambda_{0}^{2 / 3}\right)$

Shows, existence of parameter choices that are in agreement with all experiments that confirm classical tests.

Hubu ... we have a problem

Solve Problem with lensing

Shows, existence of parameter choices that are in agreement with all experiments that confirm classical tests

\Rightarrow

Confidence to continue with studying couplings

Induced coupling flow

ERG black holes

Have dimensionfull couplings G, Λ and integration constants c_{i} Want dimensionless expressions

First redefine 4 dimensionless integration constants

Metric reads

Induced coupling flow

ERG black holes

Have dimensionfull couplings G, Λ and integration constants c_{i} Want dimensionless expressions

First redefine 4 dimensionless integration constants

$$
\left.\begin{array}{ccc}
c_{1} & = & -\frac{g_{1}}{2 g_{U}^{*} \Sigma} \\
c_{2} & = & -\frac{g_{I}}{1 \Sigma^{3} \pi} \\
c_{3} & = & \frac{3 g_{I}\left(8 g_{U}^{* 3}-g_{U}^{*} g_{U}+2 g_{1}^{2} \lambda_{U}^{*}\right.}{g_{U}^{* 3} \Sigma^{2}} \\
c_{4} & = & -\frac{\Sigma^{2} l_{1}}{2}
\end{array}\right\} \quad\left\{\begin{array}{ccc}
\lambda_{U}^{*} & = & -\frac{12 c_{1}^{2}+c_{3}+384 c_{2} \Sigma \pi}{48 c_{1}^{3} \Sigma} \\
l_{1} & = & -\frac{2 c_{4}}{\Sigma^{2}} \\
g_{U}^{*} & = & \frac{8 c_{2} \Sigma^{2} \pi}{c_{1}} \\
g_{I} & = & -16 c_{2} \Sigma^{3} \pi
\end{array}\right.
$$

Metric reads

$$
\begin{aligned}
f(r)= & \frac{1}{6 g_{1}^{2} g_{U}^{* 2} \Sigma r}\left\{g_{I}\left(-6 g_{U}^{* 3} \Sigma^{2} r^{2}+4 g_{\Lambda}^{3} \lambda_{U}^{*}-6 g_{I}^{2} g_{U}^{*} \Sigma r \lambda_{U}^{*}+g_{I} g_{U}^{* 2} \Sigma r\left(6+\Sigma^{2} r^{2} l_{I}+12 \Sigma r \lambda_{U}^{*}\right)\right)\right. \\
& \left.+6 g_{U}^{* 3} \Sigma^{3} r^{3}\left(g_{U}^{*}-2 g_{I} \lambda_{U}^{*}\right) \log \left[\frac{g_{I}}{g_{U}^{*} \Sigma r}+1\right]\right\}
\end{aligned}
$$

Note: Now only r and Σ have scale dimension

Induced coupling flow

ERG black holes

Have dimensionfull couplings G and Λ want dimensionless couplings

Parametrize this freedom by parameters a, c

Induced coupling flow

ERG black holes

Have dimensionfull couplings G and Λ want dimensionless couplings

$$
\begin{equation*}
g(r)=k^{2} G(r) ; \quad \lambda(r)=\frac{\Lambda(r)}{k^{2}} \tag{40}
\end{equation*}
$$

Problem: k^{2} could be any adequate combination of physical scales r, Σ ?
Parametrize this freedom by parameters a, c

$$
\begin{align*}
& g(r)=G(r) \frac{\Sigma^{2}}{(\Sigma r)^{a}} \tag{41}\\
& \lambda(r)=\Lambda(r) \frac{(\Sigma r)^{c}}{\Sigma^{2}}
\end{align*}
$$

Interested in non-trivial UV fixed points \Rightarrow choose a, c

Induced coupling flow

ERG black holes

One finds a non-trivial UV fixed point only if $a=0 c=1$:

$$
\begin{aligned}
& g_{U}(r \rightarrow 0)=g_{U}^{*} \\
& \lambda_{U}(r \rightarrow 0)=\lambda_{U}^{*}
\end{aligned}
$$

Justifies notation of the previously chosen dimensionless parameters.

Induced coupling flow

ERG black holes

Dimensionless couplings after redefinition:

$$
\begin{gather*}
g_{U}(r)=\frac{g_{I}}{\left(\frac{g_{I}}{g_{U}^{*}}+\Sigma r\right)} \tag{42}\\
=\frac{1}{2 g_{I}^{2}\left(g_{I}+g_{U}^{*} \Sigma r\right)^{2}}\left\{g_{1}\left(g_{I}^{3}\left(\Sigma r r_{1}+2 \lambda_{U}^{*}\right)-12 g_{U}^{* 3} \Sigma^{2} r^{2}+3 g_{1}^{2} g_{U}^{*} \Sigma r\left(\Sigma r_{1}+8 x_{U}^{*}\right)\right)\right. \tag{43}\\
\left.+g_{1}^{2} g_{U}^{2 \pi} \Sigma r\left(2 \Sigma^{2} r^{2} l_{1}-11+24 \Sigma r r_{U}^{*}\right)+6 g_{U}^{*} \Sigma r\left(g_{I}^{2}+3 g_{g} g_{U}^{*} \Sigma r+2 g_{U}^{*} \Sigma^{2} r^{2}\right)\left(g_{U}^{*}-2 g_{1} \lambda_{U}^{*}\right) \ln \left[\frac{g_{1}}{g_{U}^{*} \Sigma r}+1\right]\right\}
\end{gather*}
$$

$$
\lambda_{U}(r)=\frac{1}{2 g_{l}^{2}\left(g_{1}+g_{U}^{*}[r)^{2}\right.}\left\{g_{I}\left(g_{I}^{3}\left(\Sigma r r_{I}+2 \lambda_{U}^{*}\right)-122 g_{U}^{* 3} \Sigma^{2} r^{2}+3 g_{1}^{2} g_{U}^{*} \Sigma r\left(\sum r r_{1}+8 \lambda_{U}^{*}\right)\right)\right.
$$

Parametric plot of these functions

Induced coupling flow

ERG black holes

Obtain flow for an UV fixed point

Induced coupling flow

ERG black holes

Obtain flow for an UV fixed point

Wow, that looks familiar \Rightarrow compare to ERG

Induced coupling flow

ERG and BH induced comparison

Compare flow from BH solution and from ERG approach

BH induced: solid line, ERG: dashed line
Looks so good, compare analytically

Induced coupling flow

ERG and BH induced comparison

First gravitational coupling

ERG:

$$
\begin{equation*}
g_{E R G}(k)=\frac{k^{2} G_{0} g_{U}^{*}}{g_{U}^{*}+G_{0} k^{2}} \tag{44}
\end{equation*}
$$

BH induced:

$$
\begin{equation*}
g_{U}(r)=\frac{g_{1}}{\left(\frac{g_{1}}{g_{U}^{*}}+\Sigma r\right)} \tag{45}
\end{equation*}
$$

Induced coupling flow

ERG and BH induced comparison

First gravitational coupling

ERG:
BH induced:

$$
\begin{equation*}
g_{E R G}(k)=\frac{k^{2} G_{0} g_{U}^{*}}{g_{U}^{*}+G_{0} k^{2}} \quad \text { (44) } \quad g_{U}(r)=\frac{g_{I}}{\left(\frac{g_{I}}{g_{U}^{*}}+\Sigma r\right)} \tag{45}
\end{equation*}
$$

Perfect match for scale setting

$$
r \equiv \frac{g_{l}}{k^{2} G_{0} \Sigma}
$$

Induced coupling flow

ERG and BH induced comparison

Cosmological constant (using scale setting):
ERG:

$$
\begin{equation*}
\lambda(k)_{E R G}=\lambda_{U}^{*}+\frac{1}{k^{2}} \Lambda_{0}-\frac{g_{U}^{*} \lambda_{U}^{*}}{G_{0} k^{2}} \log \left[\left(1+G_{0} \frac{k^{2}}{g_{U}^{*}}\right)\right] \tag{47}
\end{equation*}
$$

BH induced and for small fixed points $\lambda_{U}^{*}, g_{U}^{*} \ll 1$:

$$
\begin{aligned}
\left.\lambda_{U}(k)\right|_{U V} \approx & \lambda_{U}^{*}+\frac{1}{k^{2}} \frac{g_{I} I_{I}}{2 G_{0}} \\
& -\frac{g_{U}^{*} \lambda_{U}^{*}}{G_{0} k^{2}} \frac{\left(6 g_{I}-3 \frac{g_{U}^{*}}{\lambda_{\dot{U}}}\right)}{g_{I}} \log \left[\left(1+G_{0} \frac{k^{2}}{g_{U}^{*}}\right)\right]
\end{aligned}
$$

Induced coupling flow

ERG and BH induced comparison

Cosmological constant (using scale setting):
ERG:

$$
\begin{equation*}
\lambda(k)_{E R G}=\lambda_{U}^{*}+\frac{1}{k^{2}} \Lambda_{0}-\frac{g_{U}^{*} \lambda_{U}^{*}}{G_{0} k^{2}} \log \left[\left(1+G_{0} \frac{k^{2}}{g_{U}^{*}}\right)\right] \tag{47}
\end{equation*}
$$

BH induced and for small fixed points $\lambda_{U}^{*}, g_{U}^{*} \ll 1$:

$$
\begin{align*}
\left.\lambda_{U}(k)\right|_{U v} \approx & \lambda_{U}^{*}+\frac{1}{k^{2}} \frac{g_{I} I_{I}}{2 G_{0}} \tag{48}\\
& -\frac{g_{U}^{*} \lambda_{U}^{*}}{G_{0} k^{2}} \frac{\left(6 g_{I}-3 \frac{g_{U}^{*}}{\lambda_{U}^{*}}\right)}{g_{I}} \log \left[\left(1+G_{0} \frac{k^{2}}{g_{U}^{*}}\right)\right]
\end{align*}
$$

Also complete match for $g_{I}=3 g_{U}^{*} /\left(5 \lambda_{U}^{*}\right)$ and $I_{I}=\Lambda_{0} G_{0} / g_{I}$

Induced coupling flow

Anomalous Dimension
Important "observable" in quantum theories of gravity:
Anomalous Dimension η

$$
\begin{equation*}
\partial_{t} g(k)=\beta_{g}\left(\lambda_{k}, g_{k}\right)=[d-2+\eta(k)] g(k) \tag{49}
\end{equation*}
$$

here

$$
\begin{equation*}
\eta(r)=-2+2 \frac{r / g_{l}}{\frac{1}{g_{U}^{*} \Sigma}+r / g_{l}} . \tag{50}
\end{equation*}
$$

Induced coupling flow

Product of adimensional couplings
In "each" ERG calculation, different values of the fixed points $g_{U}^{*}, \lambda_{U}^{*}$.

$$
\underset{\sim}{\text { Product } g_{U}^{*} \cdot \lambda_{U}^{*} \text { much more stable }}
$$

Expect $g(k) \cdot \lambda(k)$ to be more stable

Induced coupling flow

Open questions

Looks good, but still many issues and open questions

- Experimental restrictions on parameters? (D.\& O.)
- Possible dark matter interpretation? (D.\& O.)
- Thermodynamics and horizon structure? (...?)
- Calculate energy for arbitrary parameters (...?)
- Is this a coincidence or something deeper?

Black holes are wise guys, so maybe some truth in this result

Summary and Conclusion

Summary

Summary

- ERG and the coupling flow are promising approaches
- It is possible to go beyond "improving" solutions
"Black hope physics"
- The induced coupling flow and the ERG flow are very similar
- More to explore and more to learn

Obrigado

Backups

Backups

Induced coupling flow

ERG black holes

Choosing other values for a, c one can get an IR fixed point

Induced IR flow

Induced coupling flow

ERG black holes

UV- IR connection

Induced UV-IR flow
Only one possible curve, once interpolation and fixed points are fixed.

Backups

[^0]: * Weinberg, Gravitation and Cosmology

