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The unsatisfactory status of the search for a consistent and predictive quantization of gravity is
taken as motivation for discussing an alternative approach. We study the question whether quantum
mechanical laws could emerge from a geometrical theory. A toy model that incorporates the idea is
presented and its necessary formulation in configuration space is emphasized.
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I. QUANTIZING GEOMETRY

The dream of finding a unified description of all phys-
ical phenomena is facing a profound problem: “The deep
incompatibility between the indefinite nature of quantum
mechanics and the rigid geometrical formulation of gen-
eral relativity.” A common assumption is that quantum
mechanics, as it is usually formulated, is a fact of “na-
ture” and thus it is more fundamental than general rela-
tivity. Consequently most approaches to solve the prob-
lem try to apply one of the well defined quantization pro-
cedures to the physical degrees of freedom of space-time
(or to some deeper theory that gives rise to space-time).
Some of the most popular approaches along this line are:

String theory is for many the most promising candidate
for a unified theory of nature [1]. It lead to interesting
conjectures about the relation between certain tree level
string theories and quantum field theory [2]. But un-
til today it could not live up to its promises concerning
the uniqueness of what this theory actually predicts and
explains.

Loop quantum gravity is a canonical approach for the
quantization of space-time. In earlier stages of its devel-
opment it lead to the development of geometrodynam-
ics [3] and [4] supergravity that has very nice features
at the Planck scale [5]. However, up to now it was not
possible to show that it really contains general relativity
in some classical limit [6].

Causal dynamical triangulation and causal sets are dis-
ciplines that earn more and more attention [7]. They
show the emergence of four dimensional space-time by
starting from a discrete causal structure. Until now those
approaches are limited to asking very basic questions on
such as the dimensionality of space-time and don’t say
anything about an effective gravitational action or the
possible unification of all forces.

Induced gravity theories try to show the emergence of
curved space-time in a mean field approximation of some
underlying microscopic degrees of freedom [8]. It is as-
sumed that this mechanism is similar to the mechanism
that allows to get fluid dynamics from Bose-Einstein con-
densation. Up to now those models manage to mimic
some possible features of (quantized) general relativity

but a complete picture is still missing.
Renormalization group approaches are working in the

imaginary time formalism. Given an ultra violet (UV)
completion and the existence of a non-trivial fixed point
in the running couplings of the completed gravitational
action this approach might present a renormalizable ver-
sion of gravity [9, 10]. Until now the strict applicability
of the imaginary time formalism and the form of the UV
completion are open issues.

Anisotropic models postulate a different scaling behav-
ior of space and time in the UV regime, which allows to
construct a power counting renormalizable theory [11] in
the UV. However, recent studies claim that the infrared
limit of the theory is not identical to massless gravity [12].

Further research has been done on asymptotic quanti-
zation [13], twistors [14], non-commutative [15] and dis-
cretized [16] geometry.

Despite of impressive progress in some directions, the
original task remains unsolved in all those approaches.

II. GEOMETRIZING THE QUANTUM

Given the problems in applying the laws of quantum
mechanics to the geometry of space-time we want to ask
the following question:

“Could it be that (classical) geometry is more funda-
mental than the rules of quantization?”

A. Conceptual problems

Necessarily, answering this question with “yes” would
mean that the undeniable observable effects of quantiza-
tion have to emerge from the deeper theory (in this case
a classical geometrical theory). Such an approach faces
immediately two mayor problems

� Determinism
is, in contrast to quantum mechanics, part of most
geometric theories (such as general relativity). This
means for example that in causal geometrical the-
ories uncertainties are just a result of unknown ini-
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tial conditions, whereas in standard quantum me-
chanics they are an irrenunciable concept.

� Non-locality:
In principle it is possible to construct determinis-
tic (hidden variable) theories that are in agreement
with the predictions of quantum mechanics. How-
ever, those theories have to pay a price in order to
evade “no go” theorems such as the Bell inequal-
ities [17]. They have to contain non-local interac-
tions.

B. A conceptual bridge

There exists a self consistent deterministic formu-
lation of quantum mechanics, which also reproduces
all typical experimental results [40]. It was first sug-
gested by de Broglie, then shown to be consistent by
Bohm [18, 19] and later further developed by several
authors [17, 20, 21]. It will be referred to as dBB (de
Broglie-Bohm) theory. In this proposal, the dBB the-
ory will be an essential piece when building the bridge
from classical geometry to a quantum theory. We will
now shortly present its formulation for the case of a rel-
ativistic system of n-bosonic particles as given by [21]:
Let |0〉 be state vector of the vacuum and |n〉 be an arbi-
trary n-particle state. The corresponding n-particle wave
function is [21]

ψ(x1; . . . ;xn) =
Ps√
n!
〈0|Φ̂(x1) . . . Φ̂(xn)|n〉 , (1)

where the Φ̂(xj) are scalar Klein-Gordon field operators.
The symbol Ps denotes symmetrization over all positions
xj which we will keep in mind but not write explicitly any
more. For free fields, the wave function (1) satisfies the
equation
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ψ(x1; . . . ;xn) = 0 . (2)

The mass of a single particle is given by M . The index j
indicates on which one of the n particle coordinates the
differential operator has to act and the index m is the
typical space-time index in four flat dimensions. The key
step to the dBB interpretation comes from splitting the
wavefunction up ψ = P exp(iS/~) and postulating the
four-momentum of the particle j to be −∂jmS. Includ-
ing this definition one has three coupled real differential
equations. For further convenience the four dimensional
coordinates for the n particles can be labeled as

xL = (x0
1, x

1
1, x

2
1, x

3
1; . . . ;x0

n, x
1
n, x

2
n, x

3
n) , (3)

which also implies the 4 × n dimensional co- and con-
travariant derivatives ∂jm ↔ ∂L and ∂m

j ↔ ∂L. Now the

three real equations of the dBB theory read

2MQ ≡ (∂LS)(∂LS)− nM2 with (4)

Q ≡ ~2

2M
∂L∂LP

P
,

0 ≡ ∂L

(
P 2(∂LS)

)
, (5)

pL ≡ M
dxL

ds
≡ −∂LS . (6)

Applying the total derivative d/ds ≡ dxL/ds∂L to eq. (6)
gives a Newtonian type of equation of motion

d2xL

ds2
=

(∂NS)(∂L∂NS)
M2

. (7)

It is crucial to note that this theory addresses the two
previously mentioned conceptual issues.
Fist, it is deterministic in the sense that given initial
positions and given initial field configurations for S and
P determine the final state of the system.
Second, it is deeply non-local, because the functions S
and P simultaneously depend on the positions of all the
n-particles. A further remark: the dBB theory is not
affected by the Kochen-Specker theorem [22] since it is
a contextual. Thus, the dBB theory could be a useful
intermediate step for the program of geometrizing the
quantum.

III. EMERGENT QUANTUM MECHANICS

The idea that quantum mechanics might not be fun-
damental but rather emerge from an underlying classical
system has been proposed in various ways.

A. Various appearances of the idea

Although the focus of this paper is on the possible
geometric origin of quantum mechanics it is instructive to
give a list of proposals that point into a similar direction.

Statistical emergence of quantum mechanics:
In [23, 24] it was shown that quantum mechanical corre-
lations arise when considering finite subsystems of clas-
sical statistical systems with originally infinite degrees of
freedom. An application of this observation to quantum
gravity is perceivable but was not attempted yet.

Gauge emergence of quantum mechanics:
Based on a new kind of local gauge transformation a
non-linear field theory has been proposed that contains
quantum field theory as an infrared limit [25]. Also a
special classical supersymmetric model was suggested to
give rise to a quantum mechanical system [26]. A possible
unification with general relativity was not explored yet.

Dissipative emergence of both, quantum and gravity:
Dissipative deterministic systems can give rise to quan-
tum operators and symmetries that are not present in the
original theory at the microscopic scale [27, 28]. Further
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conjecturing that those symmetries are the ones of dif-
feomorphism invariance (general relativity) might give an
identikit picture of a future theory of quantum gravity.

Geometrical emergence of quantum mechanics:
The similarity between Weyl geometry and the struc-
ture of quantum mechanical equations was first noticed
in [29]. Other studies in this direction focused on the
Ricci flow [30, 31] or on a geometric reduction of the
dimensionality of space-time [32, 33]. Using local confor-
mal transformations (Weyl geometry) it was even pos-
sible to formulate a geometrical theory that contains in
certain limits both general relativity and the equations
of Bohmian mechanics [34–36]. The impressive success
of those (Weyl geometry) models is limited to the single
particle case because the dBB theory is only consistent
if it also contains the non-local interactions due to multi
particle dynamics.

B. Geometry of configuration space

It was shown that existing models for the geometrical
emergence of quantum mechanics are incomplete, since
they can’t explain the non-local interactions in the multi
particle dBB theory. Continuing previous work in this
direction [37, 38] a possible way to fill this gap will be
presented.

The 4×n dimensional configuration space of n-particles
will be considered. Following the notation in eq. (3) the
coordinates in this (possibly curved) space-time will be
denoted as

x̂Λ = (x̂0
1, x̂

1
1, x̂

2
1, x̂

3
1; . . . ; x̂0

n, x̂
1
n, x̂

2
n, x̂

3
n) . (8)

The toy model for the curvature of this space will be a
single scalar equation which is a 4×n dimensional analog
to the Nordstrom theory [39]

R̂
∣∣∣
S

= κ T̂M

∣∣∣
S

. (9)

The left hand side contains the Ricci scalar (correspond-
ing to a metric ĝΛΣ). The right hand side contains some
coupling constant κ and the trace of the energy momen-
tum tensor T̂ . The symbol |S indicates complete sym-
metrization of the terms with respect to the interchange
of two configuration coordinates x̂µ

i ↔ x̂µ
j . Just like in

the case of the bosonic Klein-Gordon equation we will
keep this in mind without explicitly writing it into the
following equations. The symmetrization further fixes
the coordinate system for the four dimensional subspaces
and forces all block diagonal submetrics to be identical
ĝµν

i ↔ ĝµν
j . In order to describe the local conformal part

of this theory separately and for simplification one as-
sumes the metric ĝ to split up into a conformal function
φ(x) and a flat part η

ĝΛΓ = φ
2

2n−1 ηLG . (10)

The inverse of the metric (10) is

ĝΛΓ = φ−
2

2n−1 ηLG . (11)

Indices with a lower Greek and a lower Roman index can
be identified ∂̂Λ ≡ ∂L. From this follows for example that
the adjoint derivatives are not identical, in both notations

∂̂Λ = ĝΛΣ∂̂Σ = φ−
2

2n−1 ηLS∂S = φ−
2

2n−1 ∂L . (12)

The geometrical dual to the first dBB equation:
An Extension of the Hamilton Jacobi stress energy tensor
T̂M can be defined by subtracting a mass term M̂2 for
every particle

T̂M = p̂Λp̂Λ − nM̂2
G (13)

= (∂̂ΛSH)(∂̂ΛSH)− nM̂2
G

= φ
−2

2n−1
(
(∂LSH)(∂LSH)− nM2

G

)

= φ
−2

2n−1 TM .

The Hamilton principle function SH defines the local mo-
mentum p̂Λ = M̂G dx̂

Λ/dŝ = −∂̂ΛSH . Combining (13),
(12), (10), and (9) gives

2(4n− 1)
κ(1− 2n)

∂L∂Lφ

φ
= (∂LSH)(∂LSH)− nM2

G . (14)

This is exactly the first dBB equation (4) if one identifies

φ(x) = P (x) , (15)
SH(x) = S(x) ,

κ =
2(4n− 1)
1− 2n

/~2 ,

M2 = M2
G .

Note that the matching conditions demand a negative
coupling κ.

The geometrical dual to the second dBB equation:
In order to find the dual to the second Bohmian equa-
tion one can exploit that the stress-energy tensor (13) is
covariantly conserved

∇̂ΛT̂
Λ∆ = 0 . (16)

This is true if the following relations are fulfilled

∇̂Λ(∂̂ΛSH) = 0 , (17)

(∂̂ΛSH)∇̂∆(∂̂ΛSH) = 0 , (18)

(∂̂ΛSH)∇̂Λ(∂̂∆SH) = 0 . (19)

In addition to the covariant conservation of momentum
(17) and the conservation of squared momentum (18) the
tensor nature of (13) also demands (19). In order to
calculate the covariant derivatives in (17-19), one needs
to know the Levi Civita connection

ΓΣ
Λ∆ =

1
2
gΣΞ (∂Λg∆Ξ + ∂∆gΞΛ − ∂ΞgΛ∆) (20)

=
1
2
φ−

2
2n−1

[
(∂Lφ

2
2n−1 )δS

D + (∂Dφ
2

2n−1 )δS
L

−(∂Sφ
2

2n−1 )ηLD

]
.
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It is this form of the connection that gives rise to the non-
metricity in Weyl geometry. Using eq. (20), the condition
(17) reads

∇̂Λ(∂̂ΛSH) = φ−
4n

2n−1 ∂L

[
φ2(∂LSH)

]
= 0 . (21)

With the matching conditions (15), the above equation
is identical to the second Bohmian equation (5).

The geometrical dual to the third dBB equation:
According to the Hamilton-Jacobi formalism the deriva-
tives of the Hamilton principle function (SH) define the
momenta

p̂Λ ≡ −(∂̂ΛSH) . (22)

Therefore, with the prescription (12) and the matching
condition (15) one sees that the third Bohmian equation
(6) is fulfilled.

The geometrical dual to the dBB equation of motion:
From differential geometry it is known that the validity
of the geodesics equation of motion results in the con-
servation of the stress energy tensor. Nevertheless, it is
a good consistency check [38] to explicitly calculate the
geodesic equation

d2x̂Λ

dŝ2
+ Γ̂Λ

∆Σ

dx̂∆

dŝ

dx̂Σ

dŝ
= p̂Λ · f(x̂) . (23)

Inserting eq. (20) into eq. (23) and using the matching
conditions eq. (15) the dBB equation of motion (7) is
obtained.

IV. SUMMARY

It is advocated that “geometrizing the quantum” might
be a viable alternative to the standard approaches to
quantum gravity. The main conceptual problems of the
new approach are discussed. Using the example of a
scalar geometrical toy model (incorporating gravity is be-
yond the scope of this proposal) and mapping this model
to the dBB interpretation of the multi particle Klein-
Gordon equation, it is shown how those problems can be
evaded. It is argued that such a mechanism only can
work consistently if the geometrical theory is formulated
in the (4×n dimensional) configuration space of the sys-
tem.
The author wants to thank J.M. Isidro and D. Dolce for
their remarks.
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