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We study the question whether the laws of quantum mechanics can be derived from a purely
classical setting with one additional time dimension. The additional time dimension in this theory
is not observable and has therefore to be integrated out. Can this integration lead to the fuzzy
laws of quantum mechanics? For the simple example of a static potential and for weakly time
dependent problems, it is explicitly shown that such an interpretation is indeed possible. This is
done by deriving the Schrödinger equation from the equations of classical general relativity with one
additional time dimension.
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Early attempts to find an alternative explanation
for quantum phenomena have been discussed within
the so called Bohmian mechanics [1, 2]. Similarities
between a higher dimensional wave equation and the
non-relativistic quantum theory have been pointed out
in [3]. More recent papers, relate quantum field theories
on the horizon of a black hole with a corresponding
classical theory in the higher dimensional space-time
[4, 5]. In the context of supergravity and string theory
similar ideas involving a holographic principle and extra
time dimensions obtained a lot of attention [6–8]. Later
on, the general question was discussed whether quantum
field theory might emerge from a chaotic classical theory
with friction [9, 10]. The possibility of an additional time
dimension without holographic effects has been studied
in the context of high energy phenomenology [11] and
from a conceptual point of view in [12]. All those ideas
can be partially seen as motivation for the approach of
this paper where the Schrödinger equation is derived
from classical general relativity with one additional time
dimension.

I. NON-RELATIVISTIC QUANTUM
MECHANICS

First we will rephrase non-relativistic single particle
quantum mechanics in terms of a probability density
ρ(x, t) and a phase S(x, t). Usually this theory is ex-
pressed in terms of a wave function ψ(x, t) which is a
solution of the Schrödinger equation

i~∂tψ(x, t) = − ~2

2m
∂2

xψ(x, t) + V (x)ψ(x, t) . (1)

The probability for measuring a particle at the posi-
tion x at the time t is ρ(x, t) = ψ(x, t)∗ψ(x, t). Since
ρ(x, t) is the quantity which is actually related to exper-
iment, one might want to rephrase Eq. (1) in terms of
ρ. To do this one can split the wave function up into

its amplitude
√
ρ(x, t) and its phase S(x, t): ψ(x, t) =√

ρ(x, t) exp (iS(x, t)/~) which gives

∂x

(
ρ(x, t)

∂xS(x, t)
m

)
= −∂tρ(x, t) , (2)(

∂2
xρ(x, t)−

1
2

(∂xρ(x, t))2

ρ(x, t)

)
= 4m

~2 ρ(x, t)

· (∂tS(x, t) + V (x)+ (∂xS(x,t))2

2m ) . (3)

Those two equations explain every quantum phenomena
that can be described by the Schrödinger equation, since
they are just a rephrasing of the latter.

The simplest application for the system of equations
(2,3) is given for the static case. Here, the time deriva-
tive of the density vanishes ∂tρ(x, t) = 0 and the time
derivative of the phase gives the negative of the energy
∂tS(x, t) = −E. The spatial derivative of the phase is

∂xS(x, t) = px , (4)

where px is the momentum of the wave package. This
reduces Eqs. (2,3) to(

ρ′′ − 1
2
ρ′2

ρ

)
=

4m
~2

ρ

(
V (x)− E +

p2
x

2m

)
. (5)

Note that also in the Bohmian interpretation of quan-
tum mechanics [1, 2] the spatial derivative of the phase
defines the particle momentum ∂xS(x, t) = px and
Eq. (2) is the continuity equation.

II. CLASSICAL PHYSICS WITH TWO TIME
VARIABLES - THE STATIC CASE

We will now derive the static Schrödinger equation (5)
from general relativity with two time dimensions with a
space dependent metric tensor. Therefore we will assume
that particles move in a (2+1) dimensional manifold with
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the coordinates xA = (t̄, xµ) = (t̄, t, x), where capital
latin indices run from 0 to 2, greek indices run from 1
to 2, t̄ is the additional unobservable time coordinate,
t is the usual time coordinate [18]. The fact that the
additional time coordinate is not visible, calls for some
concealing mechanism like compactification, but for the
purpose of this notice it will suffice that we assume that
t̄ exists, but is not directly visible.

The idea of this new approach becomes most clear for
a system that does not change in the observable time
direction t and which we will therefore call a “static”
system. In a deterministic system, the position x and
velocity v = dx/dτ of the particle are known as soon
the initial position x0, the initial velocity v0 and the
propagation time τ are known. Not knowing the ini-
tial conditions one has to deal with a probability density
f(x0, v0, τ). Without loss of generality we choose some
fixed starting point (for instance the minimum of the po-
tential x0) which leaves a probability density g(v0, τ). In
a deterministic system the initial velocity can be calcu-
lated as a function of the actual velocity and the time
v0 = v0(vx(τ), τ). Therefore, the whole system can also
be described by a probability density h(vx(τ)). The prob-
ability ρ(x) of finding the particle at a point x will than
be obtained by an integration over the proper time vari-
able

ρ(x) =
∫
dτh(vx(τ), τ) . (6)

The faster a particle moves at a certain point x the
smaller is the probability of finding the particle at this
point h(vx(τ), τ) ∼ 1/vx(τ) and hence

ρ(x) ∼
∫
dτ

1
vx(τ)

=
∫
dτ

1
dx
dτ

. (7)

Now we will connect this intuitive argument with the
metric in the higher dimensional space-time. Following
the flat solution of Einsteins field equations, we take

dτ2 = gABdx
AdxB (8)

= A(x)dt̄2 + dt2 − dx2 ,

as ansatz for the metric tensor gAB(x). Here, A(x) en-
codes our ignorance of the metric concerning the addi-
tional time variable t̄. A physical interpretation for A(x)
can be obtained by assuming that the particle is non-
relativistic with respect to the additional time coordinate
(dt̄/dτ � dx/dτ > dt/dτ). In this limit the differential of
the proper time τ can be approximated by the differential
of the additional time variable dτ ≈ dt̄

√
A. Under the

assumption that A is independent of t̄ it can be pulled
out of the integral in Eq. (7) and one finds

ρ(x) ∼ A(x)
∫
dt̄

1
dx
dt̄

≡ A(x)C(x) . (9)

For ∂xA(x) � ∂xC(x) we can replace A(x) by k1ρ(x),

where k1 is a constant, which leads to the metric

gAB =

 k1ρ(x) 0 0
0 1 0
0 0 −1

 . (10)

This metric has to be a solution of the classical Einstein
tensor GAB coupled to matter

GAB = Rµν −
1
2
gABR = k2TAB , (11)

with the constant k2 and the energy-momentum tensor
TAB . The constant k2 is a new coupling in addition to
the standard coupling of gravity G that should be dom-
inant at small distance scales. Only one of these nine
differential equations is non zero

ρ′2 − 2ρρ′′

4ρ2
= k2Ttt . (12)

The standard form of the tt component of the energy-
momentum tensor is

Ttt =
1

Vol

(
E0 +

p2
x

2m
+ V (x)

)
. (13)

Here, px = mvx is the momentum at the point x, V (x) is
the potential at the point x, and Vol is the spatial volume
that makes Ttt a density. With this energy-momentum
tensor the differential equation for the density ρ is(

ρ′′ − 1
2
ρ′2

ρ

)
= −2k2ρ

(
V (x) + E0 +

p2
x

2m

)
. (14)

After identifying E = −E0 and k2 = −2mVol/~2,
this is identical to the time independent Schrödinger
equation (5) for the probability density ρ(x).

III. CLASSICAL PHYSICS WITH TWO TIME
VARIABLES - WEAK TIME DEPENDENCE

Now we will derive the time dependent Schrödinger
equation from the two time setting. Therefore we assume
a density distribution ρ(x, t) which only depends weakly
on the time t. In this case the arguments used in the
previous discussion hold asymptotically. The straight-
forward generalization of the ansatz in Eq. (10) is

gµν =

 k1ρ(x, t) 0 0
0 1 0
0 0 −1

 . (15)

This leaves equation (12) unchanged, but the xx compo-
nent now reads

ρ̇2 − 2ρρ̈
4ρ2

= k2Txx . (16)
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Since the time derivatives of ρ in Eq. (16) are all of sec-
ond order (either ∼ ρ̈(x, t)|t=0, or ∼ ρ̇2(x, t)|t=0), they
can be neglected in a linear approximation for the time
evolution.

The time dependent energy-momentum tensor needs a
more general treatment than in the static case Eq. (13).
The Hamilton-Jakobi definition of the energy momentum
tensor of a free particle in curved space-time is

TA
B =

1
Vm

(∂AS)(∂BS), with TA
A =

m

Vol
. (17)

Here, S is Hamilton’s principal function [13, 14], V is the
normalizing volume, and m is the invariant mass of the
particle. It has to be a covariant conserved quantity such
that

0 = ∇B (TAB) = ∇B
(
gACT

C
B

)
(18)

=
1
V m

∇B
(
gAC(∂CS)(∂BS)

)
.

Now we take the 0 component of this equation

0 =
∫

dt̄ ∇B
(
g0C(∂CS)(∂BS)

)
(19)

= k1

∫
dt̄ ∂µ (

√
ρ(∂0S)(∂µS)) ,

where the boundary term was dropped. By using the
definition (17) the partial derivative (∂0S) which appears
in Eq. (19) can be rewritten

(∂0S) = ±k1

√
M2 − (∂µS)(∂µS)

√
ρ . (20)

We assume that the squared four-momentum pµpµ =
(∂µS)(∂µS) = m2 does depend on space (x) and time
(t). As long as m2 6= M2 this assumption allows us to
define the constant k3 by (∂0S) = k3

√
ρ, which simplifies

Eq. (19) to

0 = k1k3

∫
dt̄ ∂µ (ρ(∂µS)) . (21)

This is already one of the two time dependent
Schrödinger equations (2). The tt component of the
energy-momentum tensor consists of a free part and an
interaction part

TI tt = T free
I tt + T int

I tt . (22)

In the local rest frame of a free particle the energy-
momentum tensor is

T free
I µν = H′

(
1 0
0 0

)
, (23)

with H′ as the Hamiltonian density in the rest frame. A
Lorentz boost to a moving frame with a particle velocity

px/m (including the contraction of the density function
H′ → H = H/Vol) gives

T free
I µν =

H√
1− p2/m2

(
1 −px/m

−px/m p2
x/m

2

)
. (24)

In an expansion for small momenta the tt component of
this tensor is

T free
I tt ≈

1
Vol

(
H +

p2
x

2m

)
=

1
Vol

(
−∂tS +

(∂xS)2

2m

)
.

(25)
where the Hamilton-Jacobi principal function −∂tS = H
and ∂xS = px was used. In the background field approx-
imation all electromagnetic interactions are assumed to
act in such a way that the tt component of the energy-
momentum tensor can be described by a single potential
V (x, t)

T int
I tt =

V (x, t)
Vol

. (26)

Combining Eqs. (22,25,26) in Eq. (12) gives(
ρ′′ − ρ′2

2ρ

)
=
−2k2

Vol
ρ

(
−∂tS +

S′2

2m
+ V (x, t)

)
.

(27)
After identifying S → −S and k2 = −2mVol/~2, this
is the second time dependent Schrödinger equation (3).
The justification of first identification will be discussed
in the following section With the same replacement
(S → −S), the first time dependent Schrödinger equa-
tion (2) is identical to the equation for the conservation
of probability Eq. (21). Therefore we conclude that the
complete time dependent Schrödinger equation (5) can
be derived from the higher dimensional ansatz (15).

IV. CRITICAL POINTS

We will now try to point out some possible criticism
on the idea and the derivation presented here.

Why is the second time not visible?
This question is not addressed in this paper, but the eas-
iest way to explain this would be a compactification such
that t̄ = t̄+ T̄ . As long the “radius” is just short enough
this would only lead to violations of Lorentz invariance
on the small scale T̄ .

What about spin?
The discrete spin of elementary particles might be inter-
preted as rotations with respect to t̄. Since the particle
has to be in its original state after a time laps t̄ = T̄ , only
discrete angular momenta would be possible. However,
it has to be checked whether this intuitive interpretation
is really consistent with the concept of a statistical av-
erage over the classical extra time. Up to now there is
no explanation for the half integer spin of the fermionic
particles.
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Superposition of states?
The superposition of time independent states with dif-
ferent energies results in a total state which is time de-
pendent and should therefore correctly be described by
Eqs. (21, 27). Still, it has to checked that this works for
the superposition of any operator definable in standard
quantum mechanics.

Which parameters had to be engineered?
In the static case it was assumed that ∂xA(x) � ∂xC(x)
without further justification. In the time dependent
case, gt̄t̄ = k1ρ(x, t) was used as an ansatz. The cou-
pling to the energy-momentum tensor was adjusted to
be k2 = −2mVol/~2, but the constant parameter k1 can-
celed out of the final equation. Therefore, even a neg-
ative choice of k1 would lead to the same result. For
the time dependent case it was assumed S → −S (or
E = −E0 for the static case). This replacement might
be justified by using a so called extended canonical trans-
formation, of the standard Hamilton-Jacobi formalism.
An other way to get around the matching of S → −S
would be to define the Schrödinger wave function as
ψ(x, t) =

√
ρ(x, t) exp (−iS(x, t)/~). Although, the re-

placements can be justified, the matter of negative energy
states is a key ingredient of standard quantum mechan-
ics, and has to be checked with highest caution.

Is the energy-momentum tensor unique?
No, although the actual choice is well motivated other
choices are possible. For an originally relativistic energy-
momentum tensor, the ground state energy E0 should
also contain the rest mass, which is not the case in the
standard quantum mechanics. The standard Planck cou-
pling (G = 1/m2

Pl) of the energy-momentum tensor was
neglected here due to the smallness of 1/m2

Pl at micro-
scopic (∼1/eV) distance scales.

Is this also valid for gravitational potentials?
No, a gravitational potential has to appear on the cur-
vature side of Einstein’s equation. However, it turns
out that one can still obtain an equation of the form of
Eq. (14) but it involves Txx as well. Studying quantum
states in a gravitational potential could therefore help to
distinguish this theory from the standard quantum me-
chanics.

Is causality and probability violated?
Although the scheme is by construction Lorentz invari-

ant in the higher dimensional space-time, it can appear
to violate causality in the integrated lower dimensional
version. This is inevitable since also wave function in the
Schrödinger formulation, which is derived here, is non
causal. The probability is not violated, since the whole
derivation is based on probability conserving arguments.
Here particle propagates with respect to both time di-
mensions and hence arguments that were made for brane
world scenarios [15] do not apply here.

Multi particle states, Pauli principle, QFT, gauge
symmetries . . . ?
Working on that ,. It is very tempting to combine this
ansatz with the idea of Kaluza and Klein [3, 16, 17].

V. SUMMARY AND DISCUSSION

Now a short summary of the obtained results will be
given. The classical motion of a particle with respect
to an additional unobservable time dimension was
studied. We showed that for this setting the Einstein
equations lead under simple assumptions in the limit
of non-relativistic velocities to a differential equation
(14) for the probability distribution. This differential
equation can be identified with the static Schrödinger
equation (5).
For the non-static case we expressed the energy-
momentum tensor Eq. (22) in terms of the Hamilton’s
classical principal function. In the limit of a weakly
time dependent density ρ and small velocities S′/m, it
is found that the continuity equation (21) and equa-
tion (27) can be identified with the time dependent
Schrödinger equation (1).
However, there are many open questions which we tried
to raise and discuss in the last section. In order to learn
whether this result is a pure coincidence or has deeper
meaning one has to answer those questions and study
generalizations of this simple setting. For instance the
relativistic equations of quantum field theory should be
derivable in a similar way.
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