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2 Theory 

We observe a rotary disk D of the radius r, around which a thin thread has been wound according to Fig. 
1. The thread is connected to a mass m via a pulley R. The disk is held at rest by the pin T of the magnet 
B. After closing the switch S, a current flows from the power supply U through the coil of the magnet. 
The holding pin T is pulled back by the resulting magnetic field, thereby unlocking the disc. The falling 
mass m then causes an accelerated rotation of the disk about the rotary axis H. 
 
 
 

 
 

Fig. 1: Rotary disk for measuring moments of inertia. Refer to the text for labels. 
 
Now we require an equation by means of which we can calculate the moment of inertia ID of the rotary 
disk from known or measurable quantities. 
 
For this purpose we first set up the equation of motion for the rotation of the rotary disk. It is very simple 
in this case: the rotary disk has the angular acceleration d�/dt due to the rotational moment r × F. In 
analogy to NEWTON’s law F = m a we thus obtain: 
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Then it follows from the chosen geometry (r � F) for the absolute values: 
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In this equation we have to replace F and d�/dt by known or measurable quantities. In order to find an 
expression for d�/dt, we first observe the motion of the mass m. If time t  is needed for falling a distance 
l, we obtain for its acceleration a: 
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Because m and the rotary disk are connected via the thread, this must also be the tangential acceleration of 
a mass point on the edge of the rotary disk. Based on the well-known relationship between tangential and 
angular acceleration with Eg (3), we thus obtain for such a point: 
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Inserting Eq. (4) into Eq. (2) yields: 
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Since F cannot be measured directly, we need a relationship between F and measurable quantities. For 
this we look at the net force acting on the set-up. The accelerating force of gravity G = mg (g: 
gravitational acceleration ) must accelerate the mass m, overcome friction forces at pulley R and rotary 
disk D, and set the pulley and rotary disk into an accelerated rotation. For this the following forces are 
necessary: 
 

 Fm : Accelerating force for m 
 FRR  : Frictional force at the pulley 
 FR : Accelerating force for the pulley 
 FRD: Frictional force at the rotary disk 
 F: Accelerating force for the rotary disk 

 
Thus we obtain: 
 
(6) m RR R RDmg F F F F F� � � � �  

 
The force which accelerates m, Fm = ma, is therefore considerably smaller than the force of gravity 
G = mg. 
 
To simplify matters we now assume that the force of friction and the accelerating force are replaced by 
one force acting on the pulley, which is necessary for the translational acceleration of an equivalent mass 
me (here: me � 2.2 g): 
 
(7) :R RR eF F m a� �  

 
From Eq. (6) we therefore obtain for the required force F: 
 
(8) ( )e RDF mg m m a F� � � �  

 
Inserting this equation into Eq. (5) we obtain: 
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For better readability we introduce a force 
 
(10) 1 : ( )eF mg m m a� � �  

 
with the measurable quantities m and a and the known quantities me and g such that Eq. (9) becomes: 
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The unknown quantity FRD which cannot be measured directly is still bothering us in this equation for 
determining ID. If we assume, however, that the friction at the rotary disc is a rolling and sliding friction 
independent of the velocity (the so-called COULOMB friction) which only depends on the mass of the 
rotary table inclusive of bodies spread on it, then FRD can be considered a time-independent constant. In 
this case Eq. (11) represents a simple linear equation of the form 
 
(12) y cx b� �  
 
with 
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Plotting the related quantity F1 (to be calculated according to Eq. (10)) against 2l/(r2t2) for constant r and 
different accelerating masses m (Eq. (11)), we obtain a line with the slope ID. Thus we have found a way 
to measure the moment of inertia without knowing the quantity FRD. 
 
We now observe the case in which an additional body is placed on the rotary disk. Suppose IK is the mo-
ment of inertia of this body (mass mK) when it rotates about one of its gravity axes (principal axis); if this 
gravity axis C corresponds with the rotary axis H of the table, then the overall moment of inertia of the 
system rotary disk/body is: 
 
(14) D KI I I� �  

 
If the axes H and C run parallel at a distance s we obtain according to STEINER's theorem3: 
 

(15) 2
D K KI I I m s� � �  

 
Eq. (11) then reads: 
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Using Eq. (3) and Eq. (10), it follows: 
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We want to use this relationship in order to determine the position of a gravity axis running parallel to the 
rotary axis of the table of a body of any possible shape lying on the rotary disc. We take the following 
steps: according to Eq. (15) I becomes has a minimum when s = 0, i.e., for the case that the gravity axis of 
the body is identical to that of the rotary axis of the disc. A minimum of I is equivalent to a minimum of 
the fall time t and t2, respectively for constant quantities m, l, r, and FRD according to  Eq. (17). Shifting 
the body on the rotary disc (varying s), the fall time t must therefore show a minimum at a certain 
position. The related function t = f(s) describing this behaviour will now be determined. For this we insert 
Eq. (15) into Eq. (16), solve for t2 and obtain for t as a function of s: 
 

                                                      
3  JAKOB STEINER (1796 - 1863) 
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or in a clear way with the auxiliary quantities K1 and K2: 
 

(19) 2 2
1 2t K K s� �  

 
Question 1: 
- Which function (curve) does Eq. (19) represent? (Hint: Conic sections) 
 
In order to determine the position of the required gravity axis C by means of Eq. (19) we proceed as fol-
lows: predetermine a coordinate system XY on the rotary disc, the origin of which coincides with the  axis 
of rotation H (cf. Fig. 2). A line of holes is created along the y-axis of the rotary disk. A pin is fixed at an 
optional point P on the body, for which we find the position of the gravity axis. The pin and line of holes 
are placed such that the body can be shifted in Y direction on the rotary disc without changing its 
orientation with regard to the coordinate system XY (cf. remarks at the end of chapter 3.2).  
 
Let point P (the pin) have the coordinates (0, yP) after placing the body on the rotary disc. 
For the distance s of the gravity axis C from the rotary axis H we then obtain: 
 

(20) � �22
Ps x y y� � � ��

 
 

 

 
Fig. 2: Rotary disc (yellow) with sample body (white, top view). H is the rotary axis of the table, C the 

gravity axis of the sample body4 and P is the sample body’s point of fixation along the vertical 
line of holes on the disc. s is the distance between C and H.   

 
According to Eq. (19) the fall time t for the accelerating mass m is a minimum when s is a minimum, 
which is the case with fixed �x for the condition yP = �y according to Eq. (20). 
 
If we shift the body in y direction on the table and plot the fall time t over the shift yP, we can determine 
the quantity �y by finding the minimum in the  produced curve. In an analogous way, the quantity �x can 

                                                      
4  Note that the white area represents the top view of the sample body. For this reason, C does not need to be 

located at the centre of gravity of the white area. 
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be determined and proceeding from the optional point P, we can state the position of the desired gravity 
axis. 

3 Experimental procedure 

 
Equipment: 

Rotary disc on tripod, acceleration masses (m � (2, 3, 4, 5, 6) g), brass disk with locking pins, irregu-
larly shaped sample body with locking pins, power supply (Phywe (0 - 15 / 0 - 30) V), magnetic 
holder, stand material for magnetic holder, switch, light barrier, electronic universal counter, digital 
oscilloscope, precision spirit level (accuracy 0.1 mm on 1 m), balance, metal measuring tape, sliding 
calliper, deceleration rod, thread. 

 
Attention: 

The rotary discs have very sensitive precision bearings which are easy to damage through improper 
handling. Only move the rotary discs with careful fingers! Take care that the thread does not get 
entangled in the bearing by timely deceleration! Only decelerate the discs using the small rod avail-
able! 

 
Hint: 

Usually the rotary discs are levelled exactly by the technical assistant using a precision water level 
prior to the lab course. Please make sure that this has actually been done! 

3.1 Moment of inertia of a disc 

The moment of inertia IK of a brass disk (radius rK, mass m) rotating about its symmetry axis C (Fig. 3) is 
to be determined by means of the set-up in Fig. 1. It is then calculated according to Eq. (14) as follows: 
 
(21) K DI I I� �  

 
 
In order to obtain IK, first the moment of inertia of the rotary disc (ID) has to be determined by means of 
Eq. (11) and then the moment of inertia of table and brass disk together (I) by means of Eq. (16). For this 
purpose  
 

a) for the rotary disc 
b) for rotary disk with brass disc 

 
the fall time t (mean value from at least four single measurements each) is measured for five different 
acceleration masses (weigh masses!) and for a predetermined distance l (to be measured!). The fall time is 
measured by means of an electronic universal counter. The counter is started by the impulse, which 
causes the release of the holding pin of the magnetic holder, which is responsible for keeping the table in 
the starting position. The stopping impulse for the universal counter is given by a light barrier, which the 
accelerated masses pass at the end of the specified distance l. 
 

 
 

Fig. 3: Rotation of a disk of radius rK about its symmetry axis C. 
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Subsequently F1 is plotted against 2l/(r2t2) for a) and b) according to Eq. (11) and Eq. (16) in one diagram 
and the regression lines are calculated (measure r carefully using a metal measuring tape). An error 
analysis for the individual values of F1 and 2l/(r2t2) is not required. The friction forces FRD on the rotary 
disc as well as the moments of inertia ID and I are calculated from the parameters of the regression line 
(including error) and from that IK according to Eq. (21) (also including error). 
 
Question 2: 
- How can the moment of inertia I of a disk with the mass m and the radius rK rotating about its symme-

try axis C (cf. Fig. 3) be calculated from the relationship 2 dI R m� �  (cf. Chapter 1)? How large is 

the theoretically expected moment of inertia for the brass disk used (measure rK and m!)? What are the 
possible sources of deviations between theory and experiment? 

3.2 Determining the position of a gravity axis of an irregularly shaped body 

According to the explanations given for Eqs. (18) - (20) the position of a gravity axis C running parallel 
to the rotary axis H of an irregularly shaped sample body shall be determined. For this purpose the pin 
mounted on the body is put into ten different holes of the hole row along the y-axis of the rotary disk and 
the coordinate yP is determined5. At each position, the fall time t (mean of 4 single measurements) for a 
predetermined distance l  is measured(cf. 3.1)  for one mass m each. Afterwards, t is plotted against yP 
(including error bars) and the value �y is graphically determined, where t has a minimum.  
 
Alternatively, the position of the minimum of t may be determined by a non-linear fit. The target function 
is, according to Eq. (19), given by:  
 

(22) � �2

1t a b y y� � � �
 

 
with the fit parameters a, b and �y. With the knowledge of these parameters, the value yP = �y, for which 
the fall time t is minimal can be determined from Eq. (22). 
 
Analogously, it would be possible to determine �x and to state the position of the centre of gravity C in 
the xy-plane relative to point P. In order to save time, however, we will confine ourselves to measuring 
only the distance �y between P and C. 
 
Remarks:  

In order to make sure that the orientation of the sample body does not change when shifting along the 
y-axis, two pins are mounted on the body. Therefore, it has to be determined first, which of the two 
pins marks the position of point P.  

                                                      
5  The distance between two holes on the disc is 10 mm (error free). 


