Pontificia Universidad Católica de Chile Facultad de Física Física Moderna - FIZO311 (FIS1542)

Ayudantía 4 Dinámica Relativista y física precuántica.

Profesor: Benjamin Koch Ayudante: Federico Márquez (cfmarque@uc.cl)

Problema 1: Decaimiento

Una partícula de masa M se desintegra en dos partículas de masas m_1 y m_2 . Determine las energías E_1 y E_2 de las partes resultantes, en el marco de referencia en el que M se encontraba en reposo. (Exprese sus respuestas solo en términos de cantidades conocidas, i.e. masas)

Problema 2: Colisión

Una particula de masa $m_1 = 1g$ colisiona con una partícula de masa $m_2 = 10g$. Luego de la colisión, las dos partículas se fusionan en una sola partícula de masa m y rapidez v. En el marco de referencia en el que m_2 está en reposo, m_1 se mueve con una rapidez de 0.9c, en este marco de referencia, calcule:

- a) La rapidez de la partícula final.
- b) La masa de la partícula final.

Ahora considere un marco de referencia en el que m_1 está en reposo antes de la colisión

- c) ¿Con qué rapidez debe moverse m_2 para producir una partícula con la misma masa final?
- d) ¿Con qué rapidez debe moverse m_2 para producir una partícula con la misma velocidad final?

Problema 3: Más Colisiones

Un pión de masa m se mueve con un momentum p=5mc. El pión colisiona con un protón de masa M=7m que se encuentra en reposo.

- a) ¿Cuál es la velocidad del sistema de referencia del centro de masa?
- b) ¿Cuál es la energía total en el sistema de referencia del centro de masa?
- c) Encuentre el momentum del pión incidente en el sistema de referencia del centro de masa.

Problema 4: Colisión de protones

En colisiones protón-protón de alta energía, uno o ambos protones pueden disociarse en un sistema de un proton y varios piones cargados. Las reacciones posibles son:

(1)
$$p+p \rightarrow p + (p+n\pi)$$

(2)
$$p + p \to (p + n\pi) + (p + m\pi)$$

Donde n y m son el número de piones producidos.

En el sistema de referencia del laboratorio, un protón incidente choca con otro protón en reposo. Encuentre la energía E_0 del protón incidente, que es:

- a) La energía mínima para que ocurra la reacción (1) en que el blanco se disocia en un protón y 4 piones.
- b) La energía mínima para que ocurra la reacción (1) en que el proyectil se disocia en un protón y 4 piones.
- c) La energía mínima para que ocurra la reacción (2) y ambos protones se disocien en un protón y 4 piones.

Problema 5: Fuerza

Una partícula se mueve bajo la acción de un campo eléctrico \vec{E} constante y uniforme. Suponga que la velocidad de la partícula es paralela al campo eléctrico en todo momento.

- a) Encuentre una expresión para la rapidez de la partícula en función del tiempo.
- b) Muestre que la rapidez de la partícula tiende a la velocidad de la luz después de un largo tiempo.

Hint: Utilice como punto de partida $\vec{F} = \frac{d\vec{p}}{dt}$

Problema 6: Efecto Fotoeléctrico

La función trabajo para el efecto fotoeléctrico en el potasio es de 2.25 eV, para el caso con una longitud de onda de $3.6 \cdot 10^{-7} m$ que cae en el potasio. Calcule el potencial de frenado U_{max} de los electrones y la energía cinética y velocidad del electrón más rápido de los emitidos.