

Die Erzeugung von mikroskopisch kleinen Schwarzen Löchern und von Gravitationsstrahlung in Modellen mit großen Extra-Dimensionen

Dissertationsvortrag von Benjamin Koch 11. Mai 2007

- Motivation: Warum große Extra-Dimensionen
- Modelle mit großen Extra-Dimensionen
- Schwarze Löcher
- Gravitationsstrahlung
- Zusammenfassung

Ziel: Vereinheitlichung der Naturkräfte

$$\mathcal{L}_{SM} = \sum \bar{\psi} D_{\mu} \gamma^{\mu} \psi + \mathcal{L}_{Bos} + \mathcal{L}_{H} + \mathcal{L}_{Y}$$

Standardmodell

Allgemeine Relativitätstheorie

Skalen:

 $M_Z \approx 90 \text{ GeV}$

 $M_Z \ll M_p$

Hierarchie Problem

Standardmodell

Allgemeine Relativitätstheorie

Skalen:

Motivation:

 $M_Z \approx 90 \text{ GeV}$

 $M_Z \ll M_p$ Hierarchie Problem

Erklärung:

Große Extra-Dimensionen

(Large Extra Dimension=LXD)

Große Extra-Dimensionen

Es gibt verschiedene Modelle mit Extra-Dimensionen, die das Hierarchie Problem lösen: - Arkani-Hamed, Dimopoulos und Dvali (ADD)^{*}...

Große Extra-Dimensionen

Es gibt verschiedene Modelle mit Extra-Dimensionen, die das Hierarchie Problem lösen: - Arkani-Hamed, Dimopoulos und Dvali (ADD)^{*}...

Große Extra-Dimensionen

Es gibt verschiedene Modelle mit Extra-Dimensionen, die das Hierarchie Problem lösen: - Arkani-Hamed, Dimopoulos und Dvali (ADD)^{*}... Eigenschaften des Modells:

- 3+d Raumdimensionen
- Die zusätzlichen d Dimensionen sind mit Radius R aufgerollt
- Die Gravitation wirkt in alle 3+d Raumrichtungen
- Die Kräfte und Teilchen des SM existieren nur auf den drei nicht aufgerollten räumlichen Dimension

Gravitationspotential:

$$r \ll R:$$

$$\frac{V}{m} = \frac{1}{M_f^{d+2}} \frac{1}{r^{d+1}}$$

$$r \gg R:$$

$$\frac{V}{m} = \frac{1}{M_f^{d+2} R^d} \frac{1}{r}$$

$$\frac{V}{m} = \frac{1}{M_p^2} \frac{1}{r}$$

m

Gravitationspotential:

Schwarze Löcher

Symmetrische Lösung der Einstein Feldgleichungen in 3+d Dimensionen:

$$R_{AB} - \frac{1}{2}g_{AB}R = \frac{T_{AB}}{M_f^{d+2}}$$

Schwarzschild Radius in 3+d Dimensionen: *

$$R_H \approx \frac{1}{M_f} \left(\frac{M}{M_f}\right)^{1/(d+1)}$$

Erzeugung in Teilchenkollisionen

 $R_H(\sqrt{s})$

Einfache Abschätzung des Wirkungsquerschnitts:

 $\int_{-\infty}^{\infty}$

$$\sigma(\sqrt{s}) \approx \pi R_H^2(\sqrt{s}) \bullet^{\frac{\sqrt{s}}{2}}$$

Im Fall von kleinem M_f kann diese Schwelle im Labor erreicht werden:^{*}

$$\sigma(\sqrt{s}) \approx \frac{\pi}{M_f^2} \left(\frac{\sqrt{s}}{M_f}\right)^{\frac{2}{d+1}}$$

Benjamin Koch

*T. Banks and W. Fischler [arXiv:hep-th/9906038] / **http://wugrav.wustl.edu/research/projects/final_report/nasafinal3.html

Erzeugung in Teilchenkollisionen

Einfache Abschätzung des Wirkungsquerschnitts:

 $\int_{-\infty}^{\infty}$

$$\sigma(\sqrt{s}) \approx \pi R_H^2(\sqrt{s}) \bullet^{\frac{\sqrt{s}}{2}}$$

Im Fall von kleinem M_f kann diese Schwelle im Labor erreicht werden:^{*}

$$\sigma(\sqrt{s}) \approx \frac{\pi}{M_f^2} \left(\frac{\sqrt{s}}{M_f}\right)^{\frac{2}{d+1}}$$

 $R_H(\sqrt{s})$

Benjamin Koch

*T. Banks and W. Fischler [arXiv:hep-th/9906038] / **http://wugrav.wustl.edu/research/projects/final_report/nasafinal3.html

Vorhersage für LHC (LHC = Large Hadron Collider)

Große Anzahl von Schwarzen Löchern möglich.

Benjamin Koch

*B.Koch, M. Bleicher, H. Stöcker, Angenommen in J.Phys. G [arXiv:hep-ph/0702187]

GOETHE

JOHANN WOLFGANG

Strahlende Schwarze Löcher

- "Balding" Phase: (bald=Glatze)

Abstrahlung zusätzlichen Freiheitsgraden (wie Deformationen und Drehimpuls) durch Graviationsstrahlung

- Hawking Phase:

Thermische (Hawking) Strahlung $T_H = \frac{d+1}{4\pi R_H}$

- Planck Phase:

Die Hawking Näherung verliert ihre Gültigkeit und das Schwarze Loch geht einem ungewissen Schicksal entgegen:

- Komplettes Zerstrahlen
- Bildung eines stabilen Zustands (BHR="Black Hole Remnant")

Strahlende Schwarze Löcher

- "Balding" Phase: (bald=Glatze)

Abstrahlung zusätzlichen Freiheitsgraden (wie Deformationen und Drehimpuls) durch Graviationsstrahlung

- Hawking Phase:

Thermische (Hawking) Strahlung

$$T_H = \frac{d+1}{4\pi R_H}$$

- Planck Phase:

Die Hawking Näherung verliert ihre Gültigkeit und das Schwarze Loch geht einem ungewissen Schicksal entgegen:

- Komplettes Zerstrahlen
- Bildung eines stabilen Zustands (BHR="Black Hole Remnant")

Signaturen für Schwarze Löcher

Verbreiterung der Transversalimpuls-Spektren.

* T. J. Humanic, B. Koch and H. St "ocker, [arXiv:hep-ph/0607097] **S. Hossenfelder,[arXiv:hep-ph/0412265] *** B. Koch, M. Bleicher and S. Hossenfelder, JHEP 0510 (2005) 053 [arXiv:hep-ph/0507138]

Signaturen für Schwarze Löcher

Verbreiterung der Transversalimpuls-Spektren.

Abschwächung der 180 ° Struktur in der Winkelkorrelation.

S. Hossenfelder, [arXiv:hep-ph/0412265] * B. Koch, M. Bleicher and S. Hossenfelder, JHEP 0510 (2005) 053 [arXiv:hep-ph/0507138]

Geladene BHR's könnten direkt gemessen und Ihre Masse rekonstruiert werden.

JOHANN WOLFGANG

GOETHE

Neutrale BHR's könnten über die kombinierte Beobachtung von fehlender Energie und einem einseitig fokussierten Hadron- Spektrum in einem Ereignis identifiziert werden.

Signaturen für große Extra-Dimensionen bei Kosmischer Strahlung

Emission von (nicht beobachtbarer) Gravitationsstrahlung wird durch große Extra-Dimensionen verstärkt.

Dieser Effekt führt zu einer Modifikation der Rekonstruktion des Spektrums der hochenergetischen kosmischen Strahlung.

Signaturen für große Extra-Dimensionen bei Kosmischer Strahlung

Emission von (nicht beobachtbarer) Gravitationsstrahlung wird durch große Extra-Dimensionen verstärkt.

Dieser Effekt führt zu einer Modifikation der Rekonstruktion des Spektrums der hochenergetischen kosmischen Strahlung.

Zusammenfassung

Man sucht Observablen, die für möglichst viele von Modelle mit großen Extra-Dimensionen gelten.

Untersucht wurden:

- Indirekte Signale aus der Erzeugung von Schwarzen Löchern: • Dijet Unterdrückung
 - Verschiebung der p_T Spektren
 - Veränderung von Winkelkorrelationen
- Signale aus der Formation von stabilen BHRs:
 - Direkte Beobachtung geladener BHRs
- Suche nach "exotischen" Ereignissen & 衣
 Gravitationsstrahlung und verändertes Spektrum der hochenergetischen Kosmischen Strahlung

Vielen Dank

Marcus Bleicher, Horst Stöcker, Alwin Schemp, Christoph Blume,

Sabine Hossenfelder, Uli Harbach, Sascha Vogel, Martin Kober, Hannah Petersen, Tom Humanic, Ina und meinen (Schwieger)Eltern

Vielen Dank für die Blumen

Marcus Bleicher, Horst Stöcker, Alwin Schemp, Christoph Blume,

Sabine Hossenfelder, Uli Harbach, Sascha Vogel, Martin Kober, Hannah Petersen, Tom Humanic, Ina und meinen (Schwieger)Eltern

Backup Folien:

Topologie der schwarzen Löcher

- Kleine Schwarze Löcher: $R_H \ll R$ $R_H \approx \frac{1}{M_f} \left(\frac{M}{M_f}\right)^{1/(d+1)}$
- Große Schwarze Löcher: $R_H \gg R$ $R_H \approx \frac{M}{M_p^2}$

ANKFURT AM

Motivation für BHRs

- Unschärfe Relation: $M \sim p \leq \frac{1}{\lambda}$ Aber, $M_{BH} < M_f \Rightarrow R_{BH} < \frac{1}{M_{BH}} = \lambda$ was ein Widerspruch ist.

A. Markov

ited t

- Informationsverlust:

-Weitere:

- Y. B. Zel'dovich, in: "Proc. 2nd Seminar in Quantum of and P. C. West, Plenum, New York (1984).
- R. J. Adler, P. Chen and D. I. Santiago, Gen. Rel. Grav. 33, 2101 (2001
- J. D. Barrow, E. J. Copeland and A. R. Liddle, Phys. Rev. D 46, 045 (1992).
- S. Coleman, J. Preskill and F. Wilczek, Mod. Phys. Lett. A6 1631 (1991).
- Gerard 't Hooft. On the quantum structure of a black hole. Nucl. Phys., B256:727, 1985.
- Benjamin Koch S. Hossenfelder, M. Bleicher, S. Hofmann, H. Stocker and A. Kotwal, Phys. Lett. B 566, 233

Die Simulation

Charybdis*:

Pythia

(Scylla)

- 1. Generate black hole
- 2. Hawking decay according to Planck statistics
- 3. As soon as M_{BH}<M_f perform final n-body decay on remaining black hole
- 4. Check charges, and Pythia does particle evolution etc.

- 1. Generate black hole
- 2. Hawking decay according to modified Planck statistics
- 3. No final decay,but stop as soon as M_{BH}-M_R<1GeV
- 4. Check charges, and Pythia does particle evolution etc.

Die Mehr Ergebnisse

FRANKFURT AM MA

Größen ungefähr

Umrechnungen ungefähr

 $\frac{1}{GeV} \approx 0.1978 fm$ $1fm = 10^{-15}m$ $1barn = 10^{-28}m^2$ $8.617 \ eV \approx 10^5 \ Kelvin$

 $M_p \approx 10^{19} GeV$ $m_p \approx m_n \approx 1 GeV$ $m_e \approx 511 \; keV$ $m_{strange} \approx 100 \; MeV$ $m_{\pi} \approx 140 \; MeV$ $\rho_0 \approx 0.1 \frac{GeV}{fm^3}$ $\frac{r_{proton}}{\approx 10^{-5}}$ r_{Atom}

Viskosität und Vorhersage:*

$$T^{\mu\nu} = \underbrace{(u^{\mu}u^{\nu}(p+\rho) - pg^{\mu\nu})}_{\text{diagonal}} - \underbrace{\eta}_{\text{Viskosität}} \partial^{\mu}u^{\nu}$$
$$\frac{\eta \sim \lambda n s \sim n}{s \sim n}$$
$$\frac{\eta}{s} \sim \lambda$$

Viskosität und Vorhersage: $T^{\mu\nu} = \underbrace{(u^{\mu}u^{\nu}(p+\rho) - pg^{\mu\nu})}_{\text{diagonal}} - \underbrace{\eta}_{\sigma} \partial^{\mu}u^{\nu}$ $\frac{\eta}{s} \sim \lambda n s \sim n$ $\frac{\eta}{s} \sim \lambda \sim 1$

Miklos

Benjamin Koch

*Giorgio Torrieri: Loud breefing in Cafeteria

*Giorgio Torrieri: Loud breefing in Cafeteria

*Giorgio Torrieri: Loud breefing in Cafeteria

Viskosität in Schwerionen Collision

Viskosität in Schwerionen Collision

V2

Randall-Sundrum

