
Geometrical interpretation of the free Klein-Gordon equation

Ben Koch
Institut für Theoretische Physik,

Johann Wolfgang Goethe - Universität,
D–60438 Frankfurt am Main, Germany

(Dated: November 27, 2007)

We study the question whether the laws of quantum mechanics can be derived from a purely
classical setting with one additional dimension. It is shown that the coupling of the classical higher
dimensional Einstein-tensor to a conserved energy-momentum tensor can be chosen in such a way
that one finds the quantum Klein-Gordon equation.
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Early attempts to find an alternative explanation for
quantum phenomena have been discussed within the
so called Bohmian mechanics [1, 2]. Similarities be-
tween a higher dimensional wave equation and the non-
relativistic quantum theory have already been pointed
out in [3]. In a recent paper such similarities have
also been found without the assumption of extra di-
mensions, by comparing the solutions of a Friedmann-
Lemáıtre-Robertson-Walker universe and the solutions
of the Schrödinger equation [4]. In a field theoretical ap-
proach, the so called stochastic quantization [5], the clas-
sical Langevin equation for an auxiliary time coordinate t̃
is used in order to obtain euclidian quantum field theory
in the limit t̃ → ∞. Other papers, relate quantum field
theories on the horizon of a black hole with a correspond-
ing classical theory in the higher dimensional space-time
[6, 7]. In the context of supergravity and string theory
similar ideas involving a holographic principle and extra
time dimensions obtained a lot of attention [8–10]. But
also for theories without the string background the gen-
eral question was discussed whether quantum field theory
might emerge from a chaotic classical theory with friction
[11, 12]. Finally, the possibility of an additional time di-
mension without holographic effects has been considered
in the context of high energy phenomenology [13] and in
the context of a conceptual alternative to quantization
[14].

All those ideas can be partially seen as motivation for
the approach of this paper where the quantum Klein-
Gordon equation is derived from classical differential ge-
ometry with one additional time dimension. As contin-
uation of the successful interpretation of non-relativistic
quantum wave functions in terms of classical particles
moving with respect to an additional time dimension [15]
we will now derive the relativistic Klein Gordon.

I. THE FREE KLEIN-GORDON EQUATION

Before starting with the alternative interpretation of
quantum mechanics, we will rewrite the relativistic Klein-

Gordon equation

∂µ∂µΦ(x, t) = −m2

~2
Φ(x, t) . (1)

This equation for the complex wave function Φ can be ex-
pressed in terms of the real function S(x, t) and the pos-
itive function ρ(x, t) by defining Φ(x, t) =

√
ρ exp(iS/~).

This gives two coupled differential equations

∂µ (ρ(∂µS)) = 0 , (2)
√

ρ∂µ∂µ
√

ρ =
ρ

~2

(
(∂µS)(∂µS)−m2

)
. (3)

This redefinition does not change the meaning or the in-
terpretation of Eq. (1).

II. GENERAL RELATIVITY WITH AN
ADDITIONAL DIMENSION

In this section we will consider the geometric structure
of Einstein equations with one additional coordinate t̄.
Those equations contain a classical energy-momentum
tensor TAB and a constant term Λ. Instead of taking
the standard gravitational coupling we use a coupling
constant for k2 the energy-momentum tensor TAB . A
simple ansatz for the metric in 2 + 3 dimensions will be
made. We then show that it is possible to choose the
coupling k2 and the constant Λ in such a way that the
classical equations of motion in the higher dimensional
theory correspond to the relativistic quantum equation
for a spinless particle. We use the coordinate notation
xA = (t̄, xµ) = (t̄, t, x, y, z), where capital latin indices A
run from 0 to 4 and greek indices run from 1 to 4. As
starting point we take the general covariant equation

GAB = RAB −
1
2
gABR = k2TAB −

1
2
gABΛ , (4)

where RAB is the higher dimensional Ricci tensor and R
is it’s contraction. Usually the constant term Λ is called
the cosmological constant. By taking the trace of Eq. (4)
one obtains a single scalar equation

R = −1
3
(TA

A − 5Λ) , (5)
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which will be sufficient for our purposes. Following the
reasoning in [15] we make an ansatz for for the metric

gµν =


k1α(t̄)ρ(t, x) 0 0 0 0

0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 . (6)

Note that this metric corresponds to the Kaluza-Klein
metric for a vanishing electromagnetic field Aµ = 0
[3, 16, 17]. However, in contrast to the Kaluza-Klein ap-
proach the energy momentum Tensor TAB and the con-
stant Λ are not assumed to be identically zero. An other
difference is that (due to the function α(t̄)) a t̄ depen-
dence is allowed. After using the metric (6) and after a
multiplication with −ρ/2 the scalar equation (5) reads

√
ρ∂µ∂µ

√
ρ =

ρ

3

(
k2(T 0

0 + Tµ
µ)− 5

2
Λ

)
. (7)

The left hand side of this equation contains only the four
dimensional Laplace operator since the dependence on
α(t̄) and k1 dropped out. For the right hand side a def-
inition of the energy momentum tensor is needed. The
Hamilton-Jakobi definition of the energy momentum ten-
sor of a free particle in curved space-time is

TA
B =

1
V M

(∂AS)(∂BS), with (8)

TA
A =

1
V M

(
(∂0S)(∂0S) + (∂µS)(∂µS)

)
.

Here, S is Hamilton’s principal function [18, 19], V is
the normalizing volume, and M is the normalizing mass
which might be, but does not necessarily have to be, the
same as m. Using Eq. (8) one can rewrite Eq. (7) as

√
ρ∂µ∂µ

√
ρ = ρ

~2

[
~2k2
3V M ((∂0S)(∂0S)+

(∂µS)(∂µS))− 5~2

6 Λ
]

.
(9)

A priory the derivative of S with respect to the additional
coordinate t̄ is not known. However, we will see that
∂0S = k3

√
ρ (where k3 is some constant) is the only form

that leaves this theory self-consistent. After choosing
the constants k2 = 3MV/~2 and k2

3 = k1(5~2Λ/6 −m2)
Eq. (9) reads

√
ρ∂µ∂µ

√
ρ =

ρ

~2

(
(∂µS)(∂µS)−m2

)
. (10)

This is the real part of the Klein-Gordon equation (3).
One sees that ”cosmological” constant Λ is not necessary
for this theory to work. But one also sees that k1 has to
be negative as soon as Λ < 6m2/(5~2) and a negative k1

corresponds to a spatial signature of extra dimension t̄.
Note that the coupling k2 has an additional factor 3/2 in
comparison to the previous derivation of the Schrödinger
equation, where only one spatial dimension was consid-
ered.

The imaginary part of the Klein-Gordon equation (2)
can found from the covariant conservation law for the
energy-momentum tensor TAB .

0 = ∇B (TAB) = ∇B
(
gACTC

B

)
(11)

=
1

V m
∇B

(
gAC(∂CS)(∂BS)

)
.

Now we take the 0 component of this equation and inte-
grate over the unobservable coordinate t̄. This yields

0 =
∫

dt̄ ∇B
(
g0C(∂CS)(∂BS)

)
(12)

= k1

∫
dt̄ ∂µ (

√
ρ(∂0S)(∂µS)) ,

where a t̄ boundary term was dropped. Again, just like
for equation (9) one sees that ∂0S = k3

√
ρ is the only

consistent choice and Eq. (12) simplifies to

0 = k1k3

∫
dt̄ ∂µ (ρ(∂µS)) . (13)

After dropping the constants k1 and k3, this is the desired
imaginary part of the Klein-Gordon equation (2).

III. SUMMARY AND DISCUSSION

We studied the classical movement of a free particle
in a higher dimensional space-time which is governed by
the geometric equations (5) and by the continuity equa-
tion for its energy-momentum tensor (11). In those equa-
tions, we made an ansatz for the additional component of
the metric g00 and for the additional component of the
energy momentum tensor T00 by taking ∂0S = k3

√
ρ.

Since all the equations that were used are classical, the
only way the ”quantumness” in terms of ~ could enter
into our equations was through the constants k2, k3,
and Λ. After choosing the constants k2 = 3MV/~2

and k2
3 = k1(5~2Λ/6−m2) we found the two differential

equations (10, 13) which are equivalent to the quantum-
Klein-Gordon equation (1).

The free Schrödinger equation can be found from
equation (1) in the limit of m � ∂0S. For bound state
problems a non-relativistic potential has to be introduced
on the side of the source term in Eq. (4). Therefore,
the apparent uncertainty of quantum physics might be
understood from a classical theory with one hidden
dimension. Further generalizations of this results to in-
teracting fields, spinors and so on will have to be studied.

Many thanks to Jorge Nornoha for their comments
and remarks. This work has been supported by the GSI
Darmstadt.
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