Geometrical interpretation of the free Klein-Gordon equation
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We study the question whether the laws of quantum mechanics can be derived from a purely
classical setting with one additional dimension. It is shown that the coupling of the classical higher
dimensional Einstein-tensor to a conserved energy-momentum tensor can be chosen in such a way
that one finds the quantum Klein-Gordon equation.
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Early attempts to find an alternative explanation for
quantum phenomena have been discussed within the
so called Bohmian mechanics [1, 2]. Similarities be-
tween a higher dimensional wave equation and the non-
relativistic quantum theory have already been pointed
out in [3]. In a recent paper such similarities have
also been found without the assumption of extra di-
mensions, by comparing the solutions of a Friedmann-
Lemaitre-Robertson-Walker universe and the solutions
of the Schrodinger equation [4]. In a field theoretical ap-
proach, the so called stochastic quantization [5], the clas-
sical Langevin equation for an auxiliary time coordinate ¢
is used in order to obtain euclidian quantum field theory
in the limit £ — co. Other papers, relate quantum field
theories on the horizon of a black hole with a correspond-
ing classical theory in the higher dimensional space-time
[6, 7]. In the context of supergravity and string theory
similar ideas involving a holographic principle and extra
time dimensions obtained a lot of attention [8-10]. But
also for theories without the string background the gen-
eral question was discussed whether quantum field theory
might emerge from a chaotic classical theory with friction
[11, 12]. Finally, the possibility of an additional time di-
mension without holographic effects has been considered
in the context of high energy phenomenology [13] and in
the context of a conceptual alternative to quantization
[14].

All those ideas can be partially seen as motivation for
the approach of this paper where the quantum Klein-
Gordon equation is derived from classical differential ge-
ometry with one additional time dimension. As contin-
uation of the successful interpretation of non-relativistic
quantum wave functions in terms of classical particles
moving with respect to an additional time dimension [15]
we will now derive the relativistic Klein Gordon.

I. THE FREE KLEIN-GORDON EQUATION

Before starting with the alternative interpretation of
quantum mechanics, we will rewrite the relativistic Klein-

Gordon equation
2
m
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This equation for the complex wave function ® can be ex-
pressed in terms of the real function S(z,t) and the pos-
itive function p(x,t) by defining ®(z,t) = \/pexp(iS/h).
This gives two coupled differential equations
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This redefinition does not change the meaning or the in-
terpretation of Eq. (1).

O(x,t) . (1)

II. GENERAL RELATIVITY WITH AN
ADDITIONAL DIMENSION

In this section we will consider the geometric structure
of Einstein equations with one additional coordinate %.
Those equations contain a classical energy-momentum
tensor T4p and a constant term A. Instead of taking
the standard gravitational coupling we use a coupling
constant for ko the energy-momentum tensor Tap. A
simple ansatz for the metric in 2 4+ 3 dimensions will be
made. We then show that it is possible to choose the
coupling ko and the constant A in such a way that the
classical equations of motion in the higher dimensional
theory correspond to the relativistic quantum equation
for a spinless particle. We use the coordinate notation
xza = (t,x,) = (t,t,x,y, z), where capital latin indices A
run from 0 to 4 and greek indices run from 1 to 4. As
starting point we take the general covariant equation
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where R4p is the higher dimensional Ricci tensor and R
is it’s contraction. Usually the constant term A is called
the cosmological constant. By taking the trace of Eq. (4)
one obtains a single scalar equation
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which will be sufficient for our purposes. Following the
reasoning in [15] we make an ansatz for for the metric
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Note that this metric corresponds to the Kaluza-Klein
metric for a vanishing electromagnetic field A4, = 0
[3, 16, 17]. However, in contrast to the Kaluza-Klein ap-
proach the energy momentum Tensor T4p and the con-
stant A are not assumed to be identically zero. An other
difference is that (due to the function «(t)) a t depen-
dence is allowed. After using the metric (6) and after a
multiplication with —p/2 the scalar equation (5) reads
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The left hand side of this equation contains only the four
dimensional Laplace operator since the dependence on
a(t) and k; dropped out. For the right hand side a def-
inition of the energy momentum tensor is needed. The
Hamilton-Jakobi definition of the energy momentum ten-
sor of a free particle in curved space-time is

T4, = VLM(aAS)(aBS), with (8)
TA, — VLM ((8°8)(80S) + (8*5)(8,9))

Here, S is Hamilton’s principal function [18, 19], V is
the normalizing volume, and M is the normalizing mass
which might be, but does not necessarily have to be, the
same as m. Using Eq. (8) one can rewrite Eq. (7) as

VPO /P = | 4 ((8°)(00S)+
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A priory the derivative of S with respect to the additional
coordinate t is not known. However, we will see that
oS = k3/p (where k3 is some constant) is the only form
that leaves this theory self-consistent. After choosing
the constants ko = 3MV/h? and k3 = k1(5h?A/6 — m?)
Eq. (9) reads
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This is the real part of the Klein-Gordon equation (3).
One sees that ”cosmological” constant A is not necessary
for this theory to work. But one also sees that k; has to
be negative as soon as A < 6m?/(5h%) and a negative k;
corresponds to a spatial signature of extra dimension .
Note that the coupling ks has an additional factor 3/2 in
comparison to the previous derivation of the Schrodinger
equation, where only one spatial dimension was consid-
ered.

The imaginary part of the Klein-Gordon equation (2)
can found from the covariant conservation law for the
energy-momentum tensor T4 p.
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Now we take the 0 component of this equation and inte-
grate over the unobservable coordinate ¢. This yields

0 = [ V" (g0c(0°8)(@u3)) (12)
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where a t boundary term was dropped. Again, just like
for equation (9) one sees that oS = k3,/p is the only
consistent choice and Eq. (12) simplifies to

0 = kuks / At 0 (p(9,8)) . (13)

After dropping the constants k; and k3, this is the desired
imaginary part of the Klein-Gordon equation (2).

III. SUMMARY AND DISCUSSION

We studied the classical movement of a free particle
in a higher dimensional space-time which is governed by
the geometric equations (5) and by the continuity equa-
tion for its energy-momentum tensor (11). In those equa-
tions, we made an ansatz for the additional component of
the metric gop and for the additional component of the
energy momentum tensor Tyg by taking doS = ksz./p.
Since all the equations that were used are classical, the
only way the ”quantumness” in terms of & could enter
into our equations was through the constants ks, ks,
and A. After choosing the constants ko = 3MV/h?
and k2 = k1 (5h%A/6 — m?) we found the two differential
equations (10, 13) which are equivalent to the quantum-
Klein-Gordon equation (1).

The free Schrodinger equation can be found from
equation (1) in the limit of m > 9yS. For bound state
problems a non-relativistic potential has to be introduced
on the side of the source term in Eq. (4). Therefore,
the apparent uncertainty of quantum physics might be
understood from a classical theory with one hidden
dimension. Further generalizations of this results to in-
teracting fields, spinors and so on will have to be studied.
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