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After completing my Ph.D. in Physics at Princeton University, I obtained a post-
doctoral position at Rockefeller University. In the early sixties, Detlev Bronk, who
was president (1953–1968) of the then Rockefeller Institute for Medical Research
hired George Uhlenbeck, Mark Kac and Theodore Berlin (1961), among others, to
establish a Mathematical Physics group, and Abraham Pais (1962) to lead a group
in High Energy Physics. In fact Detlev Bronk successfully made the transition from
a research institute to the Rockefeller University (1965). Kenneth Case joined the
Mathematical Physics group at Rockefeller in 1969, and so did James Glimm in
1974. I stayed in Kenneth Case’s Lab at Rockefeller University from 1979 to 1981.
There I had the chance to work with Ken Case and Mark Kac [2], to meet many
visitors in Mathematics and Physics and to enjoy the friendly atmosphere of the
14th floor of the Tower Building where the labs of Ken Case and Eddie Cohen
were housed. This year marks the hundredth anniversary of the birth of Mark
Kac (1914-1984), who was a prominent figure in mathematics and physics of the
twentieth century, and I think it is appropriate to remember his life and work in
the Bulletin of the IAMP.

Mark Kac was born three weeks after the beginning of the First World War (Au-
gust 16) in Krzemieniec, in Central Europe. Krzemieniec, at the foot of Mountain
Bona, is a city that has belonged to different countries in recent history. Even dur-
ing the early years of Mark Kac it was part of the Austro–Hungarian Empire, then
part of the Russian Empire, later a Polish Territory and finally part of the Ukraine,
where its is known as Kremenets). At the time of Mark Kac’s birth, Krzemieniec
was part of Vohlynia, and a typical cultural city of Central Europe. The romantic
Polish poet Juliusz S lowacki was born there in the early XIXth century, and a con-
temporary of Mark Kac, the violinist Isaac Stern was born in Krzemieniec in 1920.
Although during the two World Wars suffered enormously (specially during the
Holocaust in the Second World War), Krzemieniec enjoyed a quiet and stimulating
atmosphere in the interbellum. In 1922, the polish leader Jósef Pi lsudski, reopened
the Lyceum of Krzemieniec, who had been founded in the XIXth century under the
supervision of Vilnius University. The Lyceum was closed by the Soviet occupation
army in September 1939, at the beginning of the Second World War. A measure
of the Lyceum reputation is the fact that it was soon known as the “Athens of
Volhynia”. Mark Kac entered the Lyceum in 1925. In the summer of 1930 Kac
had his first experience with research. Acquainted with the Cardano solution of
the cubic equation, he wanted to find an alternative way of finding that solution.
He exploited the invariance of the equation under bilinear transformations. Doing
so, he found a two parameter flow of cubic equations and determined the param-
eters of the flow that yielded a trivial cubic, to finally determine the solution of
the original equation. One can certainly repeat that procedure for the quartic as
well, and use the two parameters to reduce the quartic into a quadratic in x2. This
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Mark Kac, circa 1980

was the content of Mark Kac’s first paper, which appeared in the “M lody Math-
ematyk” (i.e., The Young Mathematician). In 1931, after completing High School
at the Lyceum, Kac moved to Lvov (at that time a city of the region of Galicia,
then part of Poland, today known as Lviv, a city in western Ukraine) to attend
the Jan Kazimierz University, which was the name of the University of Lvov in the
period 1919–1939 (today is known as the Ivan Franko University of Lviv) in honour
of its founder, the King John Casimir (1661). Between the wars, Lvov (with its
two universities, namely the Jan Kazimierz and the Technical University) was the
site of the famous “Lvov School of Mathematics”, which played a major role in
the development of Functional Analysis. Stephan Banach at the Technical Univer-
sity, and Hugo Steinhaus at the Jan Kazimierz university were the leading figures
of this School, which also included Stanis law Mazur, Juliusz Schauder, Stan Ulam,
and many others. The mathematical atmosphere in Lvov at that time is recollected
by Ulam in the Introduction of [42]. In Ulam’s words, “the mathematical life was
very intense in Lwów. Some of us met practically every day, ... to discuss problems
of common interest, communicating to each other the latest work and results. Apart
from the more official meetings of the local sections of the Mathematical Society,
there were frequent informal discussions mostly held in one of the coffee houses
located near the University building –one of them a coffee housed named “Roma”,
and the other “The Scottish Coffee House”. There are many recollections (see, e.g.,
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[33]) about “The Scottish Coffee House” (“Kawiarnia Szkocka” in Polish, located
in 27 Taras Shevchenko Prospekt, Lvov). According to Ulam [42], Stephan Banach
in 1935 suggested keeping track of the problems occupying the group of mathe-
maticians that were gathering there. A version of this book in English is available
online in [42] where Ulam edited, in 193 entries, the problems discussed by the
group between 1935 and May 1941, the year Steinhaus had to leave Lvov. Every
entry has the name of the proposer of the problem. Among the proposers one
finds names like Banach, Steinhaus, Ulam, Mazur, Kac, Marcinkiewicz, Kaczmarz,
Sobolev, Ljusternik, von Neumann, Eilenberg, Zygmund, Auerbach, Sierpinski and
several others. Several proposers offered special “prizes” for the solutions. Among
the prizes offered for the solutions one finds: “five small beers”, “a bottle of wine”
and even “a fondue in Geneva”. While still a graduate student, Mark Kac partic-
ipated in this group, and in the “Scottish Book of Problems” he has four entries,
which shed some light about his mathematical concerns at that time. For example

in the problem 126, he asks: If
∫ 1

0
f(x) dx = 0 and

∫ 1

0
f2(x) dx = ∞, prove that

lim
n→∞

(
∫ 1

0

exp(i
f(x)√

n
) dx

)n

= 0.

Kac asserts that when
∫ 1

0 f2(x) dx = A (finite), the resulting limit is known and

in fact equal to 1/
√
e. This problem 126 was soon solved by A. Khinchin, who

published his result in Studia Mathematica. In the entry 161 (dated June 10,
1937), there is the following Theorem of Mark Kac: Let rn be a sequence of of
integers such that

lim
n→∞

(rn −
n−1
∑

k=1

rk) = ∞.

Prove that,

lim
n→∞

[

E0≤x≤1

(

a <
sin(2πr1x) + · · · + sin(2πrnx)√

n
< b

)]

=
1√
π

∫ b

a

exp(−y2) dy.

One can put, e.g., rn = 2n
2

. And he asks wether the same result hold if rn = 2n

(where one can see that the condition imposed on the sequence rn does not hold.
As described in the biography [34], in short sinusoids of independent frequency be-
have as if they were statistically independent though strictly speaking they are not.
See also [23, 24]. Mark Kac got his Ph.D. in 1937 [22] under the supervision of
Hugo Steinhaus. He acquired from his advisor the interest and taste for working
on problems related to statistical independence. Using Kac’s own words [31] (see
Chapter 3, p. 48) to describe his interaction with Steinhaus: “My Mathematical
life began with my collaboration with Hugo Steinhaus. That three–year period (from
the Spring of 1935 to the end of November 1938)... was decisive in my development
as a mathematician”. In the period 1936–1937 Kac and Steinhaus wrote a series of
four papers under the general title “Sur les fonctions indépendantes”, which were
published in the Polish mathematical journal “Studia Mathematica” founded by Ba-
nach and Steinhaus in 1929. Mark Kac completed his Ph.D. thesis [22] precisely on
the subject of statistical independence in 1937. A bit more than twenty years later,
Kac was asked to deliver a series of lectures at Haverford College (Spring of 1958),
and he retook the subject of statistical independence. As an outgrowth of these
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lectures, Mark Kac wrote the book “Statistical Independence in Probability Analy-
sis and Number Theory” [28], in the Carus Series of the Mathematical Association
of America. Kac dedicated this book to his teacher Hugo Steinhaus. As described
by Henry McKean, “This is a splendid book. It ranges from the primitive idea of
statistical independence to applications of the most diverse sort: coin–tossing, an-
harmonic oscillators, prime numbers and continued fractions. And it does all that
with Kac’s customary clarity and charm...”. In particular, in this book one can
find the proof of the Kac’s theorem stated as the entry 161 of “Scottish Book of
Problems” quoted above.

In 1938, Kac obtained a Polish fellowship from the Parnas Foundation to visit
Johns Hopkins University. He left behind his whole family, most of whom perished
in Krzemieniec in the mass executions of 1942-43. He arrived at Baltimore in
December 1938 1. Soon after his arrival in the US, Kac met Norbert Wiener and
Paul Erdös, which were influential in his mathematical career. The same year Kac
arrived in the US, Paul Erdös arrived at the Institute for Advanced Study (IAS) for
a one year appointment. In 1939, Mark Kac was invited to give a lecture at the IAS
and met Erdös. Both discovered that they could apply their respective background
in Number Theory (Erdös) and Probability to solve a problem in Number Theory,
namely that for any natural number n, the number of prime divisors of the integers
less than n has a normal distribution. If ν(n) is the number of prime divisors of n,
loosely speaking, the probability distribution of

ν(n) − log logn√
log logn

is the standard normal distribution.
Their joint work published in 1940 in the Journal of the American Mathematical

Society [14] is one of the pillars of the then new field of Probabilistic Number
Theory. In an interview with Mitchell Feigenbaum [15], Kac shows his pride on
this particular work: “...In retrospect the thing which I am happiest about, and it
was done in cooperation with Erdös... was the introduction of probabilistic methods
in number theory. To put it poetically, primes play a game of chance”.

With the recommendation of Norbert Wiener, Mark Kac obtained an instruc-
torship at Cornell University in 1939. It was in Ithaca, for his 27th birthday that
Mark Kac met his future wife Katherine Mayberry to whom he married in 1942.
They had two children, Michael and Deborah. Kac was firs promoted to Assistant
Professor in 1943 and to Full Professor in 1947. He stayed at Cornell University un-
til 1961, when he moved to Rockefeller. During the Second World War, Mark Kac
worked also at the Radiation Laboratory at MIT, in Cambridge, Massachusetts.
The wartime research at the Radiation Lab was mainly devoted to waveguide the-
ory and to the study of problems of noise in radar systems. It was in Cambridge
that Mark Kac met George Uhlenbeck [17], who had left Ann Arbor, MI, to direct
the Radiation Lab. Mark Kac returned to MIT in the academic year 1946–47, on
leave from Cornell, supported by a Guggenheim fellowship. Kac and Uhlenbeck de-
veloped a close friendship and collaboration that lasted until Kac’s death in 1984.

1Kac sailed from Poland to the US in the M/S Pi lsudski, which served in the Gdynia–Amerika
Shipping Lines Ltd. from Gydnia to Hoboken from 1935 to the beginning of the Second World
War. The M/S Pi lsudski sank on November 26, 1939 after hitting two mines off the coast of
Yorkshire, on war service.
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Uhlenbeck introduced Kac to problems in physics, in particular in Statistical Me-
chanics. It was Uhlenbeck who introduced Kac to the dog–flea problem, a problem
formulated by Paul Ehrenfest (Uhlenbeck’s advisor) and his wife Tatiana in 1907
[12] to illustrate the second law of thermodynamics. The model (see, e.g.,[13]) con-
siders N particles in two containers. The particles independently change containers
at a rate λ. If X(t) = i is set to be the number of particles in one container at time
t, then it is a birth–death process with transition rates,

qi,i−1 = iλ, for 1 ≤ i ≤ N

qi,i+1 = (N − i)λ, for 0 ≤ i ≤ N − 1

and equilibrium distribution πi = 2−N
(

N
i

)

. In 1947, Mark Kac [25] proved that if
the initial state is not an equilibrium state, then the Boltzmann entropy, i.e.,

H(t) = −
N
∑

i=1

P (X(t) = i) log

(

P (X(t) = i)

πi

)

is monotonically increasing. The manuscript of Mark Kac [25] with the solution of
the approach to equilibrium of the Ehrenfests’ model was awarded the 1950 Chau-
venet Prize (for expository writing) of the Mathematical Association of America.
Kac got a second Chauvenet Prize in 1968 for his paper Can one hear the shape of
a drum that I discuss later. Kac spent his sabbatical year 1951–1952 at the IAS in
Princeton, where he met and collaborated with John Ward on a new combinatorial
solution of the 2–dimensional Ising model, which had been solved by Onsager in
1944. Although the solution of Kac and Ward had a gap that took time and ef-
fort of various people to fill, it gave new insight into the problem. The same year,
Ted Berlin and Mark Kac solved [4] another model of a ferromagnet, the so called
“spherical model”, which is somewhat a simplification of the Ising Model. Consider
a square (2–d) or a cubic (3–d) lattice containing N spin sites. But instead of allow-
ing the spins σi (here i denotes a lattice site) to take only the ±1 values, allow them
to be independently distributed Gaussian variables, with the additional constraint
∑

σ2
i = N (constraint which is obviously satisfied in the Ising model). Berlin and

Kac proved that this model exhibits a phase transition in the three dimensional
case (there is no phase transition at finite temperature in lower dimension), and
computed the critical temperature and the critical exponents for the model.

After solving the dog–flea problem, Mark Kac made further contributions in try-
ing to solve the paradox raised by Loschmidt to the Boltzmann equation [5]. The
Boltzmann equation is very successful, through the H-theorem, in establishing the
approach to equilibrium in Statistical Mechanics and the derivation of the second
law of Thermodynamics. However, as Loschmidt pointed out in 1876, it is not the
final picture because it is not compatible as it stands with the reversibility of the
equations of motion between the interacting particles. In order to understand the
problems of the Boltzmann equation, Kac [27] introduced the concept of “propa-
gation of chaos” in connection with a specific stochastic process modelling binary
collisions in a gas of a large number N of identical particles (the “Kac walk”, in the
space of velocities). In particular Kac was interested in the approach to equilibrium
of the gas. Kac kept his interest in the “propagation of chaos” until the end of his
life (see, e.g., [20]). There have been many recent developments on the properties
of the “Kac Model” (see, e.g., [8, 9, 7]).
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The subject of integration in function space s was introduced by Norbert Wiener
in the 1920’s. According to [45], Wiener was inspired by the experimental observa-
tions on Brownian Motion, in particular by the quotation in Les Atomes of Perrin
[38]: “...the very irregular curves followed by particles in Brownian Motion led one
think of the supposed continuous non differential curves of the mathematicians”. To
justify the remark of Perrin, Wiener introduced a theory based on “the statistics
of paths”, constructing a measure in the space of continuous functions (see, e.g.,
[30, 40]). Using Wiener’s measure one can prove the connection between potential
theory and Brownian Motion. In particular, if TΩ(y) is the total time a Brownian
particle starting at y ∈ Ω in t = 0 spends inside the bounded domain Ω ⊂ R

3, then,

E(TΩ(y)) =
1

2π

∫

Ω

1

|x− y| dx,

(the potential at the interior point y produced by a uniform density supported at
the boundary of Ω). Other quantities like the capacity of a set, or the scattering
length of a set can by similarly characterised in terms of properties of Brownian
Motion. Influenced by Feynman’s Ph.D. thesis [16], Mark Kac [26, 30, 32] estab-
lished a rigorous connection between Schrödinger’s equation and Wiener’s theory,
connection which is known as the Feynman–Kac formula.

A signed copy of Kac’s paper: “Can one hear the shape of a drum?”
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One of my favourite papers of Mark Kac is [29], dedicated to his friend and
colleague George Uhlenbeck on the occasion of his 65th birthday. In 1965, the
Committee on Educational Media of the Mathematical Association of America
produced a film on a mathematical lecture by Mark Kac (1914–1984) with the
title: Can one hear the shape of a drum? One of the purposes of the film was to
inspire undergraduates to follow a career in mathematics. The article [29] consists
of an expanded version of that lecture. Consider two different smooth, bounded
domains, say Ω1 and Ω2 in the plane. Let 0 < λ1 < λ2 ≤ λ3 ≤ . . . be the sequence
of eigenvalues of the Laplacian on Ω1, with Dirichlet boundary conditions and,
correspondingly, 0 < λ′

1 < λ′
2 ≤ λ′

3 ≤ . . . be the sequence of Dirichlet eigenvalues
for Ω2. Assume that for each n, λn = λ′

n (i.e., both domains are isospectral). Then,
Mark Kac posed the following question: Are the domains Ω1 and Ω2 congruent
in the sense of Euclidean geometry?. A friend of Mark Kac, the mathematician
Lipman Bers (1914–1993), paraphrased this question in the famous sentence: Can
one hear the shape of a drum?

In 1910, H. A. Lorentz, at the Wolfskehl lecture at the University of Göttingen,
reported on his work with Jeans on the characteristic frequencies of the electro-
magnetic field inside a resonant cavity of volume Ω in three dimensions. According
to the work of Jeans and Lorentz, the number of eigenvalues of the electromagnetic
cavity whose numerical values is below λ (this is a function usually denoted by
N(λ)) is given asymptotically by

(1) N(λ) ≈ |Ω|
6π2

λ3/2,

for large values of λ, for many different cavities with simple geometry (e.g., cubes,
spheres, cylinders, etc.) Thus, according to the calculations of Jeans and Lorentz,
to leading order in λ, the counting function N(λ) seemed to depend only on the
volume of the electromagnetic cavity |Ω|. Apparently David Hilbert (1862–1943),
who was attending the lecture, predicted that this conjecture of Lorentz would not
be proved during his lifetime. This time, Hilbert was wrong, since his own student,
Hermann Weyl (1885–1955) proved the conjecture less than two years after the
Lorentz’ lecture. An account of the work of Hermann Weyl on the eigenvalues of a
membrane is given in his 1948 J. W. Gibbs Lecture to the American Mathematical
Society [44].

In N dimensions, (1) reads,

(2) N(λ) ≈ |Ω|
(2π)N

CNλN/2,

where CN = π(N/2)/Γ((N/2) + 1)) denotes the volume of the unit ball in N dimen-
sions.

Using Tauberian theorems, one can relate the behaviour of the counting function
N(λ) for large values of λ with the behaviour of the function

(3) ZΩ(t) ≡
∞
∑

n=1

exp{−λnt},

for small values of t. The function ZΩ(t) is the trace of the heat kernel for the
domain Ω, i.e., ZΩ(t) = tr exp(∆t). As I mention above, λn(Ω) denotes the n
Dirichlet eigenvalue of the domain Ω.
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The fact that the leading behaviour of ZΩ(t) for t small, for any bounded, smooth
domain Ω in the plane is given by

(4) ZΩ(t) ≈ 1

4πt
A

was proven by Hermann Weyl [43]. Here, A = |Ω| denotes the area of Ω. In fact,
what Weyl proved in [43] is the Weyl Asymptotics of the Dirichlet eigenvalues, i.e.,
for large n, λn ≈ (4π n)/A. Weyl’s result (4) implies that one can hear the area of
the drum.

In 1954, the Swedish mathematician Åke Pleijel [39] obtained the improved as-
ymptotic formula,

Z(t) ≈ A

4πt
− L

8
√
πt

,

where L is the perimeter of Ω. In other words, one can hear the area and the
perimeter of Ω. It follows from Pleijel’s asymptotic result that if all the frequencies
of a drum are equal to those of a circular drum then the drum must itself be
circular. This follows from the classical isoperimetric inequality (i.e., L2 ≥ 4πA,
with equality if and only if Ω is a circle). In other words, one can hear whether a
drum is circular. It turns out that it is enough to hear the first two eigenfrequencies
to determine whether the drum has the circular shape [1].

In 1966, Mark Kac obtained the next term in the asymptotic behaviour of Z(t)
[29]. For a smooth, bounded, multiply connected domain on the plane (with r
holes)

(5) Z(t) ≈ A

4πt
− L

8
√
πt

+
1

6
(1 − r).

Thus, one can hear the connectivity of a drum. Kac’s formula (5) was rigorously
justified by McKean and Singer [35].

A sketch of Kac’s analysis for the first term of the asymptotic expansion is as
follows [29]. If we imagine some substance concentrated at ~ρ = (x0, y0) diffusing
through the domain Ω bounded by ∂Ω, where the substance is absorbed at the
boundary, then the concentration PΩ(~p

∣

∣ ~r; t) of matter at ~r = (x, y) at time t
obeys the diffusion equation

∂PΩ

∂t
= ∆PΩ

with boundary condition PΩ(~p
∣

∣ ~r; t) → 0 as ~r → ~a, ~a ∈ ∂Ω, and initial condition

PΩ(~p
∣

∣ ~r; t) → δ(~r − ~p) as t → 0, where δ(~r − ~p) is the Dirac delta function. The

concentration PΩ(~p
∣

∣ ~r; t) may be expressed in terms of the Dirichlet eigenvalues of
Ω, λn and the corresponding (normalized) eigenfunctions φn as follows,

PΩ(~p
∣

∣ ~r; t) =

∞
∑

n=1

e−λntφn(~p)φn(~r).

For small t, the diffusion is slow, that is, it will not feel the influence of the boundary
in such a short time. We may expect that

PΩ(~p
∣

∣ ~r; t) ≈ P0(~p
∣

∣ ~r; t),

ar t → 0, where ∂P0/∂t = ∆P0, and P0(~p
∣

∣ ~r; t) → δ(~r − ~p) as t → 0. P0 in fact

represents the heat kernel for the whole R
2, i.e., no boundaries present. This kernel
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is explicitly known. In fact,

P0(~p
∣

∣ ~r; t) =
1

4πt
exp(−|~r − ~p|2/4t),

where |~r − ~p|2 is just the Euclidean distance between ~p and ~r. Then, as t → 0+,

PΩ(~p
∣

∣ ~r; t) =

∞
∑

n=1

e−λntφn(~p)φn(~r) ≈ 1

4πt
exp(−|~r − ~p|2/4t).

Thus, when set ~p = ~r we get
∞
∑

n=1

e−λntφ2
n(~r) ≈ 1

4πt
.

Integrating both sides with respect to ~r, using the fact that φn is normalized, we
finally get,

(6)
∞
∑

n=1

e−λn t ≈ |Ω|
4πt

,

which is the first term in the expansion (5). Further analysis gives the remaining
terms (see [29]).

Remark: In 1951, Mark Kac proved the following universal bound on Z(t) in di-
mension d:

(7) Z(t) ≤ |Ω|
(4πt)d/2

.

This bound is sharp, in the sense that as t → 0,

(8) Z(t) ≈ |Ω|
(4πt)d/2

.

Recently, Harrell and Hermi [21] proved the following improvement on (8),

(9) Z(t) ≈ |Ω|
(4πt)d/2

e−Md|Ω|t/I(Ω).

where IΩ = mina∈Rd

∫

Ω
|x − a|2 dx and Md is a constant depending on dimension.

Moreover, they conjectured the following bound on Z(t), namely,

(10) Z(t) ≈ |Ω|
(4πt)d/2

e−t/|Ω|2/d .

Recently, Geisinger and Weidl [18]proved the best bound up to date in this direction,

(11) Z(t) ≈ |Ω|
(4πt)d/2

e−Mdt/|Ω|2/d ,

where Md = [(d + 2)π/d]Γ(d/2 + 1)−2/dMd (in particular M2 = π/16. In gen-
eral Md < 1, thus the Geisinger–Weidl bound (11) falls short of the conjectured
expression of Harrell and Hermi.

In the quoted paper of Mark Kac [29] he says that he personally believed that
one cannot hear the shape of a drum. A couple of years before Mark Kac’ ar-
ticle, John Milnor [36], had constructed two non-congruent sixteen dimensional
tori whose Laplace–Beltrami operators have exactly the same eigenvalues. In 1985
Toshikazu Sunada [41] developed an algebraic framework that provided a new, sys-
tematic approach of considering Mark Kac’s question. Using Sunada’s technique
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several mathematicians constructed isospectral manifolds (e.g., Gordon and Wil-
son; Brooks; Buser, etc.). See, e.g., the review article of Robert Brooks (1988) with
the situation on isospectrality up to that date in [6]. Finally, in 1992, Carolyn Gor-
don, David Webb and Scott Wolpert [19] gave the definite negative answer to Mark
Kac’s question and constructed two plane domains (henceforth called the GWW
domains) with the same Dirichlet eigenvalues.

After twenty years at the Rockefeller University (1961–1981), Mark Kac joined
the University of Southern California, where he served as the Chair of the Mathe-
matics Department. Mark Kac had many distinguished Ph.D. students and post-
docs, including Daniel Stroock, Harry Kesten, Murray Rosenblatt, Henry McKean
and many others. Kac earned several distinctions and awards. Apart from the two
Chauvenet Prizes and the Guggenheim fellowship awarded to him, which I have
already discussed, he was the John von Neumann Lecturer (SIAM) in 1961, the
Josiah Williard Gibbs lecturer in the joint AMS-MAA meeting in 1967. In 1978 he
was awarded the George Birkhoff prize of Applied Mathematics (AMS–SIAM). He
was elected a member of the National Academy of the United States. For a long
time Mark Kac served as co–chair of the “Committee of Concerned Scientists” and
association which monitors and document violations of the human rights and sci-
entific freedom of scientists all over the world. Mark Kac died on October 25, 1984
after a long battle with cancer. To conclude I would like to recall some thoughts of
Henry McKean [34], which I certainly share:

“...I am sure I speak for all of Kac’s friends when I remember him for his wit,
his personal kindness, and his scientific style. In a summer at MIT, I had the
luck to have Kac as my instructor. I was enchanted not only by the content of the
lectures but by the person of the lecturer. I had never seen mathematics like that,
nor anybody who could impart such (to me) difficult material with such a charm.”

Acknowledgment: I would like to thank FONDECYT (Chile) project 112–0836,
and the Núcleo Milenio: RC120002, “F́ısica Matemática” of the ICM (Chile) for
support.
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