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Abstract. We study the nonlocal perimeter associated with a nonnegative radial kernel J : RN → R,
compactly supported, verifying

∫
RN J(z)dz = 1. The nonlocal perimeter studied here is given by the

interactions (measured in terms of the kernel J) of particles from the outside of a measurable set E with

particles from the inside, that is,

PJ (E) :=

∫
E

(∫
RN\E

J(x− y)dy

)
dx.

We prove that an isoperimetric inequality holds and that, when the kernel J is appropriately rescaled,

the nonlocal perimeter converges to the classical local perimeter. Associated with the kernel J and the
previous definition of perimeter we can consider minimal surfaces. In connexion with minimal surfaces

we introduce the concept of J-mean curvature at a point x, and we show that again under rescaling we

can recover the usual notion of mean curvature. In addition, we study the analogous to a Cheeger set in
this nonlocal context and show that a set Ω is J-calibrable (Ω is a J-Cheeger set of itself) if and only if

there exists τ such that τ(x) = 1 if x ∈ Ω satisfying −λJΩτ ∈ ∆J
1
χ

Ω, here λJΩ is the J-Cheeger constant

λJΩ =
PJ (Ω)
|Ω| and, ∆J

1 is given, formally, by

∆J
1 u(x) =

∫
RN

J(x− y)
u(y)− u(x)

|u(y)− u(x)|
dy.

Moreover, we also provide a result on J-calibrable sets and the nonlocal J-mean curvature that says

that a J-calibrable set can not include points with large curvature. Concerning examples, we show that

balls are J-calibrable for kernels J that are radially nonincresing, while stadiums are J-calibrable when
they are small but they are not when they are large.
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