QUANTUM GRAVITY PHENOMENOLOGY

Jorge Alfaro
Pontificia Universidad Catélica de Chile
Talk at Instituto de Matematicas
Universidad de Talca, May 15 , 2009

Summary

0. Quantum Gravity Issues

1.
2.

NS ot e W

10.

11.

Gamma Ray Bursts (GRB)

A possible connection with Quantum Gravity
i) Amelino-Camelia et al.

ii) Gambini and Pullin. J. Alfaro et al.
Ultra High Energy Cosmic Rays

The Greisen-Zatsepin-Kuz’'min (GZK) cutoff
LIV of the integration measure

LIV Dimensional Regularization

Explicit One loop computations in the Standard Model:
i) Photons
ii) Leptons

Mesons and Baryons
Bounds on a.

Predictions:
i)Photon decay
ii) 7o stability

Conclusions



Quantum gravity issues

-Cosmic Inflation

During a brief period of time, the size of the universe growth exponentially.
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Figure 1.

Inflation predicts that the Universe is flat. WMAP satellite data on the CBMR support
it.

Figure 2.

QUANTUM GRAVITY?

- Gravity can be neglected compared to electroweak or strong forces among elementary

particles, BUT at an energy of Mp~ 10'°Gev becomes the dominant interaction.Proton
mass ~ 1Gev.

-The Universe at times t < 10~ 35s after Big Bang, had an energy per particle ~ Mp.
-Gravity determines the initial conditions for the evolution of the Universe.

-At those early times, the Universe has atomic size, so Quantum Mechanics must be
used to describe it.

- General Relativity is not RENORMALIZABLE
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Here k = ; has dimension of M ~2 rendering the perturbative series non-renormaliz-

able.

-Two roads to Quantum Gravity:

i) String Theory. Basic objects are not point particles but one dimensional struc-
tures(strings). The theory is finite, has a pletora of vacua. Unify all forces d=10,26.

ii) Loop Quantum Gravity. Predicts space is discrete, black hole entropy follows from
the Quantum Geometry. Continuum limit difficult.



Gamma Ray Bursts

G. Amelino-Camelia et al., Nature 393(1998)763.

SOURCE.
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L ~10'° Light-years
PROPOSITION:
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produces the structure of GRB with At <1073 s.
EQgN EPlanck = 1019 Gev.

Dispersion Relation due to Quantum

tions(Strings)
- E
’p2=E’1+ f(—)]
EQG
For E << Egg, we have

252 = B2[1 4+ x], x~ £ 1
EQG

Speed of propagation

Gravity correc-



PARTICULAR FEATURES OF THE EFFECT

The correction induced by QG effects grows with the energy E. Instead, in a
normal medium, it decreases with FE.

The delay is very small, EXCEPT if the wave travels a very large distance L:

L FE
At = xy———
X C EQG
Typical photon energies in GRB: ~0.1 — — — — — — 100Mev————>Tev
With L~ 10%ight —years, we get At ~ 1073 seconds, for Egc ~ Ep, which is the
right order of magnitude.

Virtual Black Holes

M

hoton

Quantum Gravity Vacuum is populated by virtual black holes

--> Non-covariant Dispersion relation as in media at T = 0.



R. Gambini and J. Pullin, Phys. Rev.
D59(1999)124021.

Modified Maxwell Equations
OE =—V x B +2x1pV°B
8,B =V x E —2x1pV°E
x| ~1
Solutions with definite helicity
Fi=Re((é)+iés)e @+t F )
Oy = Vk>2F4xIpk3
~ k(1 F2xlpk)
1. Birefringent Effect: The speed of propagation depends on the helicity.
2. It is diferent from the effect found by Amelino-Camelia et al.
3. The vacuum |A > violates parity.

Neutrinos and Quantum Gravity

J.A., H. Morales-Técotl and L.F. Urrutia, Phys. Rev. Lett. 84(2000)2318.

Modified neutrino Wave equations
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The dispersion relation corresponding to it is:

2
C C
PLp.0) = (A m2 )+t + () £ Bp. B=A(Gr20m) ()
where A, B, C have been expressed in momentum space and depend on £. The =+ in
Eq. (1) stand for the two neutrino helicities. Let us emphasize that the solution £(t, ¥)
to Eq.(3) is given by an appropriate linear combination of plane waves and helicity
eigenstates, given that the neutrinos considered are massive.



Ultra High Energy Cosmic Rays

In this talk we are concerned with the observation of ultra high energy cosmic rays
(UHECR), i.e. those cosmic rays with energies greater than ~ 4 x 10! eV.

- Although not completely clear, it has been suggested that these high energy particles
are possibly heavy nuclei (we will assume here that they are protons).

- By virtue of the isotropic distribution with which they arrive to us, they originate in
extragalactic sources.

The Greisen-Zatsepin-Kuz’min (GZK) cutoff

-Their propagation in open space is affected by the cosmic microwave background radia-
tion (CMBR), producing a friction on UHECR making them release energy in the form
of secondary particles and affecting their possibility to reach great distances.

- Cosmic rays with energies above 1 x 10?° eV should not travel more than ~ 100 Mpc.



The Greisen-Zatsepin-Kuz’min (GZK) cutoff. Data
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UHECR spectrum and AGASA observations. The figure shows the UHECR spectrum
J(E) multiplied by E3, for uniform distributed sources, without evolution, and with a
maximum generation energy FEi.x = 00.
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UHECR spectrum and HiRes observations. The figure shows the UHECR spectrum
J(E) multiplied by E3,

The Auger Observatory has recently reported his observations on the highest energy
cosmic rays.

They see the GZK cutoff in the flux. But still some of the cosmic rays have a trans
GZK energy. This means that Lorentz invariance violation may be necessary to explain
their presence, if nearby sources of such cosmic rays are not found.



& | —
>
i
oo e
o
£
— k mass source Y Emax
- i
U; 23.5 ; ;
2 | ——— Mixed Uniform 2.2 10%'eV
) [ cas=c Mixed Uniform 2.2 10%%V
O -
— - — Fitting
23 | | | | | | | | | | | | | | | | | | | |
18 18.5 19 19.5 20

log(E [eV])

The combined energy spectrum multiplied by E?, and the predictions of three astro-
physical models. The input assumptions of the models (mass composition at the
sources, the source distribution, spectral index and exponential cutoff energy per charge
at the acceleration site) are indicated in the figure.



LIV of the integration measure: JA, Phys. Rev.Lett.
94,221302(2005)

The main effect of QG is to deform the measure of integration of
Feynman graphs at large four momenta by a tiny LIV. The classical
lagrangian is unchanged.

Equivalently, we can say that QG deforms the metric of space-time, introducing a
tiny LIV proportional to (d-4)a, d being the dimension of space time in Dimen-
sional Regularization and « is the only arbitrary parameter in the model.

Such small LIV could be due to quantum fluctuations of the metric of space-time
produced by QG:virtual black holes , D-branes, compactification of extra-dimen-
sions or spin-foam anisotropies. A precise derivation of a will have to wait for
additional progress in the available theories of QG.An intriguing possibility may
be provided by the anisotropy between spatial and temporal directions found nec-
essary to recover our universe at macroscopic scales in a recent numerical simula-
tion of Quantum Gravity (Ambjorn).

Within the Standard Model, such LIV implies several remarkable effects, which
are wholly determined up to one arbitrary parameter («).The main effects are:

The maximal attainable velocity for particles is not the speed of light, but
depends on the specific couplings of the particles within the Standard Model.
Also birrefringence occurs for charged leptons, but not for gauge bosons. In par-
ticular, photons and neutrinos have different maximum attainable velocities. This
could be tested in the next generation of neutrino detectors such as NUBE.

Vertices in the SM will pick up a finite LIV.

Cutoff regulator:

To see what are the implications of the asymmetry in the measure for renormaliz-
able theories, we will mimic the Lorentz asymmetry of the measure by the

k2 + akg
/ddk —> /ddk R(TO)

Here R is an arbitrary function, A is a cutoff with mass dimensions, that will go
to infinity at the end of the calculation. We normalize R(0) = 1 to recover the
original integral. R(co) =0 to regulate the integral. « is a real parameter. Notice
that we are assuming that rotational invariance in space is preserved. More gen-
eral possibilities such as violation of rotational symmetry in space can be easily
incorporated in our formalism.

replacement

This regulator has the property that for logarithmically divergent integrals, the
divergent term is Lorentz invariant whereas when the cutoff goes to infinity a
finite LIV part proportional to a remains.

One Loop:Bosons

Let D be the naive degree of divergence of a One Particle Irreducible (1PI)
graph. The change in the measure induces modifications to the primitively log
divergent integrals(D=0) In this case, the correction amounts to a finite LIV.
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The finite part of 1PI Green functions will not be affected. Therefore, Standard
Model predictions are intact, except for the maximum attainable velocity for par-
ticles, which receives a finite wholly determined contribution from Quantum
Gravity.

Let us analyze the primitivily divergent 1PI graphs for bosons first.
Self energy: x(p) = x(0) + A*p,p, + convergent, A* = %(%8”)((0). We
have:

A}LV — 627"1*”/ + a[)u'y

co is the log divergent wave function renormalization counterterm; a*" is a finite
LIV. The on-shell condition is:

p2 —m?— auyp,upu =0

If spatial rotational invariance is preserved, the nonzero components of the
matrix a are:
a=agp; a''=—ay

So the maximum attainable velocity for this particle will be:

One Loop:Fermions

For fermions, we have the self energy graph

Z(p) = E(O) + S YPu

s Yy =0,%5(0). Moreover

Sy = SNy + Apu/2

s is a log divergent wave function renormalization counterterm; a,, is a finite LIV. The
maximum attainable velocity of this particle will be given again by equation (3).

One Loop:Gauge bosons

Consider the most general quadratic Lagrangian which is gauge invariant, but could
permit LIV’s 1

L=coBF, F.g

chveB s antisymmetric in pr and af and symmetric by (o, 8) < — > (i, v) It implies
that the most general expression for the self-energy of the gauge boson will be

1A (p) = c***Ppq p, 11 (p)

We see that

pt/HVﬁ(p) =0

c*vP is given by a logarithmically divergent integral.
We get:

CuVaﬁ e Cz(nuanyﬁ — 77“/8/’7”‘1) _+_ a.uya/g

o is a Lorentz invariant counterterm and a#**? is a LIV.

1. A Chern-Simons term is absent due to the symmetry k, — > — k,, which is preserved by the regu-
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It is clear that the same argument applies to massive gauge bosons that got their mass
by spontaneous gauge symmetry breaking as well as to the graviton in linearized
gravity.

12



LIV Dimensional Regularization

We generalize dimensional regularization to a d dimensional space with an arbitrary
constant metric g,,. We work with a positive definite metric first and then Wick rotate.
We will illustrate the procedure with an example. Here g=det(g,,) and A > 0.

77 | e

1 > dk 4(geB
— dtt"—l/ ok ke 9T Ra ket ) =
ﬁF(H)A (2m)

1 gul(n—1-4d/2) 1
(47T)d/2 2 F(n) Anflfd/Q

In the same manner, after Wick rotation, we obtain a generalization of dimensional reg-
ularization suitable for an arbitrary constant metric.

These definitions preserve gauge invariance, because the integration measure is invariant
under shifts. To get a LIV measure, we assume that g¢H" = n*¥ + (4m)%an*’n"% where
€=2— g. A formerly divergent integral will have a pole at ¢ = 0, so when we take the
physical limit, e — > 0, the answer will contain a LIV term.

To define the counterterms, we used the minimal substraction scheme(MSS); that is we

substract the poles in € from the 1PI graphs.

LIV Dimensional Regularization reinforces our claim that these tiny LIV’s
originates in Quantum Gravity. In fact the sole change of the metric of
space time is a correction of order ¢ and this is the source of the effects
studied above. Quantum Gravity is the strongest candidate to produce such
effects because the gravitational field is precisely the metric of space-time
and tiny LIV modifications to the flat Minkowsky metric may be produced
by quantum fluctuations.

Explicit One loop computations:

We use LIV Dimensional Regularization.
Photons The LIV photon self-energy in the SM is:

v 23 « v v 14 [e3 o SV
LTI# (q) = — €% qa qa(n®P84 S5 + 05§05 — n"26lss — nreo§sy)

It follows that the maximal attainable velocity is

23
=1- 62a

We have included coupling to qualks and chalged leptons as well as 3 generations and
color.

Neutrinos: The maximal attainable velocity is

v, =1—(3+tan?0,) >
In this scenario, we predict that neutrinos emitted simultaneously with photons in
gamma ray bursts will not arrive simultaneously to Earth . The time delay during a
flight from a source situated at a distance D will be of the order of (10722 — 10~ 23)D/
¢~ 1072 — 1076 s, assuming D = 10'° light-years. No dependence of the time delay on
the energy of high energy photons or neutrinos should be observed. Photons will arrive
earlier(later) if o < 0(ax > 0). These predictions could be tested in the next generation of
neutrino detectors such as NUBE.
Using R¢-gauges we have checked that the LIV is gauge invariant. The gauge parameter
affects the Lorentz invariant part only.
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Electron self-energy in the Weinberg-Salam model. Birrefringence:

_ A5 5
Define: e, = ! 2V e, er = 1+ e, where e is the electron field. We get vy = 1 —
2
(oo (500~ 1/2+ 2+ 2/2)5:
sin“04\
VR= 1— (62 + gcos29w )5

The difference in maximal speed for the left and right helicities is ~ (10723 —10724),
We see that ratios of LIVts are a-independent. For instance:

10 2 g2 22 o 2 2 1
oL —vy  3E (60529w(sm 0w —1/2)%+g /2)2

VR — Vs 2627(g2sin49w)l
3 00529»“, 2

Mesons and Baryons, JA, PRD72:024027,2005

In order to apply our results to the computation of the UHECR spectrum and other
phenomena, we must calculate the maximal attainable velocity(MAV) of hadrons. As we
mentioned before, the problem is hadronization. One way to get an estimation of the
effect is using effective lagrangians.

We use the results of (ecker and fearing) for the wave function renormalization of pions
and nucleons in the chiral lagrangian and Heavy Baryon Chiral Perturbation Theory.
They get:

—1 4 3( 1 .
Zﬂ. = 1 — Mtnwz—i— ﬁnlte

—1 9g2m$, 1 .
ZN :1—W?—I—ﬁnlte

Here, m, is the renormalized pion mass, F' is the renormalized decay constant of pions
and g4 is the axial vector coupling constant, in the chiral limit.

Using the LIV metric, we can read off the MAV for pions and nucleons:

Qm%a
cr=1+ 377
o Qm%g%a
cn=1+ Yoz

Bounds on «

We can get bounds on «, studying the threshold conditions for:

Pair Creation v+ p— p+e' + e, which dominates the spectrum up to an energy ~ 4 x
1019 eV ;

Photo-Pion Production v+ p— p+ 7, which determines the spectrum for E > 8 x 1019,
Combining the two reactions and the standard values, m, = 139M e v, g4 = 1.26, F' =
92.4M ewv, we get a more stringent bound from recent Auger data:

—a<13x102*

This implies that photons are the fastest particles and they arrive before neutrinos
coming from the same source of GRB. Moreover, photons become unstable. They decay
in a electron positron pair above an energy Fj. See below.

Since Cphoton > Cproton, Proton is stable under Cerenkov radiation in vacuum, which is
highly suppressed. So o < 0 is prefered for this reason also.

A MORE PRECISE BOUND

Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic
Rays. S.T. Scully, F.W. Stecker, Published in Astropart.Phys.31:220-225,2009. e-Print:
arXiv:0811.2230 [astro-ph)]
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We present the results of a detailed calculation of the modification of the UHECR spec-
trum caused by LIV using the formalism of Coleman and Glashow. We then compare
these results with the experimental UHECR data from Auger and HiRes. Based on
these data, we find a best fit amount of LIV of 4. 5+4 > x 10723 consistent with an upper
limit of 6 x 10723, This possible amount of LIV can lead to a recovery of the cosmic ray
spectrum at higher energies than presently observed. Such an LIV recovery effect can be
tested observationally using future detectors.

This means:

Spp<6x 10723

2m2a Qm%gia

3F? 8F?

Opp=Cr — Cp= =253(—a), —a<237x10 2

In what follows we used — o =10"24

Photon decay

It has been pointed out in (Coleman,Glashow) that if Cphoton > Celectron then the pro-

_ . /2
cess ¥ — e + e~ is allowed above an energy Fo: Fo=m. 5o where dc=c, — ce. In our
case, we have:

Ser=—a(5e” ~ (kg (50w —1/2)°+ €+ ¢°/2)/2)

23 sin?6.,
(5032—@(;62— (62 gCOSQQ ) /2)
Therefore,

Ep,=15x 10° Gev
Ery,=1.3X 10° Gev

We should not detect photons with energies above 1.5 x 10°G ev

Neutral pion Stability

We study the main decay process of neutral pion 79 — v + v .This becomes forbidden if
¢y > cr and above an energy

Ep=—-2r—
\/2(07 cr)

Using the bound ¢, — ¢; < 10722 obtained in (antonov), we get —a <5.4 x 1
Better bound from recent Auger data:
—a<13x1072*

In our numerical estimates we have chosen o= — 1 x 10~ 24,

0723

We get E, =7 x 10% V. Therefore we expect that neutral pions above this energy are
stable, so they could be a primary component of UHECR.

15



Conclusions

The Standard Model in the LIV background metric studied here implies:

If the coupling constants are small as in the Electroweak theory, the dominant
LIV is the one loop contribution. This is true also for QCD due to asymptotic
freedom, but extrapolation to lower energies is not simple due to hadronization.

We have computed the LIV induced by Quantum Gravity on Baryons and
Mesons, using the Chiral Lagrangian approach. This permitted to fix that a <0.

Studying several available processes, we found bounds on «:

From pion stability and the most stringent experimental bound found in
(antonov): —a <5.4 x 10~ 23,

From recent Auger data: —a < 1.3 x 1
Then, several predictions are obtained:

0724

Photons are unstable above an energy 1.5 x 10°G e v.

Neutral pions are stable above an energy F,=7 x 10% V.

Our results are generic: All particles will have a modified maximum
attainable velocity and birrefringence occurs for charged leptons, but
not for gauge bosons, due to the chiral nature of the Electroweak cou-
plings.

THANK YOU
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