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Quantum gravity issues-Cosmic In
ationDuring a brief period of time, the size of the universe growth exponentially.

Figure 1 .In
ation predicts that the Universe is 
at. WMAP satellite data on the CBMR supportit.

Figure 2 .QUANTUM GRAVITY?- Gravity can be neglected compared to electroweak or strong forces among elementaryparticles, BUT at an energy of MP � 1 0 1 9Gev becomes the dominant interaction. Protonmass � 1 Gev.-The Universe at times t < 1 0� 35s after B ig Bang, had an energy per particle � MP .-Gravity determines the initial conditions for the evolution of the Universe.-At those early times, the Universe has atomic size, so Quantum Mechanics must beused to describe it .- General Relativity is not RENORMALIZABLES = Zddx � gp ( 12� R + LM )2



Here � = 8 �Gc4 has dimension of M� 2 rendering the perturbative series non-renormaliz-able .-Two roads to Quantum Gravity:i) S tring Theory. Basic ob jects are not point particles but one dimensional struc-tures( strings) . The theory is �nite, has a pletora of vacua. Unify all forces d=1 0 , 2 6 .ii) Loop Quantum Gravity. Predicts space is discrete, black hole entropy follows fromthe Quantum Geometry. Continuum limit di�cult.
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Gamma Ray BurstsG . Amelino-Camelia et al. , Nature 393( 1 998) 763 .

L � 1 0 1 0 Light-yearsPROPOSITION: �v � EEQGproduces the structure of GRB with � t � 1 0� 3 s .EQG � EPl anck = 1 0 1 9 Gev.Dispersion Relation due to Quantum Gravity correc-tions( S trings) c2pG 2 = E2 [ 1 + f ( EEQG ) ]For E < < EQG , we have c2pG 2 = E2 [ 1 + � EEQG ] ; � � � 1Speed of propagation v = @E@p � c( 1 � � EEQG )
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PARTICULAR FEATURES OF THE EFFECTThe correction induced by QG e�ects grows with the energy E . Instead, in anormal medium, it decreases with E .The delay is very small, EXCEPT if the wave travels a very large distance L :� t = �Lc EEQGTypical pho ton energie s in GRB: � 0 . 1 � � � � � � 1 00Me v � � � � > Te vWith L � 1 0 1 0 l i g h t � y e a r s , we get � t � 1 0� 3 seconds, for EEG � EP , which is theright order of magnitude.

Quantum Gravity Vacuum is populated by virtual black holes--> Non-covariant Dispersion relation as in media at T � 0 .
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R. Gambini and J . Pullin, Phys. Rev.D59( 1 999) 1 24021 .Modi�ed Maxwell Equations@tEG = � rG � BG + 2�lPrG 2BG@tBG = rG � EG � 2�lPrG 2EGj � j � 1Solutions with de�nite helicityEG � = R e ( ( ê 1 � i ê 2 ) e i ( 
� t� kG : xG )
� = k 2 � 4�lPk 3p� k ( 1 � 2�lPk )1 . B irefringent E�ect: The speed of propagation depends on the helicity.2 . It is diferent from the e�ect found by Amelino-Camelia et al.3 . The vacuum j � > violates parity.Neutrinos and Quantum GravityJ . A. , H. Morales-Tecotl� and L. F. Urrutia, Phys. Rev. Lett . 8 4( 2000) 23 1 8 .Modi�ed neutrino Wave equations" i~ @@t � i~Â�G � r + Ĉ2L # �( t ; xG ) + m(� � �i~�G � r ) i�2 �� ( t ; xG ) = 0 ;The dispersion relation corresponding to it is :E�2 ( p; L) = (A2 + m2�2 ) p2 + m2�2 + � C2L � 2 � B p; B = A� CL + 2��m2� ; ( 1 )where A; B ; C have been expressed in momentum space and depend on L . The � inEq. ( 1 ) stand for the two neutrino helicities. Let us emphasize that the solution �( t ; xG )to Eq. ( 3 ) is given by an appropriate linear combination of plane waves and helicityeigenstates, given that the neutrinos considered are massive.
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Ultra High Energy Cosmic RaysIn this talk we are concerned with the observation of ultra high energy cosmic rays(UHECR) , i. e . those cosmic rays with energies greater than � 4 � 1 0 1 8 eV.- Although not completely clear, it has been suggested that these high energy particlesare possibly heavy nuclei ( we will assume here that they are protons) .- By virtue of the isotropic distribution with which they arrive to us, they originate inextragalactic sources.The Greisen-Z atsepin-Kuz'min (GZK) cuto�-Their propagation in open space is a�ected by the cosmic microwave background radia-tion ( CMBR) , producing a friction on UHECR making them release energy in the formof secondary particles and a�ecting their possibility to reach great distances.- C osmic rays with energies above 1 � 1 020 eV should not travel more than � 1 00 Mpc.
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The Greisen-Zatsepin-Kuz'min ( GZK) cuto�. Data

UHECR spectrum and AGASA observations. The �gure shows the UHECR spectrumJ (E) multiplied by E3 , for uniform distributed sources, without evolution, and with amaximum generation energy Emax = 1 .

UHECR spectrum and HiRes observations. The �gure shows the UHECR spectrumJ (E) multiplied by E3 .The Auger Observatory has recently reported his observations on the highest energycosmic rays.They see the GZK cuto� in the 
ux. But still some of the cosmic rays have a transGZK energy. This means that Lorentz invariance violation may be necessary to explaintheir presence, if nearby sources of such cosmic rays are not found.8



The combined energy spectrum multiplied by E3 , and the predictions of three astro-physical models . The input assumptions of the models (mass composition at thesources, the source distribution, spectral index and exponential cuto� energy per chargeat the acceleration site) are indicated in the �gure.
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LIV of the integration measure: JA, Phys . Rev. Lett .94, 2 2 1 302 ( 2005 )� The main e�ect of QG is to deform the measure of integration ofFeynman graphs at large four momenta by a tiny LIV. The classicallagrangian is unchanged.Equivalently, we can say that QG deforms the metric of space-time, introducing atiny LIV proportional to ( d-4)� , d being the dimension of space time in Dimen-sional Regularization and � is the only arbitrary parameter in the model.� Such small LIV could be due to quantum 
uctuations of the metric of space-timeproduced by QG : virtual black holes , D-branes, compacti�cation of extra-dimen-sions or spin-foam anisotropies . A precise derivation of � will have to wait foradditional progress in the available theories of QG. An intriguing possibility maybe provided by the anisotropy between spatial and temporal directions found nec-essary to recover our universe at macroscopic scales in a recent numerical simula-tion of Quantum Gravity ( Ambjorn) .� Within the Standard Model, such LIV implies several remarkable e�ects , whichare wholly determined up to one arbitrary parameter (� ) . The main e�ects are:� The maximal attainable velocity for particles is not the speed of light, butdepends on the speci�c couplings of the particles within the Standard Model.Also birrefringence occurs for charged leptons, but not for gauge bosons. In par-ticular, photons and neutrinos have di�erent maximum attainable velocities. Thiscould be tested in the next generation of neutrino detectors such as NUBE.� Vertices in the SM will pick up a �nite LIV.Cuto� regulator:� To see what are the implications of the asymmetry in the measure for renormaliz-able theories, we will mimic the Lorentz asymmetry of the measure by thereplacement Zddk � > Zddk R ( k 2 + �k02�2 )� Here R is an arbitrary function, � is a cuto� with mass dimensions, that will goto in�nity at the end of the calculation. We normalize R ( 0 ) = 1 to recover theoriginal integral. R (1 ) = 0 to regulate the integral. � is a real parameter. Noticethat we are assuming that rotational invariance in space is preserved. More gen-eral possibilities such as violation of rotational symmetry in space can be easilyincorporated in our formalism.� This regulator has the property that for logarithmically divergent integrals , thedivergent term is Lorentz invariant whereas when the cuto� goes to in�nity a�nite LIV part proportional to � remains.One Loop: Bosons� Let D be the naive degree of divergence of a One Particle Irreducible ( 1 PI)graph. The change in the measure induces modi�cations to the primitively logdivergent integrals( D=0) In this case, the correction amounts to a �nite LIV.1 0



The �nite part of 1 PI Green functions will not be a�ected. Therefore, S tandardModel predictions are intact, except for the maximum attainable velocity for par-ticles , which receives a �nite wholly determined contribution from QuantumGravity.� Let us analyze the primitivily divergent 1 PI graphs for bosons �rst .Self energy: �( p) = �( 0 ) + A��p�p� + c o n v e r g e n t , A�� = 12 @�@��( 0 ) . Wehave: A�� = c2 ��� + a��c2 is the log divergent wave function renormalization counterterm; a�� is a �niteLIV. The on-shell condition is :p2 � m2 � a��p�p� = 0If spatial rotational invariance is preserved, the nonzero components of thematrix a are: a00 = a0 ; a i i = � a 1So the maximum attainable velocity for this particle will be:vm = 1 � a 11 � a0r � 1 � ( a 1 � a0 ) / 2 ( 2 )One Loop: FermionsFor fermions, we have the self energy graph� ( p) = � ( 0) + s ��
�p�s ��
� = @��( 0) . Moreover s �� = s ��� + a��/ 2s is a log divergent wave function renormalization counterterm; a�� is a �nite LIV. Themaximum attainable velocity of this particle will be given again by equation ( 3 ) .One Loop: Gauge bosonsConsider the most general quadratic Lagrangian which is gauge invariant, but couldpermit LIV' s 1 L = c����F��F��c���� is antisymmetric in �� and �� and symmetric by (� ; �) < � > ( �; � ) It impliesthat the most general expression for the self-energy of the gauge boson will be���( p) = c����p� p� �( p)We see that p����( p) = 0c���� is given by a logarithmically divergent integral.We get: c���� = c2 ( ������ � ������ ) + a����c2 is a Lorentz invariant counterterm and a���� is a LIV.1 . A Chern-S imons term is absent due to the symmetry k� � > � k� , which is preserved by the regu-lator . 1 1



It is clear that the same argument applies to massive gauge bosons that got their massby spontaneous gauge symmetry breaking as well as to the graviton in linearizedgravity.
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LIV Dimensional RegularizationWe generalize dimensional regularization to a d dimensional space with an arbitraryconstant metric g�� . We work with a positive de�nite metric �rst and then Wick rotate.We will illustrate the procedure with an example. Here g = d e t( g�� ) and � > 0 .1gp Z ddk( 2�) d k� k�( k 2 + �) n =1gp �(n) Z01 dt tn� 1 Z ddk( 2�) d k� k� e� t ( g��k� k �+�) =1( 4�) d/ 2 g��2 �(n � 1 � d/ 2 )�(n) 1�n� 1 � d/ 2In the same manner, after Wick rotation, we obtain a generalization of dimensional reg-ularization suitable for an arbitrary constant metric .These de�nitions preserve gauge invariance, because the integration measure is invariantunder shifts. To get a LIV measure, we assume that g�� = ��� + ( 4�) 2��� 0�� 0� where� = 2 � d2 . A formerly divergent integral will have a pole at � = 0, so when we take thephysical limit , � � > 0 , the answer will contain a LIV term.To de�ne the counterterms, we used the minimal substraction scheme(MSS) ; that is wesubstract the poles in � from the 1 PI graphs.LIV Dimensional Regularization reinforces our claim that these tiny LIV' soriginates in Quantum Gravity. In fact the sole change of the metric ofspace time is a correction of order � and this is the source of the e�ectsstudied above. Quantum Gravity is the strongest candidate to produce suche�ects because the gravitational �eld is precisely the metric of space-timeand tiny LIV modi�cations to the 
at Minkowsky metric may be producedby quantum 
uctuations.Explicit One loop computations:We use LIV Dimensional Regularization.Photons The LIV photon self-energy in the SM is:L��� ( q ) = � 233 e 2� q� q�( ����0��0� + ����0��0� � ����0��0� � ����0��0�)It follows that the maximal attainable velocity isv
 = 1 � 236 e 2�We have included coupling to quarks and charged leptons as well as 3 generations andcolor.Neutrinos: The maximal attainable velocity isv� = 1 � ( 3 + tan2�w ) g 2 �8In this scenario, we predict that neutrinos emitted simultaneously with photons ingamma ray bursts will not arrive simultaneously to Earth . The time delay during a
ight from a source situated at a distance D will be of the order of ( 1 0� 22 � 1 0� 23 )D/c � 1 0� 5 � 1 0� 6 s, assuming D = 1 0 1 0 light-years . No dependence of the time delay onthe energy of high energy photons or neutrinos should be observed. Photons will arriveearlier( later) if � < 0(� > 0) . These predictions could be tested in the next generation ofneutrino detectors such as NUBE.Using R � -gauges we have checked that the LIV is gauge invariant. The gauge parametera�ects the Lorentz invariant part only. 1 3



Electron self-energy in the Weinberg-Salam model. Birrefringence:De�ne: eL = 1 � 
52 e , eR = 1 + 
52 e , where e is the electron �eld. We get vL = 1 �( g2cos2 �w ( sin2�w � 1 / 2 ) 2 + e 2 + g2/ 2 ) �2 ;vR = 1 � ( e 2 + g2 s in4�wcos2 �w ) �2The di�erence in maximal speed for the left and right helicities is � ( 1 0� 23 � 1 0� 24) .We see that ratios of LIVts� are � - independent. For instance:vL � v
vR � v
 = 1 03 e 2 � ( g 2c o s2 �w ( s in2 �w � 1 / 2 ) 2 + g2 / 2 ) 121 03 e 2 � ( g 2 s in4�wc o s2 �w ) 12Mesons and Baryons, JA, PRD72 : 024027, 2 005In order to apply our results to the computation of the UHECR spectrum and otherphenomena, we must calculate the maximal attainable velocity(MAV) of hadrons. As wementioned before, the problem is hadronization. One way to get an estimation of thee�ect is using e�ective lagrangians.We use the results of ( ecker and fearing) for the wave function renormalization of pionsand nucleons in the chiral lagrangian and Heavy Baryon Chiral Perturbation Theory.They get:Z�� 1 = 1 � 4m�23 ( 4� ) 2F 2 1� + �niteZN� 1 = 1 � 9 gA2 m�24( 4� ) 2F 2 1� + �niteHere, m� is the renormalized pion mass, F is the renormalized decay constant of pionsand gA is the axial vector coupling constant, in the chiral limit .Using the LIV metric , we can read o� the MAV for pions and nucleons:c� = 1 + 2m�2 �3F 2cN = 1 + 9m�2 gA2 �8F 2Bounds on �We can get bounds on � , studying the threshold conditions for:Pair C reation 
 + p! p+ e+ + e� , which dominates the spectrum up to an energy � 4 �1 0 1 9 eV. ;Photo-Pion Production 
 + p! p+ � , which determines the spectrum for E > 8 � 1 0 1 9 .C ombining the two reactions and the standard values, m� = 1 39M e v ; gA = 1 . 2 6 ; F =92 . 4Me v , we get a more stringent bound from recent Auger data:� � < 1 . 3 � 1 0� 24This implies that photons are the fastest particles and they arrive before neutrinoscoming from the same source of GRB . Moreover, photons become unstable. They decayin a electron positron pair above an energy E0 . S ee below.S ince cph o ton > cpro t on , Proton is stable under Cerenkov radiation in vacuum, which ishighly suppressed. So � < 0 is prefered for this reason also.A MORE PRECISE BOUNDLorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy CosmicRays. S . T. S cully, F.W. Stecker, Published in Astropart . Phys. 3 1 : 2 20-225 , 2 009 . e-Print :arXiv: 08 1 1 . 2 2 3 0 [ astro-ph] 1 4



We present the results of a detailed calculation of the modi�cation of the UHECR spec-trum caused by LIV using the formalism of Coleman and Glashow. We then comparethese results with the experimental UHECR data from Auger and HiRes. Based onthese data, we �nd a best �t amount of LIV of 4. 5� 4. 5+ 1 . 5 � 1 0� 23 , consistent with an upperlimit of 6 � 1 0� 23 . This possible amount of LIV can lead to a recovery of the cosmic rayspectrum at higher energies than presently observed. Such an LIV recovery e�ect can betested observationally using future detectors .This means: ��p < 6 � 1 0� 23��p= c� � cp= 2m�2�3F2 � 9m�2 gA2 �8F2 = 2 . 5 3 ( � � ) ; � � < 2 . 3 7 � 1 0� 23In what follows we used � � = 1 0� 24Photon decayIt has been pointed out in ( Coleman, Glashow) that if cph o t on > ce l e c t ron then the pro-cess 
! e+ + e� is allowed above an energy E0 : E0 = me 2� cq where �c = c
 � ce . In ourcase, we have:� cL = � � ( 236 e 2 � ( g2cos2 �w ( sin2�w � 1 / 2 ) 2 + e 2 + g2/ 2 ) / 2 )� cR = � � ( 236 e 2 � ( e 2 + g2 s in4�wcos2 �w ) / 2 )Therefore, EL0 = 1 . 5 � 1 09 GevER0 = 1 . 3 � 1 09 GevWe should not detect photons with energies above 1 . 5 � 1 09G e vNeutral pion S tabilityWe study the main decay process of neutral pion �0 ! 
 + 
 . This becomes forbidden ifc
 > c� and above an energyE� = m�2 ( c
 � c� )pUsing the bound c
 � c� < 1 0� 22 obtained in ( antonov) , we get � � < 5 . 4 � 1 0� 23Better bound from recent Auger data:� � < 1 . 3 � 1 0� 24In our numerical estimates we have chosen � = � 1 � 1 0� 24 .We get E� = 7 � 1 0 1 9e V . Therefore we expect that neutral pions above this energy arestable, so they could be a primary component of UHECR.
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ConclusionsThe Standard Model in the LIV background metric studied here implies:� If the coupling constants are small as in the Electroweak theory, the dominantLIV is the one loop contribution. This is true also for QCD due to asymptoticfreedom, but extrapolation to lower energies is not simple due to hadronization.� We have computed the LIV induced by Quantum Gravity on Baryons andMesons, using the Chiral Lagrangian approach. This permitted to �x that � < 0 .� Studying several available processes , we found bounds on � :From pion stability and the most stringent experimental bound found in( antonov) : � � < 5 . 4 � 1 0� 23 .From recent Auger data: � � < 1 . 3 � 1 0� 24Then, several predictions are obtained:� Photons are unstable above an energy 1 . 5 � 1 09G e v .� Neutral pions are stable above an energy E� = 7 � 1 0 1 9e V .Our results are generic : All partic les will have a modi�ed maximumattainable velocity and birrefringence occurs for charged leptons, butnot for gauge bosons, due to the chiral nature of the Electroweak cou-plings. THANK YOU
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