
General Tensor
Let us consider a general coordinate transformation:

x′a = x′a(x), a=1...., n (1)

n is the dimension of space.

We have:

dx′a =
∂x′a

∂xb
dxb (2)

In analogy with this we say that V a is a contravariant vector if under (1) it
transforms like (2), i.e.

V ′a(x′)=
∂x′a

∂xb
V b(x) (3)

Similarly, let us consider the gradient of a scalar function. We say that A(x) is a
scalar function if:A′(x′)= A(x). It follows that:

∂A′(x′)

∂x′a
=

∂A(x)

∂x′a
=

∂A(x)

∂xb

∂xb

∂x′a
(4)
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In analogy with this transformation law, we say that U a is a covariant vector if
under a change of variables (1), we have:

Ua
′(x′) =

∂xb

∂x′a
Ub(x) (5)

1 Tensor Product

Consider two covariant vectors, U a ,V a . We have:

Ua
′(x′)Vb

′(x′) =
∂xc

∂x′a

∂xd

∂x′b
Uc(x)Vd(x) (6)

We say that a set of functions Tab that transforms under (1) as (6) is a covariant
tensor of rank 2. That is:

Tab
′ (x′) =

∂xc

∂x′a
∂xd

∂x′b
Tcd(x) (7)

We call Sab = U aV b the tensorial product of the two covariant vectors U a and V b .
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Generally we says that a set of functions T
b1....bq

a
1
....ap

is a p-covariant and q-

contravariant tensor if under (1) we have:

T ′
b1....bq

a
1
....ap

(x′)=
∂xc1

∂x′a1
....

∂xcp

∂x′
ap

∂x′b1

∂xd1

....
∂x′

bq

∂xdq
T

d1....dq

c
1
....cp

(x) (8)

The tensor product of two arbitrary tensors U
b1....bq

a1....ap
, V

d1....ds

c1...cr
defined by

U
b1....bq

a1....ap
(x)V

d1....ds

c1...cr
(x) (9)

is a (p+r) covariant and (q+s) contravariant tensor.

2 Contraction

2.1

Consider a mixed tensor T
b

a
, then

S = Ta
a
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is a scalar.

NOTATION(Einstein): Repeated indices in a monomial are summed from 1 to n.

Proof:

Ta
′a(x′) =

∂x′a

∂xb

∂xc

∂x′a
Tc

b(x)= δb
cTc

b(x)= Ta
a(x)

In general the contraction of an upper index with a lower index in a p-covariant and
q-contravariant tensor produces a (p-1) covariant and (q-1) contravariant tensor.

Notice that contraction of different indices, produces different tensors.

3 Some important tensors

Kronecker delta:δb
a is a one covariant, one contravariant tensor. Moreover it is an

invariant tensor, because it has the same components in all coordinate systems.

Proof:

δ ′

a
b =

∂x′b

∂x′a
=

∂x′b

∂xc

∂xc

∂xd

∂xd

∂x′a
=

∂x′b

∂xc

∂xd

∂x′a
δd

c (10)

Symmetric and antisymmetric tensors.
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Consider Tab
c a tensor. Then: Sab

c = T ab
c + T ba

c and A
ab

c = T ab
c

− T ba
c are tensors,

called the symmetric and antisymmetric component of T ab
c .

Proof:

S ′

ab
c (x′) = T ′

ab
c (x′) + T ′

ba
c (x′) =

∂x′c

∂xi

∂xj

∂x′a

∂xk

∂x′b
T jk

i (x) +
∂x′c

∂xi

∂xj

∂x′b

∂xk

∂x′a
T jk

i (x) =

∂x′c

∂xi

∂xj

∂x′a

∂xk

∂x′b
(T jk

i (x)+ T kj
i (x)) =

∂x′c

∂xi

∂xj

∂x′a

∂xk

∂x′b
Sjk

i (x) (11)

The proof is similar for the antisymmetric part.Notice that this operation can be
applied to any pair of indices. Iterative application of the operation will produce
tensors that will form representations of the permutation group Sn.

4 Pseudotensors

We define a pseudotensor of weight r a set of functions Da1....ap

b1....bq that under (1)
transform as follows:

D ′
b1....bq

a
1
....ap

(x′) = Jr ∂xc1

∂x′a1
....

∂xcp

∂x′
ap

∂x′b1

∂xd1

....
∂x′

bq

∂xdq
D

d1....dq

c
1
....cp

(x) (12)
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where J is the jacobian of the transformation (1). i.e.

J(x) = det

(

∂xa

∂x′b

)

(13)

r=0, tensor

r=1, pseudotensor or tensor density

r=-1, tensor capacity

5 The Levi-Civita symbol

εa1....an = sgn

(

1....n

a1....an

)

(14)

Here sgn is the sign of the permutation in brackets. If some of the indices are
repeated, it gives zero.

Use the determinant identity:

J−1sgn(σ)=
∑

λεSn

sgn(λ)
∂x′σ(1)

∂xλ(1)
....

∂x′σ(n)

∂xλ(n)
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or

J−1εa1....an =
∂x′a1

∂xb1
....

∂x′an

∂xbn
εb1....bn (15)

It follows that εa1....an is a pseudotensor of weight 1.
Similarly, we can prove that:

Jεa1....an
=

∂x′b1

∂xa1

....
∂x′bn

∂xan
εb1....bn

(16)

so εa1....an
is a pseudotensor of weight -1.

6 An important identity

We have that:

εj1....jn
εi1....in =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δj1

i1....δjn

i1

δj1

i2....δjn

i2

............

δj1

in....δjn

in

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(17)
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Proof:

We must have: i1 =σ(1)...., in =σ(n) and j1 =λ(1), ....jn =λ(n)for some
permutations σ and λ, otherwise the determinant vanishes (either two columns
or two rows are equal). Then, we get:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δj1

i1....δjn

i1

δj1

i2....δjn

i2

............

δj1

in....δjn

in

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= sgn(σ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

δj1

1 ....δjn

1

δj1

2 ....δjn

2

............

δj1

n ....δjn

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= sgn(σ)sgn(λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

δ1
1....δn

1

δ1
2....δn

2

............

δ1
n....δn

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= sgn(σ)sgn(λ) =

ε j1....jn
ε i1....in

7 Lorentz transformations

ηαβ = Lα
µLβ

νηµν, η = LtηL, detL =±1

Proper transformations are continuosly connected to the identity. We can write:

Lα
µ = δα

µ + ωα
µ,

ηαβ = (δα
µ + ωα

µ)(δβ
ν + ωβ

ν)ηµν =(δα
µ + ωα

µ)(ηµβ + ωµβ) = ηαβ + ωαβ + ωβα
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ωβα =−ωαβ, 6 l.i componentes

7.1 Lorentz group generators

Boosts:

K1 =









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









,

K2 =









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









K3 =









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0
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Rotations:

J1 =









0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0









J2 =









0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0









J3 =









0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0









Lie Algebra:

[A, B] = AB −BA

[Ji, Jj] = εijkJk, [Ki, Kj] =−εijkJk, [Ji, Kj] = εijkKk (18)

Exercise: Verify eq.(18).
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