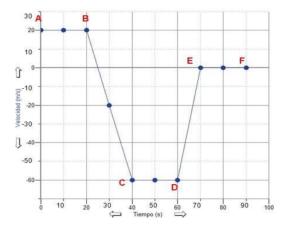


FIS1503 - Interrogación Nro. 1

Instituto de Física Pontificia Universidad Católica de Chile Primer Semestre 2018

Tiempo para responder: 170 minutos

Nombre:	Sección:


Instrucciones:

- Escriba por ambos lados del papel para que no le falte espacio. Destaque la respuesta final a cada pregunta en un marco. Recuerde que si utiliza lápiz de grafito, perderá la posibilidad de reclamar errores de corrección.
- Sólo se responderán consultas de enunciado.

Problema 1

Una partícula parte con velocidad de $20\ m/s$, su gráfico velocidad versus tiempo se muestra en la figura. Determine:

- a) El desplazamiento total de la partícula.
- b) La distancia total recorrida.
- c) La aceleración para cada tramo del gráfico. Con esos valores realice un gráfico aceleración versus tiempo.
- c) El tiempo para el cual se invierte el movimiento.

Problema 2

Durante su entrenamiento en la Tierra para la última expedición a la Luna el astronauta G. Cernan logró un salto vertical de altura h_t .

- a) Después de cuánto tiempo t_m llegó a su máxima altura, cuánto tiempo T_t estuvo en el aire, y cuál era su velocidad inicial v_0 ?.
- b) Durante el paseo en la Luna saltó de nuevo, partiendo con la misma velocidad inicial v_0 . Cuánto tiempo duró este salto T_l y qué altura h_l logró sobre el suelo lunar?. Calcula el cuociente entre h_l y h_t .

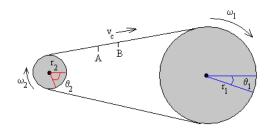
Datos: Aceleración (hacia abajo) en la tierra $g_t=9.8\ m/s^2,$ aceleración en la luna $g_l=1.6\ m/s^2,\ h_t=0.5\ m$

Problema 3

El dueño de un perro se mueve en un auto con velocidad v_0 , constante. Desde el auto lanza un hueso con velocidad v_H con respecto al auto y en la misma dirección del movimiento. Se lanza con un ángulo θ con la horizontal, tal como se muestra en la figura. El perro se encuentra en reposo justo al lado del auto al momento del lanzamiento, sale con aceleración constante para atrapar el hueso. Si $v_0 = 10 \text{ m/s}$, $v_H = 15$ m/s, y $\theta = 70$. Determine:

- a) El vector velocidad de salida del hueso, con respecto a un observador en reposo en la calle.
- b) La distancia a la que llega el hueso desde la posición inicial.
- c) La aceleración del perro tal que agarre el hueso justo antes de llegar al suelo.

NOTA: Considere que no hay roce, y que el auto no tiene altura, y por lo tanto el lanzamiento y la llegada se producen a nivel del suelo.



Problema 4

La figura representa un plato y un piñón unidos por una cadena, en una bicicleta. Suponga conocidos la velocidad angular ω_2 y los radios r_1, r_2 .

- a) Calcule la velocidad tangencial v_c .
- b) Encuentre la velocidad angular ω_1 .
- c) Cuánto vale la aceleración centrípeta a_2 en el borde del piñón de radio r_2 ?
- d) Cuánto vale la aceleración centrípeta a_1 en el borde del plato de radio r_1 ?
- e) Si $r_2=5$ $cm,r_1=10$ $cm,v_c=60$ cm/s, encuentre $\omega_1,$ $\omega_2,$ $a_1,$ $a_2.$

