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Abstract We show that in complete agreement with clas-
sical mechanics, the dynamics of any quantum mechanical
wave packet in a linear gravitational potential involves the
gravitational and the inertial mass only as theirratio. In
contrast, the spatial modulation of the corresponding energy
wave function is determined by the third root of theproduct
of the two masses. Moreover, the discrete energy spectrum of
a particle constrained in its motion by a linear gravitational
potential and an infinitely steep wall depends on the iner-
tial as well as the gravitational mass with different fractional
powers. This feature might open a new avenue in quantum
tests of the universality of free fall.

1 Introduction

The equivalence principle is a cornerstone in the foundations
of general relativity [1]. Indeed, the assumption of the pro-
portionality of inertial and gravitational mass implies that in
a linear gravitational potential all bodies experience thesame
acceleration and fall with the same rate. Without this univer-
sality of free fall, the geometrization of gravitation and its
reinterpretation as curvature of spacetime would not be pos-
sible. The fact that several alternative gravitational theories
predict the breakdown of the universality of free fall [2] isone
of the main reasons that drives physicists to test this bedrock
of modern physics to higher and higher accuracy.

Motivated by the seminal papers on neutron interfero-
metry [3–7] and the more recent, impressive matter wave ex-
periments [8–14], we address in the present paper the ques-
tion how the inertial and gravitational mass enter in non-
relativistic quantum mechanics. We show that in the case of

a linear gravitational potential, quantum dynamics only in-
volves the ratio of the two masses in complete accordance
with classical Newtonian mechanics. However, depending on
the specific preparation of the initial state, inertial and grav-
itational mass may appear in a more complicated way in the
time evolution of a physical state. As an example of such an
initial state, we discuss the energy eigenfunctions in a linear
potential [15,16], which have been analyzed e. g. in the con-
text of the coherence of an atom laser [17] or in connection
with the so-called atom trampoline, also known as the quan-
tum bouncer [18–22]. Indeed, the energy eigenstate in this
system is non-classical since the corresponding phase space
equations for the Wigner function do involve Planck’s con-
stant~. As a result such states are ideal objects to study the
role of inertial and gravitational mass in quantum mechanics.

Three central results obtained in this paper stand out: (i)
The quantum dynamics reduces to classical dynamics and
therefore can only involve the ratio of the inertial massmi

and the (passive) gravitational massmg, (ii) the spatial mod-
ulation of the energy eigenfunctions depends on the third root
of the product of the two masses, and (iii) the energy eigen-
values of the gravitational atom trampoline are proportional
to (m2

g/mi)
1/3.

1.1 Tests of the universality of free fall

The universality of free fall, often referred to as “weak equiv-
alence principle”, states that all bodies experience the same
gravitational acceleration independent of their internalstruc-
ture and composition, provided they are so small in size that
one can neglect the effects of gravity gradients. In other
words, the (inertial) mass of a body is proportional to its
weight, with an universal proportionality constant. A viola-
tion of this principle would arise e. g. when the interaction
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energy between the nucleons in an atom would not contribute
in the same manner to the gravitational mass, as it would for
the inertial.

The classical tests [1,2] of the universality of free fall as-
sume that the specific gravitational accelerationg̃(A) does
depend on the internal structure or the composition of the
bodyA. This assumption translates in terms of the inertial
and gravitational mass into the relation

g̃(A) ≡ g

(

mg

mi

)

A

. (1)

Here, the gravitational accelerationg should be considered
as a standardized acceleration corresponding to a particular
reference body.

A measure for the breakdown of the universality of free
fall is the so-called Eötvös parameter

η(A,B) ≡ 2 ·

(

mg

mi

)

A
−
(

mg

mi

)

B
(

mg

mi

)

A
+
(

mg

mi

)

B

= 2 · g̃(A)− g̃(B)

g̃(A) + g̃(B)
, (2)

which quantifies the normalized difference in the gravita-
tional accelerations between two different bodiesA andB.

The first tests of the equivalence of inertial and grav-
itational mass relied on pendulum experiments and can be
traced back to Newton and Bessel [23]. A great step towards
higher accuracies was realized by the classical torsion bal-
ance experiments of Eötvös [24] and Roll et al. [25]. Cur-
rently the best upper limits for the Eötvös parameter [26]
come from lunar laser ranging on the one hand and from the
so-called ”Eöt-Wash“ experiment [27,28] on the other. The
latter uses a sophisticated rotating torsion balance and limits
the Eötvös parameter to

η(Be,Ti) = (0.3± 1.8)× 10−13

for the gravitational acceleration of Beryllium and Titanium
towards Earth.

The motivation for quantum mechanical tests [29,30] of
the universality of free fall stems from the increase in accu-
racy that atom interferometry is expected to offer in the fu-
ture. Matter wave interferometry with freely fallingRb85 and
Rb87 isotopes has already been performed [12], and several
other experiments worldwide using different species of atoms
are right now in preparation [31].

1.2 Discussion of related work

In this paper we study the quantum mechanics of a particle in
a linear potential. Needless to say, this topic appears promi-
nently in many papers, in particular in connection with the
atom trampoline [18–20] whose energy eigenstates have been
theoretically investigated in [21], as well as in the context of
cold neutrons [32].

The work closest to ours is that of Davies [33] who has
investigated the problem of a quantum mechanical particle

in a linear gravitational field to gain insight into the equiva-
lence principle. However, motivated by the classical motion
his main emphasis is on a thorough analysis of the travel time
of wave packets. In complete agreement with our conclusion
that the dynamics is classical, he finds that classical and travel
times agree far from the classical turning point. However,
there are quantum corrections near the turning point. His cal-
culations are based on the definition of the Peres quantum
clock [34].

1.3 Outline of the paper

We start in Sect. 2 by recalling the universality of free fallin
Newtonian mechanics. Since we are interested in the Wigner
phase space formulation of the corresponding quantum me-
chanical version, we first introduce in Sect. 3 the quantum
Liouville equation describing the dynamics of the Wigner
function in an arbitrary potential. Moreover, we present the
partial differential equations in phase space determiningan
energy eigenstate in this potential. In Sect. 4 we then apply
these equations to analyze the dynamics of the Wigner func-
tion in a linear gravitational potential, as well as to determine
the Wigner function of the corresponding energy eigenstates.
Whereas the quantum dynamics just reflects the classical time
evolution and does not depend Planck’s constant~, the phase
space analog of the energy eigenstates does display quantum
features and involves~. This fact stands out most clearly in
the energy eigenfunctions of the linear potential discussed in
Sect. 5, where we show that the wave vector governing the
spatial modulation of the probability density is determined
by the third root of the product the inertial and gravitational
mass. In addition, we examine the energy eigenfunctions and
the eigenvalues of the atom trampoline, also known as quan-
tum bouncer, that is a particle trapped in the bounded poten-
tial resulting from the combination of a linear potential and an
infinitely steep wall. We conclude in Sect. 6 by summarizing
our results and by outlining possible experiments.

In order to keep the paper self-contained we summarize
concepts pertinent to the present discussion in several appen-
dices. For example in Appendix A we recall that the time
evolution of a particle in a linear potential can be represented
in phase space as a product of a shearing operator followed
by a displacement. It is only the displacement which contains
the gravitational acceleration. This decomposition provides
us with deeper insights into the physics of non-spreading
Airy wave packets as outlined in Appendix B. We dedicate
Appendix C to a discussion of the semi-classical limit of
the energy wave function in a linear gravitational potential.
Within the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) ap-
proximation we regain the universality of free fall. Moreover,
we can identify phase space quantization as the origin of the
unusual scaling properties of the energy eigenvalues of the
atom trampoline in terms of inertial and gravitational mass.
We conclude in Appendix D with a phase space analysis of
the atomic fountain.
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2 Universality of free fall in Newtonian mechanics

In the present section we briefly recall Newton’s law of mo-
tion for a single particle in a linear gravitational potential
which shows that the dynamics only depends on the ratio be-
tween the gravitational and the inertial mass. For this reason,
the free fall of two particles of different compositions is iden-
tical provided the inertial and gravitational mass are propor-
tional to each other and the particles start with the same initial
conditions. Note that the universality of free fall requires the
mentioned proportionality constant to be independent of the
particles composition, in which case it can be absorbed in the
universal gravitational acceleration.

Moreover, we examine the dynamics of a classical en-
semble of identical particles falling in linear gravitational po-
tential, thereby emphasizing some complications that come
along with tests of the universality of free fall based on clas-
sical statistical mechanics.

Since we consider a homogeneous gravitational potential,
we can restrict our analysis of the dynamics and kinemat-
ics to one spatial coordinatez. Moreover, instead of dealing
separately with the inertial and gravitational mass, we will
take advantage of the particle dependent gravitational accel-
eration (1) and denote the inertial mass of a particle most of
the time bym = mi.

2.1 Single particle dynamics

The time evolution of a particle moving in an external poten-
tial V = V (z) follows from Newton’s law of motion

mi z̈ = −∂V
∂z

, (3)

where the dots indicate differentiation with respect to time.
For a linear gravitational potential

Vl(z) ≡ mg g z (4)

we obtain from Eqs. (1) and (3)

z̈ = −mg

mi
g ≡ −g̃ . (5)

A breakdown of the universality of free fall would manifest
itself in a particle dependent gravitational accelerationg̃.

The solution of Newton’s law of motion (5) reads

z(t) = z0 + v0t−
1

2
g̃t2 ,

wherez0 andv0 denote the initial position and velocity of the
test particle, respectively. Therefore, tests of the universality
of free fall require identical initial conditions for the two test
particles.

2.2 Ensemble dynamics

So far, we have concentrated on the dynamics of a single par-
ticle in a linear gravitational field with a well defined initial
positionz0 and a well defined initial velocityv0. However,
in reality it is impossible to prepare the state of the physical
system with arbitrary accuracy. For this reason we now con-
sider the dynamics of an ensemble of particles described by a
classical distribution function

f0 = f0(z, v) .

The probability to find the particle betweenz andz+dz with
a velocity betweenv andv + dv is given byf0(z, v) dz dv.
The probability interpretation requires thatf0 is positive ev-
erywhere.

Next we turn to the dynamics of the initial ensemble due
to a conservative force

F (z) = −∂V
∂z

originating from the potentialV = V (z).
The requirement of conservation of probability leads us

to the classical Liouville equation
(

∂

∂t
+ v

∂

∂z
− 1

m

∂V

∂z

∂

∂v

)

f(z, v; t) = 0 (6)

subjected to the initial conditionf0(z, v) ≡ f(z, v; t = 0).
For the linear potentialVl, given by (4), this equation

takes the form
(

∂

∂t
+ v

∂

∂z
− g̃

∂

∂v

)

f(z, v; t) = 0 (7)

where we have recalled the definition of specific gravitational
acceleration (1).

It is easy to verify, that the solution of (7) reads

f(z, v; t) = f0

(

z − vt− 1

2
g̃ t2, v + g̃t

)

.

This expression brings out most clearly the fact, that the
dynamics off0 only depends oñg, that is on the ratio of grav-
itational and inertial mass. However, this property does not
exclude the possibility, thatf(z, v; t) can contain in addition
a dependence on the inertial mass, since the initial distribu-
tion f0 might involve the inertial mass.

For example, the stationary solution

fs(z, v) = N exp

[

− mv2

2kBT
− U(z)

kBT

]

(8)

of the Boltzmann equation representing a gas of colliding par-
ticles at temperatureT in a trapping potentialU = U(z)
involves the inertial massm. Here,N andkB denote a nor-
malization factor and the Boltzmann constant, respectively.

When we takefs as the initial distribution of our ensem-
ble of particles propagating in the gravitational field, thefinal
distributionf(z, v; t) will obviously involve not onlyg̃ but
also the inertial massm. Hence, in a comparison of the free
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fall of two ensembles of particles of different composition, it
is important to ensure that the initial distributions are identi-
cal. For the example of two different species of atoms, pre-
pared in the stationary solution of the Boltzmann equation,
given by (8), this requirement implies that the temperatures
and binding potentials have to be adjusted appropriately.

Hence, in the case of two initial ensembles of particles de-
scribed by a distribution function in position–velocity space,
a test of this universality of free fall is more complicated.Al-
though each member of the ensemble satisfies the universality
of free fall, the two initial distributions have to be identical in
order to create two comparable situations.

3 Wigner function: a few facts

In classical mechanics kinematics describes motion without
going into the origin of the motion. On the other hand dynam-
ics asks for the origin of the motion. In the same spirit quan-
tum kinematics describes the quantum states and quantum
dynamics their time evolution. Throughout our paper, this
distinction will be reflected in the separate treatment of ini-
tial states and their time evolution. In particular, we consider
energy eigenstates as natural candidates for initial states.

To the best of our knowledge the distinction between
kinematics and dynamics has been spelled out for the first
time most clearly by Weyl in his book “The Theory of Groups
and Quantum Mechanics” [35]. It is interesting that in this
book, Weyl also defines the concept of averages of symmet-
rically ordered operators using a distribution function, which
later became the Wigner function [36–38]. It is this phase
space function which we use in our quest to analyze how
the inertial and the gravitational mass manifest themselves
in quantum mechanics. We devote the present section to a
brief review of the Wigner distribution and focus on the ele-
ments most pertinent to the present discussion: the quantum
Liouville equation and the phase space analog of the time in-
dependent Schrödinger equation.

3.1 Definition

The Wigner functionW = W (z, p; t) is a quasi-probability
distribution which lives in phase space spanned by the posi-
tion z and its conjugate variable, the momentump. When the
state of the quantum system is described by a density operator
ρ̂ = ρ̂(t), the corresponding Wigner function reads

W (z, p; t) ≡ 1

2π~

∞
∫

−∞

dξ e−ipξ/~ 〈z + ξ/2 | ρ̂(t)| z − ξ/2〉 ,

(9)
where|z〉 denotes a position eigenstate.

This expression brings out the fact that the Wigner func-
tion is real. However, it is not necessarily positive. Moreover,
the Wigner function satisfies the marginal properties

∞
∫

−∞

dp W (z, p; t) = 〈z| ρ̂(t)|z〉 ≡ P (z; t) (10)

and
∞
∫

−∞

dz W (z, p; t) = 〈p| ρ̂(t)|p〉 ≡ P̃ (p; t) ,

that is the integrals over the phase space variablesp and z
yield the corresponding quantum mechanical probability den-
sitiesP = P (z; t) and P̃ = P̃ (p; t) of the conjugate vari-
ables.

The definition (9) of the Wigner function suggests that
this formulation of quantum mechanics rests on the Schrödinger
representation and requires a wave function or a density op-
erator as a starting point. However, this impression is mis-
leading. The Wigner phase space formulation of quantum
mechanics is an approach in its own right. In principle, there
is no need to resort to wave functions or density operators.
For a more detailed introduction to the Wigner function we
refer to [38].

3.2 Quantum dynamics in phase space

The dynamics of a quantum state|ψ(t)〉 describing the mo-
tion of a non-relativistic quantum particle of inertial massm
in a potentialV = V (z) follows from the Schrödinger equa-
tion

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (11)

with the Hamiltonian

Ĥ ≡ p̂2

2m
+ V (ẑ) .

This description is equivalent to the quantum Liouville
equation

(

∂

∂t
+

p

m

∂

∂z
− ∂V

∂z

∂

∂p
− L̂o

)

W (z, p; t) = 0 (12)

which governs the time evolution of the Wigner function
W =W (z, p; t). Here the differential operator

L̂o ≡
∞
∑

l=1

(−1)l

(2l + 1)!

(

~

2

)2l
∂2l+1V (z)

∂z2l+1

∂2l+1

∂p2l+1

involves only odd derivatives of the potentialV and even
powers of~.

Although the quantum Liouville equation is in general de-
rived from the time dependent Schrödinger equation (11), we
could also interpret (12) as the equation of motion for the
Wigner function without any reference to the Schrödinger
formulation of quantum mechanics. Indeed, if we possess a
priori knowledge about the initial Wigner function, there is
no need to refer to the time dependent density operatorρ̂(t),
since the Wigner functionW (z, p; t) contains all information
of a quantum system.
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3.3 Quantum kinematics in phase space

Energy eigenstates|E〉 of the time independent Schrödinger
equation

Ĥ |E〉 = E |E〉 (13)

are the elementary building blocks of quantum mechanics.
We now briefly motivate the phase space analog of this equa-
tion.

Three steps lead to the partial differential equations in
Wigner phase space for an energy eigenstate: (i) multiply (13)
by 〈E|, (ii) apply the Weyl–Wigner correspondence [38] and
(iii) take the real and imaginary part of the resulting equation.
In this way we obtain two partial differential equations forthe
Wigner functionWE = WE(z, p) of the energy eigenstate
that must be mutually satisfied.

The imaginary part yields the time independent quantum
Liouville equation

(

p

m

∂

∂z
− ∂V

∂z

∂

∂p
− L̂o

)

WE = 0 (14a)

which throughLo contains odd derivatives of the potential
only.

Equation (14a) is the quantum Liouville equation (12)
with a vanishing time derivative. This feature reflects the fact
that an energy eigenstate only picks up a phase during its time
evolution and the Wigner function is bi-linear in the state.As
a result, this phase factor drops out and the Wigner function
of an energy eigenstate is time independent.

From the real part we obtain the analog

(

− ~
2

8m

∂2

∂z2
+

p2

2m
+ V (z) + L̂e

)

WE = E WE (14b)

of the time independent Schrödinger equation which involves
only even derivatives of the potential in the differential oper-
ator

L̂e ≡
∞
∑

l=1

(−1)l

(2l)!

(

~

2

)2l
∂2lV (z)

∂z2l
∂2l

∂p2l
.

It is interesting that both,L̂e as well asL̂o, contain only even
powers of~.

3.4 Constraints on the initial Wigner function

In order to obtain a unique solution of the quantum Liou-
ville equation (12), we must specify the initial Wigner func-
tion W0 = W0(z, p). However, the choice ofW0 is a subtle
and context dependent enterprise. According to Planck every
quantum state must take up in phase space at least an area
2π~. In the language of Wigner functions this condition as-
sumes the form [38]

2π~ ≤





∞
∫

−∞

dz

∞
∫

−∞

dp W 2
0 (z, p)





−1

,

where the equal sign holds for pure states. Here we can inter-
pret the right hand side of this inequality as the effective area
of phase space taken up by a quantum state [39].

But even if we would choose a normalizable function in
phase space that satisfies this inequality, it is not clear that
it represents a physical Wigner function, since it must be re-
lated to a quantum state with positive semi-definite density
operator via the Weyl–Wigner correspondence. For a charac-
terization of the set of all phase space functions that represent
physical Wigner functions we refer to [40], or in the special
case of Gaussian phase space functions to [41]. We empha-
size that the energy eigenvalue equations (14) as well as the
dynamical equation (12) ensure the existence of a valid initial
Wigner function and its time evolution.

Since~ appears differently in the dynamical and kine-
matical equations of Wigner phase space, one could imagine,
at least mathematically, an extended phase space theory of
quantum mechanics in which both Planck’s constants differ
from each other. For example, a problem where the concept
of two different~ turned out to be useful [42] is Kramer’s
dilemma and the Langer transformation. However, such an
extension would probably lead to a physically inconsistent
theory. In this sense there is a parallelism between the equiv-
alence of gravitational and inertial mass in general relativity
and the identity of Planck’s constants of dynamics and kine-
matics in quantum mechanics.

4 Universality of free fall in Wigner phase space

Next we consider the partial differential equations (12) and
(14) determining the Wigner function from phase space for
the case of a linear gravitational potential given by (4). We
again analyze quantum dynamics and kinematics separately.

4.1 Quantum Liouville equation for a linear potential

For the linear potential (4) the second and all higher deriva-
tives vanish. As a result, the operator̂Lo, containing all odd
derivatives of the potential are zero and the equation of mo-
tion for the Wigner function (12) reduces to

(

∂

∂t
+
p

m

∂

∂z
−mg̃

∂

∂p

)

W (z, p; t) = 0 (15)

and no longer involves Planck’s constant~. In fact, the quan-
tum Liouville equation simplifies to the classical Liouville
equation (7) for the linear potential when we recall the rela-
tion

p = mv (16)

between the momentum and the velocity of the particle.
Accordingly, the solution of the quantum Liouville equa-

tion (15) is given by

W (z,m v; t) =W0

(

z − v t− 1

2
g̃ t2,m [v + g̃t]

)

, (17)
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with W0(z, p) ≡ W (z, p; t = 0) being the initial Wigner
function of the quantum system.

The explicit expression (17) for the time evolution of the
Wigner function emphasizes again the difference between dy-
namics and kinematics. Since the quantum Liouville equation
reduces to the classical Liouville equation in the case of a
linear potential, each point in phase space propagates accord-
ing to classical mechanics while maintaining its “weight” as
given by the initial Wigner functionW0 = W0(z, p). As a
result, thedynamicsonly involves the ratiomg/mi. How-
ever, the initial state may depend on the inertial or gravita-
tional mass in a nontrivial way and therefore the Wigner func-
tionW (z, p; t) may not only involve the mass ratiomg/mi.
Here we find a complete analogy to the classical treatment of
Sect. 2.2, with one distinct difference: not every initial quasi-
probability distributionW0(z, p) in phase space corresponds
to a possible quantum state.

We emphasize that the time evolution of the Wigner func-
tion in a linear potential given by (17) can be related in a
straightforward manner to the free propagation, as discussed
in Appendix A. One important consequence of this consid-
eration is the fact, that the specific gravitational acceleration
g̃ does not influence the spreading of the wave packet, but
only its position along thez-axis. In other words, the vari-
ance∆z2 ≡

〈

ẑ2
〉

− 〈ẑ〉2 is independent of̃g. In contrast, the
expectation value〈ẑ〉 does depend oñg.

Nevertheless, even a classical time evolution can, under
appropriate conditions, display non-classical features due to
a non-classical initial state. One prominent example is the
shrinking [43,44] of a free, radially symmetric wave packet.

4.2 Wigner function of an energy eigenstate

Next we turn to quantum kinematics and consider as an ini-
tial state the energy eigenstate of a quantum particle in the
linear gravitational potential given by (4). The partial differ-
ential equations determining the corresponding Wigner func-
tion WE =WE(z, p) with energyE follow from Eqs. (14).
In particular, the time independent quantum Liouville equa-
tion (14a) reduces to

(

p

m

∂

∂z
−mg̃

∂

∂p

)

WE(z, p) = 0 , (18a)

whereas the eigenvalue equation (14b) for the Wigner func-
tion reads

{

∂2

∂z2
+

8m

~2

[

E −
(

p2

2m
+mg̃z

)]}

WE(z, p) = 0.

(18b)
Since the time independent quantum Liouville equa-

tion (18a) represents a homogeneous first order partial dif-
ferential equation, we can apply the method of characteristics
and deduce thatWE can depend on the phase space coordi-
natesz andp only via the classical Hamiltonian

Hl(z, p) ≡
p2

2m
+mg̃z (19)

of a particle in a linear potential.
The particular functional dependence of the Wigner func-

tion onHl(z, p) is then determined by the eigenvalue equa-
tion (18b). The full solution [36,37]

WE(z, p) = NE ·Ai
[

(

8

~2mg̃2

)
1

3(

Hl(z, p)− E
)

]

(20)

is given in terms of the Airy functionAi = Ai(y), which
satisfies the ordinary differential equation [45]

(

d2

dy2
− y

)

Ai(y) = 0 . (21)

Note that the Wigner functionWE(z, p) is not normalizable.
As a result the energyE remains a continuous parameter and
NE depends onE.

In Fig. 1 we depict the Wigner functionWE =WE(z, p)
given by (20). We recognize a dominant positive-valued ridge
along the phase space trajectoryp = ±pcl(z;E) given by the
classical momentum

pcl(z;E) =
√

2m(E −mg̃z) . (22)

following from the conditionHl(z, p) = E with the classical
Hamiltonian (19). To be precise, at±pcl the second derivative
of the Airy function vanishes.

Fig. 1 Wigner functionWE = WE(z, p) of an energy eigenstate
in a linear gravitational potential forE = 0 as given by (20).
The parabolic shape is due to the functional dependence ofWE on
the Hamiltonian (19). The oscillatory behavior arises fromthe Airy
function which follows from the eigenvalue equation (18b) in phase
space.

In the classically forbidden domain of phase space

E <
p2

2m
+mg̃z

which is inaccessible for a classical point particle movingin
the linear gravitational potential, the Wigner function decays
exponentially.
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In the classically allowed realm of phase spaceWE is os-
cillatory and can take on negative values. This feature reflects
the interference nature of quantum mechanics and expresses
the fact that the energy eigenstate is the superposition of a
right and a left going wave, as shown in Appendix C.

We conclude by noting that the properties of the Airy
function have also been studied in the context of tunnel-
ing [46]. In particular, the dynamics of the Wigner func-
tion tunneling out of a binding delta function potential in the
presence of an external static electric field has been studied
in [47].

5 Energy wave functions in position space

The preceding section has employed a phase space analysis
to reveal the relationship between quantum and classical be-
havior of a particle in a linear potential. The dynamics of the
Wigner function are entirely classical, whereas the kinemat-
ics, and in particular the energy eigenstates, are quantum me-
chanical. We now address the question how the inertial and
gravitational mass make their appearances in the correspond-
ing energy eigenfunctionsuE = uE(z) ≡ 〈z|E〉 in position
space.

In principle, we could obtain the probability density
u2E(z) by taking advantage of the marginal property of the
Wigner function (20) together with the integral formula [48]

∞
∫

−∞

dξ Ai(ξ2 + y) = 2
2

3 πAi2
(

y/2
2

3 ) .

However, it is equally straight forward to solve the cor-
responding time independent Schrödinger equation. In the
present section we pursue this approach and show that the
spatial modulation of the energy wave function in the linear
gravitational potential depends on the third root of the prod-
uct of the gravitational and the inertial mass.

5.1 Unbounded linear potential

For a particle in a linear potential, the time independent
Schrödinger equation reads

(

d2

dz2
− 2m

~2
[mg̃ z − E]

)

uE(z) = 0. (23)

Due to the similarity of this equation with the energy eigen-
value equation in phase space (18b), their solutions must be
similar in form. Indeed, with the help of the differential equa-
tion of the Airy function (21), we can immediately verify that

uE(z) = NE ·Ai
(

(

2

m~2g̃2

)1/3

[mg̃z − E]

)

(24)

satisfies (23). The constantNE has to be chosen so as to en-
sure the orthonormality relation

〈E|E′〉 = δ(E − E′)

between two different energy eigenstates|E〉 and|E′〉.
It is instructive to cast (24) into the form

uE(z) = NE ·Ai (kz − ε) ,

by defining the dimensionless energy

ε ≡ E

(

2

m~2g̃2

)1/3

and

k ≡
(

2m2g̃

~2

)1/3

, (25)

which has the same physical units as the familiar wave vec-
tor of a plane wave. ForRb87 atoms this quantity defines an
inverse length scale of the order ofk ≈ 3.3× 106m−1.

When we insert (1) into (25), we find that the wave vector

k =

(

2mimg g

~2

)1/3

(26)

involves the third root of the product of the inertial and the
gravitational mass.

Therefore, the spatial modulation of the energy eigenstate
offers a possibility to compare the massesmg andmi by a
method independent of the classical experiments based on
dynamics. However, it is interesting to note that in the semi-
classical limit, there is a revival of the universality of free fall
as shown in Appendix C.

We conclude by noting that the energy eigenfunction (24)
exhibits a surprising feature when it undergoes a free time
evolution. In fact, the free propagation ofuE does not dis-
play [49,50] the phenomenon of spreading, but just an overall
acceleration. Recently, such Airy wave packets have received
great attention in optics and have been realized experimen-
tally with light [51,52]. For an explanation of this effect in
Wigner phase space we refer to Appendix B.

5.2 Atom trampoline

Next we insert an infinite repulsive potential wall atz = 0.
Here, we are not concerned about the nature of this potential
wall, i.e. whether it originates from electromagnetic forces
or from gravitational ones that must include the gravitational
mass. Its purpose is simply to establish a Dirichlet boundary
condition for the wave function and to provide a Hamilto-
nian that is bounded from below. Moreover, we emphasize
that experimental realizations of such a trampoline (or quan-
tum bouncer) for atoms [18–22], neutrons [32], and light [53]
exist.

The boundary condition

uE(0) = 0 (27)

on the wave function (24) enforces the discrete energy eigen-
values

En =

(

m~
2g̃2

2

)
1

3

an+1 (28)
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Fig. 2 First ten energy eigenfunctions at the corresponding eigen-
values for the atom trampoline. The potential consists of a linear
part for0 < z and a hard wall atz = 0.

wheren = 0, 1, 2, ... andaj denotes thej-th zero [45] of the
Airy function, as depicted in Fig. 2.

When we recall the definition (1) of̃g the energy eigen-
values read

En =

(

1

2
~
2g2
)

1

3

m
2

3

g m
−

1

3

i an+1 (29)

and thus depend onm2/3
g andm−1/3

i .
This is quite a remarkable result because the energy spec-

trum provides us in principle with a third way to compare the
inertial and gravitational mass. However, it is not yet clear
which additional degree of freedom of an atom should be
coupled to its center-of-mass motion in order to probe the
energy spectrum with the necessary energy resolution, since
(m ~

2 g2/2)1/3 ≈ 2.7× 10−12 eV for Rb87 atoms.

6 Conclusion

In the present paper we have studied the role of the inertial
and gravitational mass in the quantum mechanical treatment
of a particle in a linear gravitational potential. Experiments
involving the dynamics of wave packets, no matter how com-
plicated the initial state may be, only probe the ratio

ζ ≡ mg

mi
.

This parameter plays a crucial role in the classical experi-
ments on the universality of free fall and is closely connected
to the Eötvös parameter (2).

However, the probability density of a wave packet might
well depend on the gravitational and inertial in any arbitrary
combination. Using the phase space analysis, we can identify
two sources for this fact. (i) The initial Wigner function isa
matter of state preparation and thus might involve the inertial

mass as well as the gravitational mass. For example, when we
start from a particle in a box, the wave function does not de-
pend on the mass at all. In contrast, the energy wave function
of the harmonic oscillator depends on square root of the mass.
(ii) Due to the marginal property of the Wigner function, the
time evolved probability density follows from the integration
of the Wigner function and might create in this way new com-
binations of the gravitational and the inertial mass.

A particularly striking example of this additional free-
dom is provided by the energy wave function of a quantum
particle in linear gravitational potential. Experiments capa-
ble of measuring the Airy-function shaped probability density
would yield information about(mgmi)

1/3. Moreover, spec-
troscopy of the discrete energy spectrum of a particle bound
in an atom trampoline would provide us with another scaling
law (m2

g/mi)
1/3.

It is interesting to express these scaling laws in terms ofζ
and the geometrical mean

M2 = mimg

of the inertial and gravitational mass. Indeed, we find that
the spatial modulation of the energy wave function of the lin-
ear gravitational potential is sensitive toM2/3, whereas the
corresponding energy eigenvalues involve the combination
ζ1/2M1/3. The additional information concerning the rela-
tion between the gravitational and the inertial mass is made
possible by quantum mechanics and goes beyond the classi-
cal tests of the universality of free fall.

In the past century the spectroscopy of the matter wave
representing the electron in the hydrogen atom has triggered
the spectacular success of quantum mechanics and quantum
Electrodynamics (QED). Indeed, the discrete Balmer series
gave birth to matrix mechanics and the Lamb shift led to
QED. It would be amusing if in the new century the spec-
troscopy of matter waves of atoms or Bose–Einstein conden-
sates would shine some new light on the old question of iner-
tial and gravitational mass.
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A Time evolution in a linear potential

In Sect. 4 we have presented an exact expression for the time
evolution of the Wigner function in a linear potential. The
main emphasis of this section was the dependence on the in-
ertial and the gravitational mass. We dedicate the present ap-
pendix to represent this dynamics as the product of a shearing
and a displacement operator acting on the Wigner function in
phase space. This analysis is reminiscent [54] of the one in a
time dependent harmonic oscillator.

We start by recalling (17) for the time dependence

W (z, p; t) =W0

(

z − p

m
t− 1

2
g̃ t2 , p+m g̃ t

)

(30)

of the Wigner function in terms of the momentum rather than
the velocity variable.

In the absence of gravity, that is forg̃ = 0, equation (30)
reduces to

Wf (z, p; t) =W0

(

z − p

m
t , p

)

(31)

and represents the dynamics of a free particle described by
the Hamiltonian

Ĥf ≡ p̂2

2m
. (32)

The appearance ofp in the first argument of the Wigner
function (31) is responsible for the familiar shearing effect
of the Wigner function. Due to the marginal property (10),
the shearing in phase space translates into a dispersion of the
wave packet in position space.

When we introduce the displacement operator

D̂(Z,P)F(z, p) ≡ F(z −Z, p− P) (33)

and the time dependent shearing operator

Ŝ (t)F(z, p) ≡ F
(

z − p

m
t , p

)

(34)

which act on any phase space functionF = F(z, p), we can
represent the time evolution of the Wigner function in a linear
gravitational potential (30) in the compact form

W (z, p; t) = D̂(Zl(t),Pl(t)) ˆS (t)W0(z, p) . (35)

Here we have introduced the time dependent displacement

(Zl(t),Pl(t)) =

(

−1

2
g̃ t2 , −m g̃ t

)

(36)

containing the specific gravitational accelerationg̃.
We emphasize that the operatorD̂ provides a representa-

tion of the Lie group of translations in phase space, whereas
Ŝ corresponds to the Lie group of shear mappings, accord-
ingly. In particular, the order of̂D and Ŝ is important, as
reflected by the identity

ˆS (t) D̂(Z,P) = D̂

(

Z +
P
m
t , P

)

ˆS (t) . (37)

In Fig. 3 we show the time evolution of a Gaussian
Wigner functionW0 = W0(z, p) in the presence and ab-
sence of a linear potential confirming the decomposition (35)
into the product of a time dependent shearing and displace-
ment. An important consequence of this feature is the fact
that the linear potential has no influence on the spreading of
the wave packet. The spreading is solely due to the free time
evolution of the particle given by the Hamiltonian (32).

Fig. 3 Comparison between the time evolution of a Gaussian
Wigner function in phase space (bottom) in the presence of a con-
stant or a linear potential (top), that is forVf (z) ≡ 0 (blue) or
Vl(z) ≡ mg̃ z (red). The upper picture also indicates the average
energyE0 of the wave packet. The center of the Wigner function of
the free particle propagates along a straight line (blue line), whereas
the Wigner function in the linear potential follows a parabola (red
line). The time evolved quasi-probability distributions are depicted
at three different times and clearly illustrate the fact that the time
evolution in a linear potential can be decomposed into a freepropa-
gation followed by a shiftD = (Zl(t),Pl(t)) in phase space.

Another surprising implication of (35) is the fact that the
linear gravitational potential cannot influence the interference
fringes in phase space of a Schrödinger cat state that con-
sists of a superposition of two Gaussians centered around the
same position but with slightly different initial momenta.In
Fig. 4 we show the time evolution of the Wigner function
corresponding to this superposition state. We note that thein-
terference fringes do change in the course of time. However,
this change arises solely from the shearing effect and is not
due to the gravitational field. Indeed, according to (35) grav-
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ity only enters through the displacement of the Schrödinger
cat obtained from the shearing of free motion.

Fig. 4 Time evolution in the linear gravitational potential of the
Wigner functionW0(z, p) corresponding to a Schrödinger cat state
consisting of a superposition of two Gaussian states located at the
same position but with different initial momenta.

The property of the Wigner function to track the classical
trajectory is not restricted to a time independent linear poten-
tial, but can be extended to arbitraryg̃ = g̃(t), resulting in a
generalized shift(Zl(t),Pl(t)) in phase space. We note that
this perspective has also been used in the context of many-
body theory and the Gross–Pitaevskii equation to separate the
center-of-mass motion from the internal dynamics [55–58].

B Non-spreading wave packets

An interesting feature of the energy eigenfunctionuE given
by (24) is the fact [49–52] that it does not spread during the
free time evolution governed by the Hamiltonian̂Hf defined
by (32). Instead, it preserves its shape and accelerates in pos-
itive z-direction with a ratẽg t2/2. The representation of the
quantum dynamics in a linear potential as a product of shear-
ing and displacement in phase space discussed in Appendix A
offers new insights into the origin of non-spreading Airy-type
wave packets.

Indeed, the Wigner phase space description of quantum
mechanics allows a rather straight forward derivation of this
effect. We elucidate its connection to a specific invariance
property of the Hamiltonian (19) and show that this symme-
try relation defines a broader class of Wigner functions that
all correspond to non-spreading wave packets. As an exam-
ple of this broader class we examine the Wigner function that
follows from an incoherent superposition of energy eigen-
states (24). We conclude with an alternative view on the effect

of non-spreading wave packets based on the transformation to
an accelerated reference frame.

B.1 Equivalence of shearing and displacement

The Wigner function (20) of an energy eigenfunction is time
independent. Thus, by insertingWE into the time evolution
equation (35), we arrive at the relation

WE = D̂ Ŝ WE . (38)

When we multiply (38) by the inverse operator̂D−1 of D̂ ,
we find

Ŝ WE = D̂
−1WE .

This equation enjoys an interesting interpretation: the shear-
ing of the Wigner functionWE is equivalent to a displace-
ment ofWE by (−Zl(t),−Pl(t)). Therefore,WE preserves
its shape during the free time evolution given by (31) and
shifts its position in phase space according to

Wf (z, p; t) =WE

(

z − 1

2
g̃ t2 , p−mg̃t

)

. (39)

When we take advantage of the marginal property (10) of
the Wigner function (39), we find the identity

∞
∫

−∞

dp Wf (z, p; t) = u2E

(

z − 1

2
g̃ t2
)

, (40)

which indicates that the initial probability density of theen-
ergy eigenstate (24) does not spread during the free time evo-
lution, but accelerates.

B.2 Broader class of non-spreading wave packets

The Wigner functionWE is not the only quasi-probability
distribution whose marginalP (z; t) exhibits this interesting
feature. Since the non-spreading behavior of the wave packet
can be traced back to the invariance relation (38), any phase
space distributionW (z, p) that obeys the identity

W (z, p) = D̂(Zl(t),Pl(t)) Ŝ (t)W (z, p) . (41)

possesses a probability densityP (z; t) in position space that
does not spread during free time evolution.

The invariance property (41) implies that the correspond-
ing functionW (z, p) must depend on the phase space coor-
dinatesz andp only via the classical Hamiltonian

Hl(z, p) ≡
p2

2m
+mg̃ z (42)

of the particle in a linear potential.
Indeed, when we apply the operatorŝS andD̂ toHl, we

find with the help of (36) the relation

D̂(Zl(t),Pl(t)) Ŝ (t)Hl(z, p) = Hl(z, p) . (43)
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Hence, any phase space function of the form

W (z, p) = F (Hl(z, p)) (44)

automatically satisfies the invariance property (41).
In order to show that the functions (44) are the only possi-

ble quasi-probability distributions that satisfy the invariance
relation (41), we differentiate (41) with respect to the time t
and insertt = 0. The resulting equation coincides with the
time independent quantum Liouville equation (18a), whose
general solution is found by the method of characteristics and
exactly coincides with the class of phase space functions (44).

We emphasize, that the phase space distributions (44)
cannot be normalized. In fact, when we introduce the new
phase space coordinates

z′ ≡ Hl(z, p) and p′ ≡ p ,

the normalization condition can be expressed as

∞
∫

−∞

dz

∞
∫

−∞

dp W (z, p) =
1

mg̃

∞
∫

−∞

dz′ F (z′)

∞
∫

−∞

dp′ . (45)

Since the integral overp′ diverges,W and therefore its
marginals cannot be normalized.

As a consequence, a wave packet that corresponds to a
Wigner function satisfying the invariance relation (41) can-
not be exactly realized in an experiment and does not allow
the definition of the expectation values〈ẑ〉 and〈p̂〉. This fact
saves the day for Ehrenfest’s theorem.

B.3 Incoherent superposition of energy eigenstates

Next, we consider an example for the general class of Wigner
functions (44) with a non-spreading probability densityP =
P (z; t), namely an incoherent superposition

Winc(z, p) =

∞
∫

−∞

dE g(E)WE(z, p) (46)

of Wigner functionsWE corresponding to a density operator

ρ̂ =

∞
∫

−∞

dE g(E) |E〉 〈E| . (47)

For the probability distributiong = g(E) to find the par-
ticle in the energy eigenstate|E〉, we choose the Gaussian
distribution

g(E) ≡ 1√
2πσ2

exp

[

− 1

2σ2
(E − E0)

2

]

(48)

with mean energyE0 and varianceσ2.
When we recall (20) for the Wigner functionWE together

with the integral relation

∞
∫

−∞

dξ
e
−

1

2γ2
(ξ−ξ0)

2

√

2πγ2
Ai(ξ) = e

1

2
γ2

(

ξ0+
γ4

6

)

Ai

(

ξ0 +
γ4

4

)

for the parametersξ0 ≡ α(Hl − E0) andγ ≡ ασ, we obtain
the exact formula

Winc(z, p) = N · e 1

2
(ασ)2[α(Hl(z,p)−E )+ 1

6
(ασ)4]

×Ai

[

α (Hl(z, p)− E ) +
1

4
(ασ)4

]

.
(49)

Here we have introduced the constant

α ≡
(

8

~2mg̃2

)
1

3

.

The incoherent superpositionWinc(z, p) of a continu-
ous distributiong = g(E) of energy eigenstates|E〉 given
by (46) differs in general significantly from the Wigner func-
tion WE(z, p) of a single energy eigenstate, as illustrated in
Fig. 5. In particular, the domains of phase space where the
Wigner functionWinc assumes negative values have almost
disappeared. However, due to its functional dependence on
Hl(z, p), the parabolic profile has survived.

In the limit σ → 0 for which the energy distribution
approaches aδ-function centered aroundE0, we recover
from (49) the Wigner function

lim
σ→0

Winc(z, p) =WE0
(z, p)

of the energy eigenstate|E0〉.

Fig. 5 Quasi-probability distributionWinc(z, p) corresponding to
an incoherent superposition of energy eigenstates|E〉 of a linear
potential, that is of Wigner functionsWE(z, p) with a Gaussian
weight function (48) of energy spreadσ and average energyE0.
In contrast to the Wigner function of a single energy eigenstate, this
distribution shows strongly suppressed oscillations in the domain
p2

2m
+ mg̃z < E0 and has a rather broad maximum sightly left to

the classical parabolic phase space trajectory corresponding toE0.
It is the average over the Gaussian that has eliminated most of the
negative contributions in Wigner phase space and has led to abroad-
ening of the maximum ofWE.
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B.4 Transformation to an uniformly accelerated frame

An alternative explanation for the non-spreading wave packet
rests on a coordinate transformation [50] from an inertial to
an uniformly accelerated reference frame. It is worthwhileto
translate this idea into Wigner phase space in order to obtain
yet another interpretation of the invariance relation (43).

The transformation from the inertial coordinate system to
the uniformly accelerated reference frame reads

z′ ≡ z − 1

2
g̃ t2 , p′ ≡ p−mg̃t , t′ ≡ t,

with the new phase space coordinatesz′ andp′ and implies
the following relations on the partial derivatives

∂

∂z
=

∂

∂z′
,

∂

∂p
=

∂

∂p′
,

∂

∂t
=

∂

∂t′
− g̃t

∂

∂z′
−mg̃

∂

∂p′
.

As a result, the quantum Liouville equation
(

∂

∂t
+

p

m

∂

∂z

)

Wf (z, p; t) = 0 (50)

of the free particle expressed in the accelerated reference
frame takes the form

(

∂

∂t′
+
p′

m

∂

∂z′
−mg̃

∂

∂p′

)

W ′(z′, p′; t′) = 0 , (51)

with the transformed Wigner function

W ′(z′, p′; t′) =Wf

(

z′ +
1

2
g̃ t′2 , p′ +mg̃t′; t′

)

. (52)

The quantum Liouville equation (51) is identical to (15) and
contains a fictitious linear gravitational potential arising from
the transformation into the accelerated reference frame.

We now assume that our initial quasi-probability distribu-
tion for the quantum Liouville equation of a free particle (50)
is given by the Wigner function of an energy eigenstate of a
linear potential, that isWf (z, p; 0) ≡ WE(z, p). The initial
Wigner function in the accelerated frame governed by (51)
follows from (52) fort′ = 0 and takes the form

W ′(z′, p′; 0) =Wf (z
′, p′; 0) =WE(z

′, p′) , .

SinceWE(z
′, p′) satisfies the time independent quantum Li-

ouville equation (18a), we conclude from (51)

∂

∂t′
WE(z

′, p′) = 0 .

Hence, the transformed Wigner function exhibits no time evo-
lution and we find

W ′(z′, p′; t) =WE(z
′, p′) .

Insertion of the last expression into (52) finally yields

Wf

(

z′ +
1

2
g̃ t′2 , p′ +mg̃t′; t′

)

=WE(z
′, p′) ,

which in terms of the original phase space coordinatesz and
p simply reduces to the Wigner function (39) of the non-
spreading wave packet.

C Semi-classical limit of an energy wave function

The semi-classical limit of quantum mechanics, that is the
JWKB approximation, has always provided deeper insight
into the inner workings of quantum theory. In this appendix
we apply it to demonstrate that the mass ratiomg/mi emerges
in the semi-classical limit of the exact energy eigenfunc-
tion (24) far from the classical turning point. Moreover, we
identify phase space quantization as the origin of the unusual
scaling law of the energy eigenvalues of the atom trampoline.

C.1 Revival of the universality of free fall

When we recall the asymptotic expansion [45]

Ai(−|y|) ∼= 1√
π

1
4

√

|y|
cos

(

2

3
|y| 32 − π

4

)

of the Airy function valid for1 ≪ |y|, we can approximate
the energy wave functionuE = uE(z) given by (24) by a
superposition

uE(z) ∼= AE(z) e
iφ(z;E) +AE(z) e

−iφ(z;E) (53)

of two running waves with identical amplitudes

AE(z) =
NE

2
√
π(ε− kz)

1

4

and opposite phases

φ(z;E) ≡ 1

~

zE
∫

z

dz̃ pcl(z̃;E)− π

4
. (54)

Here,pcl = pcl(z;E) denotes the classical momentum (22)
and the turning pointzE follows from the condition

E ≡ mg̃zE .

In this way, the energy wave functionuE can be interpreted
as the most elementary matter wave interferometer. Indeed,
it consists of a wave running up and one down the linear po-
tential. Both waves have identical amplitudes and their phase
difference is governed [59] by an area in phase space deter-
mined by the strength of the gravitational constant. However,
the representation (53) is only justified appropriately away
from the turning point, that is forz ≪ zE .

From (54) we note the relation

pcl(z;E) = −~
∂φ

∂z
.

As a result we can connect the rate of phase change of the
JWKB wave given by (53) with the classical momentumpcl
at the positionz.

When we recall the definition (22) of the classical mo-
mentum together with the relation (16) between velocity and
momentum, we arrive at the classical velocity

vcl =
√

2g̃(zE − z) (55)
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of the particle at positionz, which only involves̃g, that is the
ratiomg/mi of the gravitational and the inertial mass. Thus,
in the semi-classical limit we obtain a form of the universality
of free fall expressed by the relation

vcl(z) = − ~

m

∂φ

∂z
.

A position-dependent velocity or momentum does not ex-
ist in the Schrödinger formulation of quantum mechanics. In-
deed, we either live in position space or in momentum space.
However, in the semi-classical limit we can obtain mixed
position-momentum variables. It is interesting that this re-
sult also follows directly from (20) of the Wigner function,
as discussed in Sect. 4.2.

However, we emphasize that in the neighborhood of the
turning point the decomposition (53) does not hold true. As a
consequence, there the wave function is not able to repro-
duce (55), where only the ratio of the two masses enters.
Around the turning point, the energy wave function thus de-
pends on the third root of the product of the inertial and the
gravitational mass.

Our result complements the work of Davies [33]. Here,
the travel time of a wave was calculated based on the Wigner
time

τ = ~
∂φ

∂E
=

zE
∫

z

dz̃
m

pcl(z̃;E)
=

zE
∫

z

dz̃
1

vcl(z̃;E)
(56)

which is valid appropriately away from the turning point of
the motion. Indeed, the universality of free fall holds true
again and the travel time only involves the ratio of the two
masses.

C.2 Phase space quantization as origin of the scaling law

The form of the eigenvalues in (28) and, in particular, the
scaling properties of the two masses in (29) can also be de-
rived in a straightforward manner from the Kramers improved
Bohr–Sommerfeld rule

J ≡
∮

dz pcl(z;E) = 2π~

(

n+
3

4

)

. (57)

The Maslov index is3/4 because there is one “hard” reflec-
tion atz = 0 contributing 1/2, or equivalentlyπ to the phase,
and one soft reflection at the classical turning point contribut-
ing 1/4, orπ/2 to the phase [60].

With the help of the classical momentum (22), we can
evaluate the action

J =
4

3

√

2

mg̃2
E

3

2

which yields, with the quantization condition (57), the ap-
proximate expression

En ≈
(

m~
2g̃2

2

)
1

3
[

3π

2

(

n+
3

4

)]
2

3

for the energy eigenvalues. Thus, we find the same prefactor
as in (28) and the approximation [45]

aj ∼=
[

3π

8
(4j − 1)

]
2

3

for thej-th zero of the Airy function.
This treatment clearly identifies the origin of the unusual

scaling lawsm−1/3
i andm2/3

g of the energy eigenvalues: The
quantization of the energy levels follows from the quantiza-
tion of the action, i.e. of an area in phase space. This quantity
involves both masses.

D Atomic fountain

In Appendix A we have shown that a constant gravitational
field has no influence on the phase space interference fringes
of a Schrödinger cat moving in a linear potential. On the
other hand atomic fountains provide us with precision mea-
surements of the gravitational acceleration. In order to bring
out the similarities and differences between these two mea-
surement schemes, we first summarize the essential ideas
that form the basis of an atomic fountain. In the spirit of the
present paper, which relies almost exclusively on the Wigner
functions, we then outline the physics of an atomic fountain
in phase space, thereby sketching the ideas only. In fact, we
do not intend to develop a complete description of this pre-
cision instrument. For this purpose we refer e. g. to [61–64]
and references therein.

D.1 Basic idea

In the atomic fountain experiments [8,9], an effective two-
level atom is moving vertically up against the gravitational
field of the Earth. Initially, the atom is in its ground state|g〉.
However, on its way up a laser pulse prepares a coherent su-
perposition of its internal levels. The wave vectork of the
laser is aligned along thez-axis. Since the transition to the
excited state|e〉 is accompanied by a momentum transfer due
to the photon recoil, the atom in the excited state has a differ-
ent momentum than the atom in the ground state. As a con-
sequence they accumulate different phases during their prop-
agation in the gravitational field. After a timeτ a π-pulse
exchanges the population of the ground and excited state. Fi-
nally after another timeτ , a third laser pulse mixes the inter-
nal levels of the atom and in this way erases thewhich-way
information. The quantity measured at the end is the proba-
bility to find the atom in the ground or excited state.

The measurement scheme used in the atomic fountain is
reminiscent of the problem of wave packet interferometry in-
volving two different molecular surfaces [65]. Whereas in
typical molecules these potentials are rather complicated, in
the atomic fountain they are linear in lowest order. For this
reason, the latter can be treated fully analytically.



14 E. Kajari et al.

D.2 State vector description

It is straightforward to translate the atomic fountain exper-
iment into the language of state vectors. We start with the
initial state

|Ψi〉 = |ψ〉 |g〉 ,

where|ψ〉 represents the center-of-mass motion along thez-
axis. After the first laser pulse the atom is in the entangled
state

|Ψ1〉 ≡
1√
2

[

|ψ〉 |g〉 − iD̂ |ψ〉 |e〉
]

. (58)

Here, the unitary operator

D̂ = eikẑ (59)

imparts the extra momentum from the photon recoil and acts
as a displacement of the corresponding Wigner function in
phase space due the interaction between atom and laser. We
note that we refrain from including additional phases that
are imprinted on the atom by the laser which must be taken
into account in a real experiment. In (58), we also assume
that the interaction between the atom and the laser does not
otherwise affect the initial center-of-mass wave function|ψ〉,
which provides a good first order approximation for the real
situation encountered in atom interferometer experiments.

The time evolution of the atom in the linear gravita-
tional field for the timeτ described by the unitary operator
Ûl ≡ exp(−iĤlτ/~) yields the state

|Ψl〉 ≡
1√
2

[

Ûl |ψ〉 |g〉 − iÛl D̂ |ψ〉 |e〉
]

.

The second laser pulse at the timeτ is aπ-pulse and inter-
changes the probability amplitudes of the ground and excited
state which leads to the expression

|Ψ2〉 =
1√
2

[

−iD̂ Ûl |ψ〉 |e〉 − D̂−1ÛlD̂ |ψ〉 |g〉
]

.

After another periodτ of unitary evolution, a third laser pulse
mixes the internal states with a secondπ/2-pulse, and we
arrive at the final state

|Ψf 〉 =
1√
2

[

|ψg〉 |g〉+ |ψe〉 |e〉
]

where we have introduced the states

|ψg〉 ≡ − 1√
2

[

D̂−1 Ûl D̂ Ûl + Ûl D̂
−1 Ûl D̂

]

|ψ〉 (60)

and

|ψe〉 ≡ − 1√
2
(iD̂)

[

D̂−1 Ûl D̂ Ûl − Ûl D̂
−1 Ûl D̂

]

|ψ〉

of the center-of-mass motion of the atom in the ground and
excited state, respectively.

D.3 Determination of the phase difference

Using the definitions of the momentum displacement opera-
tor D̂ and the time evolution operator̂Ul, the two terms in the
expression for the motional states of the atom|ψg〉 or |ψe〉 can
be combined and the nature of the interference of the trajecto-
ries can be made explicit. With the notation̂D−1 Ûl D̂ = Û ′

l ,
equation (60) can be rewritten in the simple form

|ψg〉 ≡ − 1√
2

[

Û ′

l Ûl + Ûl Û
′

l

]

|ψ〉 .

As shown below, using the commutation relation between the
position and momentum operator together with the Baker–
Campbell–Hausdorff formula, we can prove that

|ψg〉 ≡ − 1√
2

[

eikg̃τ
2

+ 1
]

Ûl Û
′

l |ψ〉 ,

which implies the well-known gravity-dependent expression
for the probability

Pg = Tr {|Ψf 〉 〈Ψf | · |g〉 〈g|} =
1

2
(1 + cos∆φ)

to find the atom in the ground state. Here, we introduced the
phase difference∆φ ≡ kg̃τ2.

In order to establish this result, we note that from the ex-
pansion ofÛl, one can prove

Û ′

l = exp(−iτD̂−1 Ĥl D̂/~) ≡ exp(−iτĤ ′

l/~) ,

where the boosted Hamiltonian̂H ′

l is just the original Hamil-
tonianĤl with the momentum̂p replaced bŷp+ ~k, that is

Ĥ ′

l = D−1 Ĥl D̂ =
(p̂+ ~k)2

2m
+mg̃ẑ.

Finally, we use the Baker–Campbell–Hausdorff formula to
commuteÛ ′

l andÛl and find

Û ′

l Ûl = Ûl Û
′

l e
(−iτ/~)2[Ĥ′

l ,Ĥl] = Ûl Û
′

l e
ikg̃τ2

,

which concludes our simple proof of the phase difference be-
tween the two interfering trajectories.

D.4 Phase space description

In Fig. 6 we represent in phase space the path of the quantum
state|ψ〉 of the center-of-mass motion in the course of time.
For an atom that is detected in the ground state|ψg〉, we have
two paths which start from the same pointS in phase space
and end up at the final pointEg. One path corresponds to a se-
quence of unitary evolution, displacement, unitary evolution
and inverse displacement. Therefore, the atom first moves the
linear gravitational potential while being in the ground state
and then after a transition into the excited state continuesits
motion in the potential. It concludes with a transition into
the ground state at the pointEg. The second path starts with
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the displacement, is followed by unitary evolution and neg-
ative displacement, and concludes by the inverse displace-
ment. Here the atom begins its trip by first making a transi-
tion into the excited state to be followed by motion in the po-
tential. After de-excitation the atom in the ground state com-
pletes its path in the gravitational field. Both paths define an
enclosed area in phase space that determines the phase differ-
ence between the two amplitudes contributing to|ψg〉.

Fig. 6 Phase space representation of an atomic fountain experiment.
Twoπ/2-pulses separated by the time2τ surround aπ-pulse at time
τ and cause transitions in the internal states of the atom which are
accompanied by displacements in phase space along the momentum
axis. Each parabola section corresponds to the center-of-mass mo-
tion in the linear gravitational field within the propagation time τ .
The atom starts its journey in the ground state at the pointS. Atoms
eventually measured in the ground state end up at phase spacepoint
Eg, whereas atoms detected in the excited state are to be found at the
pointEe. In both cases two distinct paths lead from the starting point
S in phase space to the same final point. The area enclosed by the
two paths expressed in units of~ turns out to be twice the phase dif-
ference∆φ between the two corresponding probability amplitudes.

Atoms that exit the interferometer in the excited state|ψe〉
have traversed the same path in phase space as atoms in the
ground state except that their final pointEe on the trajectory
is different. They either move in the potential, become ex-
cited, and then follow again the parabola or become initially
excited, follow the parabola, emit, follow again the linearpo-
tential, and finally get re-excited.

In Fig. 7 we show the trajectory of the atom in phase space
during a fountain experiment for realistic parameters [11].
For this case the vertical straight paths due to the momen-
tum exchange with the laser pulse are much shorter than the
parabolas corresponding to the classical motion in a linear
gravitational potential.

Τ

Τ

v @m�sD

z @cmD5 10

1

-1

Fig. 7 Atomic fountain experiment represented in position-velocity
space for typical experimental parameters. Here the momentum
transfer due to the absorption or emission of a single photonis much
smaller than the typical momentum associated with the motion in
the linear gravitational potential. As a result the rather complicated
closed curve in phase space shown in Fig. 6 simplifies more or less
to two parabolas (dotted curves) which are connected atz = 0 by
vertical lines due to the interaction with the laser (solid line in upper
inset). At the timeτ , the second laser pulse causes another internal
transition and a shift in the momentum. Consequently the parabolas
are interrupted by straight vertical lines representing the momen-
tum transfer (lower inset). For each trajectory we have marked with
the symbolτ the points in phase space that represent the end of the
first step of the unitary time evolution. Note that the straight line on
the inner trajectory (blue dashed line) is therefore traversed thrice,
whereas the corresponding section on the outer path (purple dashed
line) is traversed only once. The atom initially in the ground state
follows the parabola to the point in phase space indicated byτ . The
laser pulse moves the atom vertically up in phase space and the ex-
cited atom traverses the same vertical line again, but now aspart of
the unitary time evolution in the potential. This picture isan approx-
imation; in reality the parabolas have a curvature that for parameters
of the experiment is negligible on the length scale of the momentum
transfer and invisible even on the magnified scale of the inset.

As a result we can approximate the closed circuit in phase
space by two parabolaspcl(z;E) andpcl(z;E +∆E) given
by (22), which are connected by two vertical lines of length
∆p = ~k at z = 0. The difference∆E in energy is to first
order in∆p

∆E =
pE
m
∆p =

pE
m

~k , (61)

wherepE = pcl(0;E) denotes the momentum at zero poten-
tial.

The phase difference∆φ between the two paths turns
out to be half of the phase space area enclosed by the two
parabolas (expressed in units of~). In order to provide a sim-
ple derivation of this result, we first emphasize with the help
of (54) that2~φ(0;E) represents the phase space area inside
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the parabolapcl(z;E) ranging fromz = 0 to the turning point
zE . We then denote byδφ the area of the circuit expressed in
units of~ and find for small∆E the relation

δφ ≡ 2 [φ(0;E +∆E)− φ(0;E)] ≈ 2
∂φ

∂E
∆E . (62)

When we recall the definition (56) of the classical transit
time τ from z = 0 to the turning pointzE, we find

δφ = 2
τ

~
∆E . (63)

Finally, substituting Eqs. (61) into (63) together with the
identitypE = mg̃τ , reduces to

δφ = 2kg̃τ2 = 2∆φ

and proves our conjecture in the limit of small momentum
transfer∆p ≪ pE . We note that a more thorough analysis
shows that this result is actually exact.

This calculation brings to light a remarkable interpreta-
tion of the atomic fountain experiment. The phase differ-
ence∆φ between the two paths is half the differenceδφ
between the phases of two energy wave functions in a lin-
ear potential of slightly different energies. Each wave repre-
sents an interferometer—it is the interference of two counter-
propagating waves as expressed by (53). The phase2φ(0;E)
is the area in phase space enclosed by a straight line atz = 0
and the parabola corresponding to the energyE. The area of
the “crescent moon” is thus the difference of the areas rep-
resenting the phases of the WKB energy wave functions in a
linear potential.

D.5 Comparison between cat and fountain

We conclude by comparing the interference contained in a
Schrödinger cat such as the one shown in Fig. 4 and the one
in the superposition state in the atomic fountain, depictedin
Fig. 6. In both cases we consider the quantum state of the
center-of-mass motion in a linear gravitational field. How-
ever, in the case of the Schrödinger cat state, we face the su-
perposition of two states that are located at different points in
phase space. This fact stands out most clearly in the language
of coherent states|z + ip〉 of the harmonic oscillator. Indeed,
the state

|ψCat〉 = NCat

[

|z + i p〉+ |z + i p′〉
]

of the Schrödinger cat corresponds to two Gaussians which
differ in their momentap andp′. HereNCat denotes a nor-
malization constant.

In contrast, in the atomic fountain we have the states|ψg〉
and|ψe〉 each of which consists of the superposition of two
states which only differ in the phase∆φ. In particular, the
wave function of the center-of-mass motion for the ground
state reads

|ψg〉 =
1√
2

[

1 + ei∆φ
] ∣

∣

∣
ψ̃
〉

,

where we have introduced the abbreviation
∣

∣

∣
ψ̃
〉

= −ÛlÛ
′

l |ψ〉.
The phase turns out to be half the enclosed area in phase space
shown in Fig. 6.

Needless to say, the Wigner function of|ψg〉 does not
contain this phase. However, a phase space approach to the
atomic fountain must contain this phase. It arises when we
include the internal degrees of freedom into the phase space
description. Unfortunately, this goes beyond the scope of the
present paper.
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