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Abstract We show that in complete agreement with clas- a linear gravitational potential, quantum dynamics only in
sical mechanics, the dynamics of any quantum mechanicalolves the ratio of the two masses in complete accordance
wave packet in a linear gravitational potential involves th with classical Newtonian mechanics. However, depending on
gravitational and the inertial mass only as theitio. In the specific preparation of the initial state, inertial amavg
contrast, the spatial modulation of the correspondinggner itational mass may appear in a more complicated way in the
wave function is determined by the third root of ta@duct  time evolution of a physical state. As an example of such an
of the two masses. Moreover, the discrete energy spectrum anitial state, we discuss the energy eigenfunctions in edin
a particle constrained in its motion by a linear gravitasibn potential [15,15], which have been analyzed e. g. in the con-
potential and an infinitely steep wall depends on the inertext of the coherence of an atom lader|[17] or in connection
tial as well as the gravitational mass with different frantll ~ with the so-called atom trampoline, also known as the quan-
powers. This feature might open a new avenue in quantunium bouncer[[18-22]. Indeed, the energy eigenstate in this
tests of the universality of free fall. system is non-classical since the corresponding phase spac
equations for the Wigner function do involve Planck’s con-
stanth. As a result such states are ideal objects to study the
role of inertial and gravitational mass in quantum mechanic
Three central results obtained in this paper stand out: (i)
The quantum dynamics reduces to classical dynamics and
therefore can only involve the ratio of the inertial mass
and the (passive) gravitational masg, (ii) the spatial mod-
ulation of the energy eigenfunctions depends on the thiotd ro
of the product of the two masses, and (iii) the energy eigen-
values of the gravitational atom trampoline are propoglon
to (m2/m;)'/3.

1 Introduction

The equivalence principle is a cornerstone in the foundatio

of general relativity[[1]. Indeed, the assumption of the-pro

portionality of inertial and gravitational mass impliesttin

a linear gravitational potential all bodies experienceddme

acceleration and fall with the same rate. Without this unive

sality of free fall, the geometrization of gravitation artd i

reinterpretation as curvature of spacetime would not be posj 1 Tests of the universality of free fall

sible. The fact that several alternative gravitationabties

predict the breakdown of the universality of free fall [2bise ~ The universality of free fall, often referred to as “weak i#gu

of the main reasons that drives physicists to test this lwdro alence principle”, states that all bodies experience theesa

of modern physics to higher and higher accuracy. gravitational acceleration independent of their intestaic-
Motivated by the seminal papers on neutron interfero-ture and composition, provided they are so small in size that

metry [3-£7] and the more recent, impressive matter wave exene can neglect the effects of gravity gradients. In other

periments[[8=14], we address in the present paper the quesrords, the (inertial) mass of a body is proportional to its

tion how the inertial and gravitational mass enter in non-weight, with an universal proportionality constant. A \del

relativistic quantum mechanics. We show that in the case ofion of this principle would arise e. g. when the interaction
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energy between the nucleons in an atom would not contributé a linear gravitational field to gain insight into the ecatv

in the same manner to the gravitational mass, as it would fo
the inertial.

The classical test5][1,2] of the universality of free fal as
sume that the specific gravitational acceleratigrl) does

tence principle. However, motivated by the classical motio
his main emphasis is on a thorough analysis of the travel time
of wave packets. In complete agreement with our conclusion
that the dynamics is classical, he finds that classical @veltr

depend on the internal structure or the composition of theimes agree far from the classical turning point. However,

body A. This assumption translates in terms of the inertial
and gravitational mass into the relation

(e

Here, the gravitational acceleratignshould be considered
as a standardized acceleration corresponding to a paticul
reference body.

A measure for the breakdown of the universality of free
fall is the so-called Eotvos parameter

()~ (),

(7e), + (5)

A B
which quantifies the normalized difference in the gravita-
tional accelerations between two different bodieand B.

The first tests of the equivalence of inertial and grav-
itational mass relied on pendulum experiments and can b
traced back to Newton and Besgell[23]. A great step toward
higher accuracies was realized by the classical torsion ba
ance experiments of Eotvas [24] and Roll et al.l[25]. Cur-
rently the best upper limits for the Eodtvos parameter [26]
come from lunar laser ranging on the one hand and from th
so-called "Edt-Wash* experimenit [27]28] on the other. The
latter uses a sophisticated rotating torsion balance amitkli
the Ebtvos parameter to
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n(Be, Ti) = (0.3 +1.8) x 10713

for the gravitational acceleration of Beryllium and Titami
towards Earth.

The motivation for quantum mechanical tests|[29,30] of
the universality of free fall stems from the increase in accu
racy that atom interferometry is expected to offer in the fu-
ture. Matter wave interferometry with freely fallii@h®> and

there are quantum corrections near the turning point. His ca
culations are based on the definition of the Peres quantum
clock [34].

1.3 Outline of the paper

We start in Secf]2 by recalling the universality of free fall
Newtonian mechanics. Since we are interested in the Wigner
phase space formulation of the corresponding quantum me-
chanical version, we first introduce in Sdckt. 3 the quantum
Liouville equation describing the dynamics of the Wigner
function in an arbitrary potential. Moreover, we preser th
partial differential equations in phase space determiaimg
energy eigenstate in this potential. In S&¢t. 4 we then apply
these equations to analyze the dynamics of the Wigner func-
tion in a linear gravitational potential, as well as to detire
he Wigner function of the corresponding energy eigenstate
hereas the quantum dynamics just reflects the classical tim

Ievolution and does not depend Planck’s constattie phase

space analog of the energy eigenstates does display quantum
features and involves. This fact stands out most clearly in
he energy eigenfunctions of the linear potential disctigse

ect[B, where we show that the wave vector governing the
spatial modulation of the probability density is deterngine
by the third root of the product the inertial and gravitatibn
mass. In addition, we examine the energy eigenfunctions and
the eigenvalues of the atom trampoline, also known as quan-
tum bouncer, that is a particle trapped in the bounded poten-
tial resulting from the combination of a linear potentiatlaam
infinitely steep wall. We conclude in Set. 6 by summarizing
our results and by outlining possible experiments.

In order to keep the paper self-contained we summarize

concepts pertinent to the present discussion in severahapp
dices. For example in Appendix] A we recall that the time

Rb®" isotopes has already been perfornied [12], and severadvolution of a particle in a linear potential can be représen

other experiments worldwide using different species ofreto
are right now in preparation [31].

1.2 Discussion of related work

in phase space as a product of a shearing operator followed
by a displacement. It is only the displacement which comstain
the gravitational acceleration. This decomposition piesi

us with deeper insights into the physics of non-spreading
Airy wave packets as outlined in Appendix B. We dedicate
Appendix[Q to a discussion of the semi-classical limit of

In this paper we study the quantum mechanics of a particle irthe energy wave function in a linear gravitational potdntia

a linear potential. Needless to say, this topic appears iprom
nently in many papers, in particular in connection with the

Within the Jeffreys—Wentzel-Kramers—Brillouin (JWKB)-ap
proximation we regain the universality of free fall. Moreoy

atom trampolin€ [18—20] whose energy eigenstates have beeme can identify phase space quantization as the origin of the

theoretically investigated in [21], as well as in the comtafx
cold neutrond[32].
The work closest to ours is that of Davies [33] who has

unusual scaling properties of the energy eigenvalues of the
atom trampoline in terms of inertial and gravitational mass
We conclude in AppendiXD with a phase space analysis of

investigated the problem of a quantum mechanical particlehe atomic fountain.
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2 Universality of free fall in Newtonian mechanics 2.2 Ensemble dynamics

In the present section we briefly recall Newton's law of mo- So far, we have concentrated on the dynamics of a single par-

tion for a single particle in a linear gravitational potehti ticle in a linear gravitational field with a well defined iraiti

which shows that the dynamics only depends on the ratio belOsition zo gn_d a we!l defined initial velocity,. However,.
tween the gravitational and the inertial mass. For thisaeas in reality it is impossible to prepare the state of the phafsic

the free fall of two particles of different compositionsdkei- s_ystem with arbi_trary accuracy. For this reason we now con-
tical provided the inertial and gravitational mass are prep sider the dynamics of an ensemble of particles described by a

tional to each other and the particles start with the santialini classical distribution function
conditions. Note that the universality of free fall requitbe _
. . . . fO — fO (Za U) .
mentioned proportionality constant to be independent ef th
particles composition, in which case it can be absorbeddn th The probability to find the particle betweerandz + dz with
universal gravitational acceleration. a velocity betweew andv + dv is given by fy(z, v) dz dv.
Moreover, we examine the dynamics of a classical en-The probability interpretation requires thatis positive ev-
semble of identical particles falling in linear gravitatal po-  erywhere.
tential, thereby emphasizing some complications that come Next we turn to the dynamics of the initial ensemble due
along with tests of the universality of free fall based orsela to a conservative force
sical statistical mechanics. v
Since we consider a homogeneous gravitational potential, F(z)=— B2
we can restrict our analysis of the dynamics and kinemat-
ics to one spatial coordinate Moreover, instead of dealing Originating from the potentidl’ = V' (z).

separately with the inertial and gravitational mass, we wil ~ The requirement of conservation of probability leads us
take advantage of the particle dependent gravitationalacc to the classical Liouville equation
eration [1) and denote the inertial mass of a particle most of
. 0 0 190V 0
the time bym = m,. —tv————— | f(z,u;t) =0 (6)
ot dz m 0z Ov

subjected to the initial conditiofy(z,v) = f(z,v;t = 0).
2.1 Single particle dynamics For the linear potential;, given by [4), this equation
takes the form

The time evolution of a particle moving in an external poten- 0 o _0
tial V' = V (z) follows from Newton’s law of motion 2 T3 95, fzv:8) =0 7
) 1% where we have recalled the definition of specific gravitailon
miZ=—F= (3)  acceleration({1).
It is easy to verify, that the solution df](7) reads
where the dots indicate differentiation with respect toetim 1
For a linear gravitational potential f(z,0:t) = fo (Z —vt—3g %0+ §t) -
Vi(z) = my g = @) This expression brings out most clearly the fact, that the
- g

dynamics off, only depends op, that is on the ratio of grav-
itational and inertial mass. However, this property does no
exclude the possibility, that(z, v; t) can contain in addition

a dependence on the inertial mass, since the initial distrib
t=——A2g=-3. (5)  tion f, might involve the inertial mass.

For example, the stationary solution

we obtain from Eqs[{1) andl(3)

(8)

A breakdown of the universality of free fall would manifest mv:  U(2)
itself in a particle dependent gravitational acceleragion fs(z,v) = Aexp [ T R T}
The solution of Newton's law of motiofl}5) reads " "

of the Boltzmann equation representing a gas of collidirrg pa
1_, ticles at temperaturd@ in a trapping potentiall' = U(z)
Z(t) = zo + vl — 29t involves the inertial mass:. Here,.#” andkp denote a nor-
malization factor and the Boltzmann constant, respegtivel
wherez, andvy denote the initial position and velocity of the When we takef; as the initial distribution of our ensem-
test particle, respectively. Therefore, tests of the usieity  ble of particles propagating in the gravitational field, timal
of free fall require identical initial conditions for the éntest  distribution f(z, v;t) will obviously involve not onlyg but
particles. also the inertial mass:. Hence, in a comparison of the free
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fall of two ensembles of particles of different compositiatn  and

is important to ensure that the initial distributions arerit- o0

cal. For the example of two different species of atoms, pre- / dz W(z,p;t) = (p| p(t)|p) = P(p;t),

pared in the stationary solution of the Boltzmann equation,

given by [8), this requirement implies that the temperature

and binding potentials have to be adjusted appropriately. ~ that is the integrals over the phase space varigblasd
Hence, in the case of two initial ensembles of particles deYield the corresponding quantum mechanical probability-de

scribed by a distribution function in position—velocityese,  Sities P = P(z;t) and P = P(p;t) of the conjugate vari-

a test of this universality of free fall is more complicatéd. ables.

though each member of the ensemble satisfies the univgrsalit  The definition [9) of the Wigner function suggests that

of free fall, the two initial distributions have to be idegalin  this formulation of quantum mechanics rests on the Schigifi

order to create two comparable situations. representation and requires a wave function or a density op-

erator as a starting point. However, this impression is mis-

. . leading. The Wigner phase space formulation of quantum

3 Wigner function: a few facts mechanics is an approach in its own right. In principle, ¢her

In classical mechanics kinematics describes motion withou's "© need to resort to wave funcnons or.densny operators.
going into the origin of the motion. On the other hand dynam_For a more detailed introduction to the Wigner function we
ics asks for the origin of the motion. In the same spirit quan-refer to [38].

tum kinematics describes the quantum states and quantum

dynamics their time evolution. Throughout our paper, this

distinction will be reflected in the separate treatment of in 3-2 Quantum dynamics in phase space

tial states and their time evolution. In particular, we ddas

energy eigenstates as natural candidates for initialsstate ~ The dynamics of a quantum stdtg(t)) describing the mo-

To the best of our knowledge the distinction betweention of a non-relativistic quantum patrticle of inertial rsas
kinematics and dynamics has been spelled out for the firsin a potentiall’ = V'(z) follows from the Schrodinger equa-
time most clearly by Weyl in his book “The Theory of Groups tion
and Quantum Mechanics! [35]. It is interesting that in this .0 -
book, Weyl also defines the concept of averages of symmet- 1h§ (1)) = H[%(2))
rically ordered operators using a distribution functiomjetn
later became the Wigner function [36+-38]. It is this phase
space function which we use in our quest to analyze how 9
the inertial and the gravitational mass manifest themselve H=—+V(2).
in qguantum mechanics. We devote the present section to a
brief review of the Wigner distribution and focus on the ele-  This description is equivalent to the quantum Liouville
ments most pertinent to the present discussion: the qua”tu'@quation
Liouville equation and the phase space analog of the time in-

dependent Schrodinger equation. o po Vo R
v vl 2 Dit) = 12
(8t+m82 0z Op X)W(zpt) 0 @2

— 00

(11)

with the Hamiltonian

3.1 Definition ] ] ] ] i
which governs the time evolution of the Wigner function

The Wigner functioiV = W (z,p;t) is a quasi-probability W = W (z, p; t). Here the differential operator
distribution which lives in phase space spanned by the posi-

tion z and its conjugate varia_ble, the _momentmeh_en the R > (1) 7\ 2 HAHLY (z) 91
state of the quantum system is described by a density operato £ = Z m 5 D221 gpritl
p = p(t), the corresponding Wigner function reads =1 '

o0

1 ipe/h A involves only odd derivatives of the potentitl and even
Wiepit)= o [ dee ™M k62012~ /2, powers o

—0 Although the quantum Liouville equation is in general de-
o 9 rived from the time dependent Schrodinger equafioh (1&), w
where|z) denotes a position eigenstate. could also interpret(12) as the equation of motion for the

~ This expression brings out the fact that the Wigner func-yigner function without any reference to the Schrodinger
tion is real. However, it is not necessarily positive. Moreo  formulation of quantum mechanics. Indeed, if we possess a
the Wigner function satisfies the marginal properties priori knowledge about the initial Wigner function, there i
o0 no need to refer to the time dependent density opefdtor
/ dp W(z,p;t) = (2| p(t)|2) = P(z;t) (10)  since the Wigner functiof#’ (z, p; t) contains all information
of a quantum system.

— 00
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3.3 Quantum kinematics in phase space where the equal sign holds for pure states. Here we can inter-
pret the right hand side of this inequality as the effectreaa
Energy eigenstatg#’) of the time independent Schrodinger of phase space taken up by a quantum state [39].
equation But even if we would choose a normalizable function in
H |E) = F |E) (13) phase space that satisfies this inequality, it is not cleatr th
o _ it represents a physical Wigner function, since it must be re
are the elementary building blocks of quantum mechanicsiated to a quantum state with positive semi-definite density
We now briefly motivate the phase space analog of this €qugsperator via the Weyl-Wigner correspondence. For a charac-
tion. S _ ~ terization of the set of all phase space functions that szpre
Three steps lead to the partial differential equations iNphysical Wigner functions we refer to [40], or in the special
Wigner phase space for an energy eigenstate: (i) mUulfildy (1 case of Gaussian phase space functions to [41]. We empha-
by (E, (ii) apply the Weyl-Wigner correspondente|[38] and sjze that the energy eigenvalue equatidns (14) as well as the

(ili) take the real and imaginary part of the resulting etrat  gynamical equatiori{12) ensure the existence of a valiginit
In this way we obtain two partial differential equationsfee  \yjigner function and its time evolution.

Wigner functionWy = Wi(z, p) of the energy eigenstate Sinceh appears differently in the dynamical and kine-
that must be mutually satisfied. matical equations of Wigner phase space, one could imagine,
~ The imaginary part yields the time independent quantumyt |east mathematically, an extended phase space theory of
Liouville equation guantum mechanics in which both Planck’s constants differ
9 v o R from each other. For example, a problem where the concept
pPIg_I_ LN Wg =0 (14a) of two different’ turned out to be useful [42] is Kramer’s
mdz 0z Op

dilemma and the Langer transformation. However, such an

which through#, contains odd derivatives of the potential extension would probably lead to a physically inconsistent
only, theory. In this sense there is a parallelism between thevequi

Equation [14k) is the quantum Liouville equatiénl(12) alence qf grayitational anf:i inertial mass in gen(_aral r\dtgti_
with a vanishing time derivative. This feature reflects thet f and_the_ identity of Plancks_constants of dynamics and kine-
that an energy eigenstate only picks up a phase during iés timMatics in guantum mechanics.
evolution and the Wigner function is bi-linear in the stats.

a result, this phase factor drops out and the Wigner function ) ) o
of an energy eigenstate is time independent. 4 Universality of free fall in Wigner phase space

From the real part we obtain the analog

h2 82 p2 "
(—8—m@+%+‘/(2)+ge) WE:EWE (14b)

Next we consider the partial differential equatiohs] (120l an
(I4) determining the Wigner function from phase space for
the case of a linear gravitational potential given by (4). We
again analyze quantum dynamics and kinematics separately.
of the time independent Schrodinger equation which ineslv
only even derivatives of the potential in the differentipko-
ator 4.1 Quantum Liouville equation for a linear potential
PR G oAV (2) 9%
°= Z (2)! (5) 022 op2l- For the linear potentia[{4) the second and all higher deriva
=t tives vanish. As a result, the operalﬁfg, containing all odd

Itis interesting that bothZ, as well asZ,, contain only even derivatives of the potential are zero and the equation of mo-

powers offi. tion for the Wigner function (12) reduces to
o p o 0
. ) . —+—— —mg=— | W(z,p;t) =0 15
3.4 Constraints on the initial Wigner function (8t m 0z mgap) (2,p:1) (15)

and no longer involves Planck’s constantn fact, the quan-

In order to obtain a unique solution of the quantum Liou- - : ' ' e : - k
tum Liouville equation simplifies to the classical Liouwill

ville equation [(IR), we must specify the initial Wigner func : : _
tion Wy = Wo(z, p). However, the choice o, is a subtle equation[(¥) for the linear potential when we recall therela
and context dependent enterprise. According to Planckevert!on
quantum state must take up in phase space at least an area p=mv (16)
2xh. In the language of Wigner functions this condition as-

between the momentum and the velocity of the particle.
sumes the forni[38] y p

Accordingly, the solution of the quantum Liouville equa-
-1 tion (13) is given by

2mh < /dz/dp WQ(z,p) , 1
o) 0 W(z,mv;t):W()(z—vtf§§t2,m[v+§t])7 17)
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with Wy (z,p) = W(z,p;t = 0) being the initial Wigner  of a particle in a linear potential.

function of the quantum system. The particular functional dependence of the Wigner func-
The explicit expression (17) for the time evolution of the tion on H,(z, p) is then determined by the eigenvalue equa-

Wigner function emphasizes again the difference between dytion (I8B). The full solution[36,37]

namics and kinematics. Since the quantum Liouville equatio L
reduces to the classical Liouville equation in the case of a 3 3 H
linear potential, each point in phase space propagatestcco <52m~2) ( 1z p) = E)

p ; p p pace propag g

ing to classical mechanics while maintaining its “weighs” a
given by the initial Wigner functiod?, = Wy(z,p). As a  is given in terms of the Airy functiom\i = Ai(y), which
result, thedynamicsonly involves the ration,/m;. How-  satisfies the ordinary differential equation [45]
ever, the initial state may depend on the inertial or gravita 32
tional mass in a nontrivial way and therefore the Wigner func <_2 _ y) Ai(y) =0. (21)
tion W(z, p; t) may not only involve the mass ratin, /m,. dy
Here we ﬁn(_j a comp_Iet.e anglogy to the classica_l treatment %Note that the Wigner functiolz(z, p) is not normalizable.
Sect[2., with one distinct difference: not every initiabi- A 5 result the energl remains a continuous parameter and
probabﬂﬂ_y distributioni¥y(z, p) in phase space corresponds N depends ofE.
to a possible quantum state. ) ) In Fig.[d we depict the Wigner functioiVy = Wg(z, p)

_ We em_phasae that_the _tlme evolution of the Wigner ﬂ_mc'given by [20). We recognize a dominant positive-valuedeidg
t|on_|n a linear potential given by (17) can _be relat(_ed N 2310ng the phase space trajectpry: +pa(z; E) given by the
_stralghtfor\_/vard manner to the free propagation, as dlmljs_s classical momentum
in Appendix[A. One important consequence of this consid-
eration is the fact, that the specific gravitational aceglen pa(z; E) = /2m(E — mgz) . (22)
g does not influence the spreading of the wave packet, but
only its position along the-axis. In other words, the vari- following from the conditiont; (z, p) = E with the classical
anceAz? = (22) — ()% is independent of. In contrast, the ~Hamiltonian [19). To be precise, &, the second derivative
expectation valuéz) does depend of of the Airy function vanishes.

Nevertheless, even a classical time evolution can, under
appropriate conditions, display non-classical featunes to
a non-classical initial state. One prominent example is the
shrinking [43,44] of a free, radially symmetric wave packet

4.2 Wigner function of an energy eigenstate

Next we turn to quantum kinematics and consider as an ini-
tial state the energy eigenstate of a quantum particle in the
linear gravitational potential given bl](4). The partiaffeli-
ential equations determining the corresponding Wignecfun
tion Wg = Wg(z, p) with energyF follow from Eqgs. [14).

In particular, the time independent quantum Liouville equa
tion (I4a) reduces to

3] .0
(ﬁ— - mga—p> Wg(z,p) =0, (18a)  Fig. 1 Wigner functionWz = Wx(z, p) of an energy eigenstate

m Oz in a linear gravitational potential foE = 0 as given by [(2D).
whereas the eigenvalue equatibn {14b) for the Wigner funcThe parabolic shape is due to the functional dependenégmbn
tion reads the Hamiltonian[(I9). The oscillatory behavior arises fribia Airy

function which follows from the eigenvalue equatifn (l8bphase

92  8m 2 space.
{@—i—ﬁ{E— (f—m +m§z)]}WE(z,p):0. P
(18b)

Since the time independent quantum Liouville equa-  |n the classically forbidden domain of phase space
tion (I8d) represents a homogeneous first order partial dif-
ferential equation, we can apply the method of charactesist <P +mgz
and deduce thdt’z can depend on the phase space coordi- 2m
natesz andp only via the classical Hamiltonian

2

which is inaccessible for a classical point particle movimg
2 the linear gravitational potential, the Wigner functiorcdgs

p ~ .
Hy(z,p) = o, T mgz (19)  exponentially.
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In the classically allowed realm of phase sp&g is os-  between two different energy eigenstatg$ and|E’).

cillatory and can take on negative values. This featureatsfle Itis instructive to cas{(24) into the form
the interference nature of quantum mechanics and expresses ]
the fact that the energy eigenstate is the superposition of a up(z) = N - Ai(kz —¢)

right and a left going wave, as shown in Apperidlx C.

We conclude by noting that the properties of the Airy by defining the dimensionless energy

function have also been studied in the context of tunnel- 9 1/3
ing [46]. In particular, the dynamics of the Wigner func- e=kE (ngg)
tion tunneling out of a binding delta function potential iret
presence of an external static electric field has been studieand s
in [47]. 2m?g
[47] k= ( . ) , (25)

which has the same physical units as the familiar wave vec-
tor of a plane wave. FARb®" atoms this quantity defines an

The preceding section has employed a phase space analy§ierse length scale of the orderiofe 3.3 x 10°m™".
to reveal the relationship between quantum and classieal be Whenwe inser{{1) intd (25), we find that the wave vector
havior of a particle in a linear potential. The dynamics & th 1/3
Wigner function are entirely classical, whereas the kinema b — (M) (26)
ics, and in particular the energy eigenstates, are quantein m h?
chanical. We now address the question how the inertial angoives the third root of the product of the inertial and the
gravitational mass make their appearances in the COfrdSpo”gravitational mass.
ing energy eigenfunctions,; = up(2) = (2|E) in position Therefore, the spatial modulation of the energy eigenstate
Space. _ N _ offers a possibility to compare the masses andm; by a

) In principle, we could obtain the probability density ethog independent of the classical experiments based on
up(2) by taking advantage of the marginal property of the qynamics. However, it is interesting to note that in the semi
Wigner function[(2D) together with the integral formUla]48  ¢jassical limit, there is a revival of the universality ogérfall

5 Energy wave functions in position space

oo as shown in AppendixIC.
/ A€ Ai(€% +y) = 25 T A% (y/25). We conclude by noting that the energy eigenfunciian (24)
exhibits a surprising feature when it undergoes a free time

— 00

evolution. In fact, the free propagation ofz does not dis-
However, it is equally straight forward to solve the cor- play [49,50] the phenomenon of spreading, but just an overal

responding time independent Schrodinger equation. In thecceleration. Recently, such Airy wave packets have redeiv

present section we pursue this approach and show that thgreat attention in optics and have been realized experimen-

spatial modulation of the energy wave function in the lineartally with light [51[52]. For an explanation of this effect i

gravitational potential depends on the third root of thedpro Wigner phase space we refer to Apperidix B.

uct of the gravitational and the inertial mass.

5.2 Atom trampoline
5.1 Unbounded linear potential

o _ _ o Next we insert an infinite repulsive potential wall at= 0.
For a particle in a linear potential, the time independentere, we are not concerned about the nature of this potential

Schrédinger equation reads wall, i.e. whether it originates from electromagnetic fesc
2 om or from gravitational ones that must include the gravitagio
(@ ~ 7 [mgz— E]) ug(z) =0. (23)  mass. Its purpose is simply to establish a Dirichlet boupdar

condition for the wave function and to provide a Hamilto-
Due to the similarity of this equation with the energy eigen- nian that is bounded from below. Moreover, we emphasize
value equation in phase spafe (118b), their solutions must bihat experimental realizations of such a trampoline (omgua
similar in form. Indeed, with the help of the differentialley ~ tum bouncer) for atom$ [18-22], neutrons|[32], and ligh] [53
tion of the Airy function[[21), we can immediately verify tha exist.
The boundary condition

9 1/3
uE(z) = Ng - Al <<W2§2> [m§Z - E]) (24) uE(O) =0 (27)

on the wave functiori{24) enforces the discrete energy eigen

satisfies[(213). The constant; has to be chosen so as to en- |
values

sure the orthonormality relation 1
mﬁ2§2 3
no_ / E, = Unt1 (28)
(EIE") = 6(E — E) 2
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V(z) A mass as well as the gravitational mass. For example, when we
W start from a particle in a box, the wave function does not de-
12 1/\/\/\_/\_/‘7"\ pend on the mass at all. In contrast, the energy wave function
\/\/\/\/k of the harmonic oscillator depends on square root of the mass
/\/\W (ii) Due to the marginal property of the Wigner function, the
W time evolved probability density follows from the integoat
g - < of the Wigner function and might create in this way new com-
\w binations of the gravitational and the inertial mass.
< A particularly striking example of this additional free-
W dom is provided by the energy wave function of a quantum
4 _\/7\ particle in linear gravitational potential. Experimentgpea-
e ble of measuring the Airy-function shaped probability dgns
/7\ would yield information abougm,m;)'/3. Moreover, spec-
,/' troscopy of the discrete energy spectrum of a particle bound
< o in an atom trampoline would provide us with another scaling
0 4 8 12 z law (m2 /m;)'/>.

Itis interesting to express these scaling laws in terngs of

Fig. 2 First ten energy eigenfunctions at the corresponding eigen and the geometrical mean

values for the atom trampoline. The potential consists dheakr
part for0 < z and a hard wall at = 0.

2
M* =m;my

wheren = 0, 1,2, ... anda; denotes thg-th zero [45] of the
Airy function, as depicted in Fig. 2.

o . of the inertial and gravitational mass. Indeed, we find that
When we recall the definitiofi{1) gf the energy eigen- g

the spatial modulation of the energy wave function of the lin

values read ear gravitational potential is sensitive 3d2/3, whereas the
1., 3 2 1 corresponding energy eigenvalues involve the combination
E, = (5 hg ) mg m; * anyy (29)  ¢1/2 M'/3. The additional information concerning the rela-
tion between the gravitational and the inertial mass is made
2/3 —1/3 ossible by guantum mechanics and goes beyond the classi-
and thus depend any'~ andm, ~'~. p yq g y

This is quite a remarkable result because the energy spe€2al tests of the universality of free fall.
trum provides us in principle with a third way to compare the  In the past century the spectroscopy of the matter wave
inertial and gravitational mass. However, it is not yet clea representing the electron in the hydrogen atom has trigigere
which additional degree of freedom of an atom should bethe spectacular success of quantum mechanics and quantum
coupled to its center-of-mass motion in order to probe theElectrodynamics (QED). Indeed, the discrete Balmer series
energy spectrum with the necessary energy resolutiong sincgave birth to matrix mechanics and the Lamb shift led to
(m B2 g?/2)'/3 ~ 2.7 x 10712 eV for Rb®" atoms. QED. It would be amusing if in the new century the spec-
troscopy of matter waves of atoms or Bose—Einstein conden-
sates would shine some new light on the old question of iner-
6 Conclusion tial and gravitational mass.

In the present paper we have studied the role of the inertial

and gravitational mass in the quantum mechanical treatmerficknowledgementsWe are grateful to R. Chiao, R. F. O'Connell,
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A Time evolution in a linear potential In Fig. @ we show the time evolution of a Gaussian
Wigner functionW, = Wy(z,p) in the presence and ab-

In Sect[#4 we have presented an exact expression for the timgence of a linear potential confirming the decomposifioh (35
evolution of the Wigner function in a linear potential. The into the product of a time dependent shearing and displace-
main emphasis of this section was the dependence on the iment. An important consequence of this feature is the fact
ertial and the gravitational mass. We dedicate the pregent a that the linear potential has no influence on the spreading of
pendix to represent this dynamics as the product of a stiparinthe wave packet. The spreading is solely due to the free time
and a displacement operator acting on the Wigner function irevolution of the particle given by the Hamiltonidn132).
phase space. This analysis is reminiscent [54] of the onein a
time dependent harmonic oscillator.

We start by recallind(17) for the time dependence V(z)

1
W(z,p;t):WO(zf %tf §§t2,p+m§t) (30)

of the Wigner function in terms of the momentum rather than

the velocity variable. E,
In the absence of gravity, that is fgr= 0, equation[(3D)
reduces to
) — _Pr %
Wy(z,pit) = Wo(z = 2t p) (31) Z

and represents the dynamics of a free particle described by pr
the Hamiltonian o
o z
g, = P 0tz P

The appearance o¢fin the first argument of the Wigner
function [31) is responsible for the familiar shearing effe 0
of the Wigner function. Due to the marginal propeifty](10),
the shearing in phase space translates into a dispersibe of t
wave packet in position space.

When we introduce the displacement operator

S

D(Z,P)F(z,p)=F(z—Z,p—P) (33)

and the time dependent shearing operator Fig. 3 Comparison between the time evolution of a Gaussian
Wigner function in phase spacbdtton) in the presence of a con-
j(t) F(z,p) = ]-‘(Z _P t, p) (34) stant or a linear potentiakdp), that is forV;(z) = 0 (blue) or
m Vi(z) = mg z (red). The upper picture also indicates the average
energyE, of the wave packet. The center of the Wigner function of
the free particle propagates along a straight Ibia€ ling, whereas
the Wigner function in the linear potential follows a parkbred
line). The time evolved quasi-probability distributions areidéed
R N at three different times and clearly illustrate the fact ttie time
W(z,p;t) = 2(Zi(t), Pu(t)) 7 (t) Wo(z, p) - (35)  evolution in alinear potential can be decomposed into agrepa-
gation followed by a shifiD = (Z;(t), P:(t)) in phase space.

which act on any phase space functiBn= F(z,p), we can
represent the time evolution of the Wigner function in adine
gravitational potentia[{30) in the compact form

Here we have introduced the time dependent displacement

@020 = (-39 -mat) @O

Another surprising implication of(35) is the fact that the
linear gravitational potential cannot influence the ireezhce

We emphasize that the operatgrprovides a representa- fr_inges in phase space of a Schr()dinger cat state that con-
tion of the Lie group of translations in phase space, whereaSSts Of & superposition of two Gaussians centered aroend th
% corresponds to the Lie group of shear mappings, accordSamMe position but Wlth slightly d_lfferent |n|t|all momenla..
ingly. In particular, the order of? and.# is important, as [ 19-[4 we show the time evolution of the Wigner function
reflected by the identity correspondn_wg to this superpo_smon state. We n_ote thanthe

terference fringes do change in the course of time. However,
Pt P) N this change arises solely from the shearing effect and is not

containing the specific gravitational acceleratjon

m Z(t). (37 duetothe gravitational field. Indeed, accordingid (35ygra

) D(Z,P) = 92<Z +
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ity only enters through the displacement of the Schrodinge of non-spreading wave packets based on the transformation t
cat obtained from the shearing of free motion. an accelerated reference frame.

PA B.1 Equivalence of shearing and displacement
—

s The Wigner function[(20) of an energy eigenfunction is time

independent. Thus, by insertiifz into the time evolution
equation[(3b), we arrive at the relation

— A A
| — N ~
~ When we multiply [3B) by the inverse operater* of 7,
0 & we find
- I Wg=9""Wg.
e

— This equation enjoys an interesting interpretation: theash
ing of the Wigner function¥ is equivalent to a displace-
ment of Wg by (—Z(t), —Pi(t)). Therefore W preserves
its shape during the free time evolution given byl(31) and
— shifts its position in phase space according to

1_, -
Fig. 4 Time evolution in the linear gravitational potential of the Wi(zpt) = We (Z 59t P mgt) - (39

Wigner functionWy(z, p) corresponding to a Schrodinger cat state

consisting of a superposition of two Gaussian states Idcatehe When we tak? advantage _Of the marginal propérty (10) of
same position but with different initial momenta. the Wigner function[(39), we find the identity
2 Lo
def(zvp;t)=uE(z—§gt ) (40)

The property of the Wigner function to track the classical
trajectory is not restricted to a time independent linedepo
tial, but can be extended to arbitrajy= §(t), resulting ina  which indicates that the initial probability density of tha-
generalized shiftZ;(¢), P;(t)) in phase space. We note that €rgy eigenstaté (24) does not spread during the free time evo
this perspective has also been used in the context of manyution, but accelerates.
body theory and the Gross—Pitaevskii equation to sepdrate t
center-of-mass motion from the internal dynamics [55-58].

— 00

B.2 Broader class of non-spreading wave packets

The Wigner functioniWg is not the only quasi-probability

distribution whose marginaP(z;t) exhibits this interesting

feature. Since the non-spreading behavior of the wave packe

can be traced back to the invariance relatlod (38), any phase
€space distributiofiV’ (z, p) that obeys the identity

B Non-spreading wave packets

An interesting feature of the energy eigenfunctign given

by (24) is the fact[[49-52] that it does not spread during th

free time evolution governed by the Hamiltoniah defined

p_y (32). .Instt.ead, iF preserves its shape and accelt_aratefsin p Wi(z,p) = D(Z1t),Pt) L) W(z,p). (41)

itive z-direction with a ratej t2/2. The representation of the

guantum dynamics in a linear potential as a product of shearpossesses a probability densi®yz; ) in position space that

ing and displacement in phase space discussed in Apdehdix Boes not spread during free time evolution.

offers new insights into the origin of non-spreading Aiyp¢ The invariance propertj(#1) implies that the correspond-

wave packets. ing functionW (z, p) must depend on the phase space coor-
Indeed, the Wigner phase space description of quanturdinatesz andp only via the classical Hamiltonian

mechanics allows a rather straight forward derivation &f th )

effect. We elucidate its connection to a specific invariance Hi(z,p) = r oy mij z (42)

property of the Hamiltoniari (19) and show that this symme- 2m

try relation defines a broader class of Wigner functions thalf the particle in a linear potential.

all correspond to non-spreading wave packets. As an exam-  |ndeed, when we apply the operatofsandZ to H;, we

ple of this broader class we examine the Wigner function thafing with the help of(3B) the relation

follows from an incoherent superposition of energy eigen-

states[(ZK). We conclude with an alternative view on theceffe P(Z(t), Py(t) S (t) Hy(z,p) = Hi(z,p).  (43)
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Hence, any phase space function of the form for the parameter§ = a(H; — Ey) andy = ao, we obtain
the exact formula
W(z,p) = F(Hi(z,p)) (44)
automatically satisfies the invariance propelfy (41). Wine(2,p) = N - ¢2(00)?[a( Hi(z:p)=E)+§(a0)’]
In order to show that the functioris {44) are the only possi- ' 1 . (49)
ble quasi-probability distributions that satisfy the ireace x Ai [Oé (Hi(z,p) —E)+ 1(040) ] :

relation [41), we differentiaté (#1) with respect to thedim

and insertt = 0. The resulting equation coincides with the Here we have introduced the constant

time independent quantum Liouville equati¢n (18a), whose

general solution is found by the method of characteristick a

exactly coincides with the class of phase space functicfis (4 o= <L)
We emphasize, that the phase space distributions (44) h*mg?

cannot be normalized. In fact, when we introduce the new

Wl

phase space coordinates The incoherent superpositioi;,.(z,p) of a continu-
, , ous distributiong = ¢(E) of energy eigenstatd€’) given
Z'=H(zp) and p'=p, by (48) differs in general significantly from the Wigner func

tion Wg(z, p) of a single energy eigenstate, as illustrated in

Fig.[ . In particular, the domains of phase space where the
T 7 1 7 i Wigner functioniW;,,. assumes negative values have almost
/dZ/dp W(zp) = — /dzlf(zl) /dpl- (45)  disappeared. However, due to its functional dependence on

Zoo oo 9 oo H,(z,p), the parabolic profile has survived.

In the limit o — 0 for which the energy distribution

approaches a-function centered aroundy, we recover
f‘,riom ({49) the Wigner function

the normalization condition can be expressed as

Since the integral ovep’ diverges,W and therefore its
marginals cannot be normalized.

As a consequence, a wave packet that corresponds to
Wigner function satisfying the invariance relatignl(41pea

not be exactly realized in an experiment and does not allow lim Wine(2,p) = Wiy (2,)
the definition of the expectation valué® and(p). This fact
saves the day for Ehrenfest’s theorem. of the energy eigenstaté&).

B.3 Incoherent superposition of energy eigenstates
Wine(z,p)

Next, we consider an example for the general class of Wigner
functions [44) with a non-spreading probability dendity=
P(z;t), namely an incoherent superposition

oo

Wine(2,p) = / dE g(B)Wi(zp)  (46)

— 00
of Wigner functiond¥ g corresponding to a density operator

(o]

o= [aBae) 1E) (5. (@7)

— 00

Fig. 5 Quasi-probability distributioi¥inc(z, p) corresponding to
an incoherent superposition of energy eigenstafgsof a linear
potential, that is of Wigner functions/g(z, p) with a Gaussian
weight function [48) of energy spread and average energiy.

In contrast to the Wigner function of a single energy eigatestthis
distribution shows strongly suppressed oscillations i diomain
% + mgz < Ey and has a rather broad maximum sightly left to

For the probability distributioy = ¢(F) to find the par-
ticle in the energy eigenstat&’), we choose the Gaussian
distribution

IE)= o |5 (B~ BoP| (@)

with mean energys, and variance. the classical parabolic phase space trajectory corregmphal E.
When we recall(20) for the Wigner functiéfix together It is the average over the Gaussian that has eliminated nfidse o
with the integral relation negative contributions in Wigner phase space and has ledrweal-
ening of the maximum oW/ x.
7 6_2’%2(5_50)2 1.2 74 'y4
/d£ ———Ai(¢) = e2” (60+?)Ai (60 + _)
272 4

— 00
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B.4 Transformation to an uniformly accelerated frame C Semi-classical limit of an energy wave function

An alternative explanation for the non-spreading wave pack The semi-classical limit of quantum mechanics, that is the
rests on a coordinate transformationi[50] from an inertal t JWKB approximation, has always provided deeper insight
an uniformly accelerated reference frame. It is worthwttle into the inner workings of quantum theory. In this appendix
translate this idea into Wigner phase space in order tombtaiwe apply it to demonstrate that the mass ratig/m, emerges

yet another interpretation of the invariance relatlod (43) in the semi-classical limit of the exact energy eigenfunc-
The transformation from the inertial coordinate system totion (24) far from the classical turning point. Moreover, we
the uniformly accelerated reference frame reads identify phase space quantization as the origin of the uaslusu
1 scaling law of the energy eigenvalues of the atom trampoline

z’zz—§§t2, p=p—mgt, t =t,

with the new phase space coordinatésindp’ and implies  C.1 Revival of the universality of free fall

the following relations on the partial derivatives
When we recall the asymptotic expansioni [45]

o_o0 o0_0 9_9 .0 .0
92 92 op op’ ot o oy "oy . L1 2 s
Ai(=[yl) = NCEuT cos §|y| a1
As a result, the quantum Liouville equation vatl
o p o of the Airy function valid forl < |y|, we can approximate
<§ + E&) Wi(z,p;t) =0 (50)  the energy wave functionz = ug(z) given by [24) by a
superposition
of the free particle expressed in the accelerated reference 55 ) —ip(:E)
frame takes the form up(z) = Ap(z) eGP 4 Ap(z) el (53)

) ) .0
(% tmor mga_p/> W/(',p"st') =0,  (51)

with the transformed Wigner function

of two running waves with identical amplitudes
N

Ap(z) = 7E;
2y/r(e — kz)2
W' p'st') =Wy (z’ + %gt’Q , o +mgt'; t’) . (52) andopposite phases

ZE

The quantum Liouville equatiof (b1) is identical fo}15) and a1 . - T
contains a fictitious linear gravitational potential argsirom oz B) = h dZpa (5 E) - 4" (54)
the transformation into the accelerated reference frame. z

We now assume that our initial quasi-probability distribu- Here p.; = p.(z; E) denotes the classical momentuml(22)

tion for the quantum Liouville equation of a free partidl€)5 and the turning pointz follows from the condition
is given by the Wigner function of an energy eigenstate of a

linear potential, that i$V(z,p; 0) = Wg(z,p). The initial E=mgzp.
Wigner function in the accelerated frame governed[by (51)

follows from (52) fort’ — 0 and takes the form In this way, the energy wave functiarne can be interpreted

as the most elementary matter wave interferometer. Indeed,
W'(',p';0) = Wy(2',p';0) = Wg(,p'),. it consists of a wave running up and one down the linear po-
. o ] ) _ tential. Both waves have identical amplitudes and theispha
SinceWp (2, p') satisfies the time independent quantum Li- gifterence is governed [59] by an area in phase space deter-

ouville equation[(18a), we conclude from[51) mined by the strength of the gravitational constant. Howeve
., the representatiof (b3) is only justified appropriately ywa
@WE(Z ,p')=0. from the turning point, that is for < zg.
. . - _ From [54) we note the relation
Hence, the transformed Wigner function exhibits no time evo
lution and we find 0
pa(z; E) = fﬁ—(b.
!/ !/ / / / 82
w (Z » D 7t) = WE(Z 7p)
As a result we can connect the rate of phase change of the
Insertion of the last expression info {52) finally yields JWKB wave given by [(53) with the classical momentpm
1 at the positior.
W; (z’ +3 gt?, ' +mgt’; t’) =Wg(',p'), When we recall the definitiod (22) of the classical mo-

o . _ mentum together with the relation (16) between velocity and
which in terms of the original phase space coordinataed  momentum, we arrive at the classical velocity

p simply reduces to the Wigner function_{39) of the non-
spreading wave packet. vl =V 20(2E — 2) (55)
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of the particle at position, which only involvesj, thatis the  for the energy eigenvalues. Thus, we find the same prefactor
ratiomg,/m; of the gravitational and the inertial mass. Thus, as in [28) and the approximatidn [45]

in the semi-classical limit we obtain a form of the univeityal
of free fall expressed by the relation

_h o9

m Oz’

3T, . §
a; = [? (45 — 1)}
ver(z) =
for the j-th zero of the Airy function.

_ Aposition-dependentvelocity or momentum does notex-  Thjs treatment clearly identifies the origin of the unusual
istin the Schrodinger formulation of quantum mechanies. | scaling lawsn /3 2/3

. o= - . -2 andmy’” of the energy eigenvalues: The
[ g

deed, we g|ther live m_posmqn spaceorin momentgm S.pacequantization of the energy levels follows from the quantiza

However, in the semi-classical limit we can obtain mixed

I : o . . tion of the action, i.e. of an area in phase space. This oyanti
position-momentum variables. It is interesting that thés r

sult also follows directly from[{20) of the Wigner function, involves both masses.
as discussed in Seft #.2.

However, we emphasize that in the neighborhood of the . :
turning point the decomposition (563) does not hold true. As aD Atomic fountain
consequence, there the wave function is not able to repro-
duce [B5), where only the ratio of the two masses entersin Appendix[A we have shown that a constant gravitational
Around the turning point, the energy wave function thus de-field has no influence on the phase space interference fringes
pends on the third root of the product of the inertial and the®f @ Schrodinger cat moving in a linear potential. On the
gravitational mass. other hand atomic fountains provide us with precision mea-

Our result complements the work of Daviés|[33]. Here, Surements of the gravitational acceleration. In order togor
the travel time of a wave was calculated based on the Wigneput the similarities and differences between these two mea-

time surement schemes, we first summarize the essential ideas
. . that form the basis of an atomic fountain. In the spirit of the
) . m ~ 1 present paper, which relies almost exclusively on the Wigne
T=hap= [dEo—s = [dE s (98) qunct then outline the physics of an atomic fountai
OF pa(5E) val(% E) unctions, we then outline the physics of an atomic fountain
z z in phase space, thereby sketching the ideas only. In fact, we

which is valid appropriately away from the turning point of A0 not intend to develop a complete description of this pre-
the motion. Indeed, the universality of free fall holds true CiSION instrument. For this purpose we refer e. gL10 [61-64]
again and the travel time only involves the ratio of the two @nd references therein.

masses.

D.1 Basic idea
C.2 Phase space quantization as origin of the scaling law

In the atomic fountain experimenis|[8,9], an effective two-
The form of the eigenvalues il_(28) and, in particular, thejeve| atom is moving vertically up against the gravitatibna
scaling properties of the two massesl[inl(29) can also be deje|q of the Earth. Initially, the atom is in its ground stage.
rived in a straightforward manner from the Kramers improvedyowever, on its way up a laser pulse prepares a coherent su-

Bohr-Sommerfeld rule perposition of its internal levels. The wave vectoof the
3 laser is aligned along the-axis. Since the transition to the
J = ?{dz pei(z; E) = 27h <" + Z) . (57)  excited statée) is accompanied by a momentum transfer due

to the photon recoil, the atom in the excited state has ardiffe
The Maslov index is3/4 because there is one “hard” reflec- ent momentum than the atom in the ground state. As a con-
tion atz = 0 contributing 1/2, or equivalently to the phase, sequence they accumulate different phases during thegir pro
and one soft reflection at the classical turning point cbntri  agation in the gravitational field. After a time a w-pulse

ing 1/4, orr /2 to the phase [60]. exchanges the population of the ground and excited state. Fi
With the help of the classical momentum}22), we cannally after another time, a third laser pulse mixes the inter-
evaluate the action nal levels of the atom and in this way erases\théch-way
4 3 . information The quantity measured at the end is the proba-
J=-y/— B> bility to find the atom in the ground or excited state.
3V mg The measurement scheme used in the atomic fountain is

which yields, with the quantization condition {57), the ap- reminiscent of the problem of wave packet interferometry in

proximate expression volving two different molecular surfaces [65]. Whereas in
. typical molecules these potentials are rather complicated

mh2g?\? [3n 3 the atomic fountain they are linear in lowest order. For this

Enr ( 2 > {7 (n + Z)} reason, the latter can be treated fully analytically.




14 E. Kajari et al.

D.2 State vector description D.3 Determination of the phase difference

It is straightforward to translate the atomic fountain expe Using the definitions of the momentum displacement opera-
iment into the language of state vectors. We start with theior D and the time evolution operatdf, the two terms in the
initial state expression for the motional states of the afgry) or |+.) can
;) = [4) |g), be combined and the nature of the interference of the t@ject
ries can be made explicit. With the notatién ' U7, D = U7,
where|y) represents the center-of-mass motion along:the equation[(6D) can be rewritten in the simple form
axis. After the first laser pulse the atom is in the entangled

1 [a,n  onoa
state ) ) [vhg) = -7 [U[ U +U U[} ) -
) = 7 1Y) lg) —iD ) le)| - (58)
As shown below, using the commutation relation between the
Here, the unitary operator position and momentum operator together with the Baker—
A o Campbell-Hausdorff formula, we can prove that
D = ¢'k* (59)
_ _ |¢g> = _ [eikéq—Q + 1} le Ul/ W}) ,
imparts the extra momentum from the photon recoil and acts V2

as a displacement of the corresponding Wigner functionin =~ . .

phase space due the interaction between atom and laser. \/?@'Ch implies _the well-known gravity-dependent expressio

note that we refrain from including additional phases that or the probability

are imprinted on the atom by the laser which must be taken

into account in a real experiment. IR {58), we also assume Py = Tr {|¥y) (¥s| - [g9) (9|} =

that the interaction between the atom and the laser does not

otherwise affect the initial center-of-mass wave function to find the atom in the ground state. Here, we introduced the

which provides a good first order approximation for the realphase differencel¢ = kgr>.

situation encountered in atom interferometer experiments In order to establish this result, we note that from the ex-
The time evolution of the atom in the linear gravita- pansion ofU;, one can prove

tional field for the timer described by the unitary operator

N | —

(1 + cos A¢)

N ~ 27 . A=1 £ ~ . .y
U, = exp(—iH,7/h) yields the state Uy = exp(—irD™" H, D/h) = exp(—itH; /h),
1 12 o where the boosted Hamiltonia‘h{ is just the original Hamil-
W) = 7 [Ul [} lg) — iU D |4) |€>} : tonian H; with the momentunp replaced by + 1k, that is
N 2
The second laser pl_J!se at the timés aw-pulse and inter-. H/ =D 'H D= (p+ hk) + mgs.
changes the probability amplitudes of the ground and eccite 2m
state which leads to the expression Finally, we use the Baker—Campbell-Hausdorff formula to

commutel/; andU; and find

1 A N
22) = — [<iD D) e) = D' 0D ) |g)] o
Ul/ U, =0 Ul/ e(—m’/h) [H),Hi] _ U, Ul/ ezkgT

)

After another period of unitary evolution, a third laser pulse
mixes the internal states with a secomgR-pulse, and we
arrive at the final state

which concludes our simple proof of the phase difference be-
tween the two interfering trajectories.

1
W) = N [ [thg) 1g) + [the) |€>} D.4 Phase space description
where we have introduced the states In Fig.[G we represent in phase space the path of the quantum

state|)) of the center-of-mass motion in the course of time.

[ihy) = — 1 {ﬁ*l U,DU +U DU, b} ly) (60)  Foranatom that is detected in the ground statg, we have
\/5 two paths which start from the same pofin phase space
and end up at the final poiiit,. One path corresponds to a se-
and : . . . .
guence of unitary evolution, displacement, unitary evolut
0l A TA oA A and inverse displacement. Therefore, the atom first moees th
[Ye) = — \/5 (iD) [D UDU—-UD U D} %) linear gravitational potential while being in the groundtst

and then after a transition into the excited state contiitses
of the center-of-mass motion of the atom in the ground andnotion in the potential. It concludes with a transition into
excited state, respectively. the ground state at the poif},. The second path starts with
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the displacement, is followed by unitary evolution and neg-
ative displacement, and concludes by the inverse displace-
ment. Here the atom begins its trip by first making a transi-
tion into the excited state to be followed by motion in the po-
tential. After de-excitation the atom in the ground statmeo
pletes its path in the gravitational field. Both paths define a
enclosed area in phase space that determines the phase diffe
ence between the two amplitudes contributingytg).

Fig. 7 Atomic fountain experiment represented in position-viégjoc
space for typical experimental parameters. Here the mamrent
transfer due to the absorption or emission of a single phigtoruch
smaller than the typical momentum associated with the matio
the linear gravitational potential. As a result the rathemplicated
closed curve in phase space shown in Eig. 6 simplifies moressr |
to two parabolasdotted curveswhich are connected at = 0 by
vertical lines due to the interaction with the lassol{d line in upper
inse). At the timer, the second laser pulse causes another internal
transition and a shift in the momentum. Consequently thahadas
are interrupted by straight vertical lines representing ttomen-
tum transfer lpwer inse}. For each trajectory we have marked with
Fig. 6 Phase space representation of an atomic fountain experimenthe symbolr the points in phase space that represent the end of the
Two 71—/2-pu|ses Separated by the tirde surround ar.pu|se attime first Step of the unitary time evolution. Note that the Smrg"le on

r and cause transitions in the internal states of the atomhndrie  the inner trajectoryk{lue dashed lingis therefore traversed thrice,
accompanied by displacements in phase space along the momen Whereas the corresponding section on the outer pattple dashed
axis. Each parabola section corresponds to the centemsémo-  lin€) is traversed only once. The atom initially in the groundesta
tion in the linear gravitational field within the propagatitmer.  follows the parabola to the point in phase space indicated The
The atom starts its journey in the ground state at the gidttoms ~ laser pulse moves the atom vertically up in phase space anekth
eventua”y measured in the ground state end up at phase Me cited atom traverses the same vertical line again, but an‘aHSJf
E,, whereas atoms detected in the excited state are to be fothel a  the unitary time evolution in the potential. This picturarsapprox-
point E.. In both cases two distinct paths lead from the startingtpoin imation; in reality the parabolas have a curvature that &sameters
S in phase space to the same final point. The area enclosee by t®f the experiment is negligible on the length scale of the tum
two paths expressed in units furns out to be twice the phase dif- transfer and invisible even on the magnified scale of thetinse
ferenceA¢ between the two corresponding probability amplitudes.

» 7

As a result we can approximate the closed circuit in phase
Atoms that exit the interferometer in the excited stédte space by two parabolag(z; E) andp.(z; E + AE) given
have traversed the same path in phase space as atoms in e (22), which are connected by two vertical lines of length
ground state except that their final poitit on the trajectory Ap = hk at z = 0. The differenceAE in energy is to first
is different. They either move in the potential, become ex-order inAp

cite_d, and then follow again the_parabola or _become inytiall AE = PE p = PE 4. , (61)
excited, follow the parabola, emit, follow again the linpar m m
tential, and finally get re-excited. wherepr = pa(0; E) denotes the momentum at zero poten-

In Fig.[1 we show the trajectory of the atom in phase spacial.
during a fountain experiment for realistic parametérs [11] The phase differencél¢ between the two paths turns
For this case the vertical straight paths due to the momeneut to be half of the phase space area enclosed by the two
tum exchange with the laser pulse are much shorter than thearabolas (expressed in unitsfgf In order to provide a sim-
parabolas corresponding to the classical motion in a lineaple derivation of this result, we first emphasize with thephel
gravitational potential. of (54) that2/ ¢(0; F) represents the phase space area inside
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the parabolac(z; £) ranging fromz = 0to the turning point  where we have introduced the abbrevia |q3r> = —T,U] |4).

zp. We then denote by¢ the area of the circuit expressed in The phase turns out to be half the enclosed area in phase space
units of » and find for smallAFE the relation shown in Fig[®.

¢ Needless to say, the Wigner function |af,) does not
~ 2= AE o thi ]
Y : contain this phase. However, a phase space approach to the
o _ ~atomic fountain must contain this phase. It arises when we
When we recall the definitiofi(56) of the classical transitinclude the internal degrees of freedom into the phase space

6¢ =2[p(0; E + AE) — ¢(0; E)] (62)

time 7 from z = 0 to the turning point g, we find

.
66 =22 AL. (63)

description. Unfortunately, this goes beyond the scopbef t
present paper.

Finally, substituting Eqs.[{61) intd (B3) together with the References

identitypg = mgr, reduces to
1.

d¢ = 2kgr? = 2A0 ,
and proves our conjecture in the limit of small momentum
transferAp < pg. We note that a more thorough analysis
shows that this result is actually exact.

This calculation brings to light a remarkable interpreta-
tion of the atomic fountain experiment. The phase differ-
ence A¢ between the two paths is half the differengg 5
between the phases of two energy wave functions in a lin- g,
ear potential of slightly different energies. Each wavereep 7.
sents an interferometer—it is the interference of two ceunt
propagating waves as expressedby (53). The phwEe F) 8.
is the area in phase space enclosed by a straight line-ait
and the parabola corresponding to the endtgyhe area of

3.

4,

resenting the phases of the WKB energy wave functions in a
linear potential.

D.5 Comparison between cat and fountain

14.

We conclude by comparing the interference contained in &>
Schrodinger cat such as the one shown in[Big. 4 and the ontP-

in the superposition state in the atomic fountain, depiated
Fig.[8. In both cases we consider the quantum state of thé
center-of-mass motion in a linear gravitational field. How- ;4

perposition of two states that are located at different{zam

phase space. This fact stands out most clearly in the larguagO0.

of coherent statels + ip) of the harmonic oscillator. Indeed,
the state

(o) = N[ |2 +ip) + |2 +ip) |

of the Schrodinger cat corresponds to two Gaussians whic
differ in their momenta andp’. Here_4¢,; denotes a nor-
malization constant.

In contrast, in the atomic fountain we have the stétg$

and|vy.) each of which consists of the superposition of two 26,
27.

states which only differ in the phasé¢. In particular, the
wave function of the center-of-mass motion for the ground

state reads .
=Sl |o)

|¢g) 7
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