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, DR, DIRAC

Lecture No, 1

- I'mi very happy to be here at Yeshiva and to have this
“chance:to talk to you about some mathematical methods
_that I have been working on for 2 number of years, I
would like first to describe in a few words the general
object of these methods.

In atomic theory we have to deal with various fields.
There are .some fields which are very familiar, like
. the:electromagnetic and the gravitational fields; but in
cretentitimes:we have a:number of other fields also to
- «concetn-outselves with, because according to the general
;ideas of De ‘Broglie and Schrédinger every particle is
“-associated with.-waves and these waves may be considered
asia:field; :So .we have in atomic physics the general
problemof setting up a theory of various fields in inter-
+ getioniwith-each other, We need a theory conforming to
‘ the principles. of quantum mechanics, but it is quite a
- difficult matteito-get such a theory.

“Oneleaniget a much simpler theory if one goes over

orresponding classical mechanics, which is the
o@wwcgﬁcﬁ mechanics takes when one makes
constant #:tend to zero, Itis very much easier
alize..what one is doing in terms of classical
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THE HAMILTONIAN METHOD

»Em problem of putting a general classical theory into the
Hamiltonian form. When one has done that, one is well

Jaunched onto the path of getting an accurate quantum

theory. One has, in any case, a first approximation,

Of course, this work is to be considered as a prelimin-
ary piece of work. The final conclusion of this piece of
work miust be to set up an accurate quantum theory, and
that .involves quite serious difficulties, difficulties of a
fundamental character which people have been worrying

-over for quite a number of years. Some people are so

much impressed by the difficulties of passing over from
Hamiltonian classical mechanics to quantum mechanics
that they think that maybe the whole method of working
from Hamiltonian classical theory is 2 bad method.
Particularly in the last few years people have been trying
to set up alternative methods for getting quantum field
theories, They have made quite considerable progress on
these lines. They have obtained a number of conditions
which have to be satisfied. Still I feel that these alterna-
tive methods, although they go quite a long way towards
accounting for experimental results, will not lead to a
final solution to the problem, I feel that there will always
be something missing from them which we can only get
vw.éonﬁsm from a Hamiltonian, or maybe from some
generalization of the concept of a Hamiltonian. So I take
the point of view that the Hamiltonian is really very
important for acmnﬁca theory. .
In fact, without using Hamiltonian Baﬂro ds one cannot

“solve some of the simplest problems in quantum theory,

for example the problem of getting the Balmer formula
for hydrogen, which was the very gm:::nm of EHE:EB
rhechanics, A Hamiltonian ‘comes in therefore in very

 elementary ways and it seems to me that it is really quite

[31]
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LECTURES ON QUANTUM MECHANICS

essential to. work from a Hamiltonian; so I want to talk
to- you about how far one can develop Hamiltonian

" I.wouldlike:to;hegin in an elementary way and I take
agmy starting n.action principle, That is to say, I
assumé that't ction integral which depends on

the-motion; suc t:'when one varies the motion, and
puts down the: conditions for the action integral to be
stationary, oné gets the equations of motion, The method
of starting from an action principle has the one great
advantage, that one can easily make the theory conform
to the principle of relativity, We need our atomic theory

- to.conform to relativity because in general we are dealing

with particles moving with high velocities.
If we want to‘bring in the gravitational field, then we

. have to:make our theory.conform to the general principle
- of s relativity; which/means..working with a space-time
-Which

s not flat.:Now:the gravitational field is not very

b

important in'atomic:physics, because gravitational forces

are ‘extremely weak compared with the other kinds of
forces which are present in atomic processes, and for

-practical purposes one-can neglect the gravitational field.
Pegple have in. recent years worked. to some extent on

nging;the gravitational-fieldinto‘thequantum theory,
T the:main-object.of this:swork was the hope
gravitational -field ‘might. help to

at bringing

‘solve moaon._,_@_m the difficulties:- As far-as jone:can-see at
_present,that-hop

is"not:realized, and:bringing in the
ms to-add to:the difficulties rather

gravitational:

than rémove them: So that there:is:not very nmuch point
at:present in_bringing gravitational fields into atomic
theory.. However, the “methodswhich: I 'am going to
describe “are ‘powerful ‘mathematical methods which
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THE HAMILTONIAN METHOD

would be available whether one brings in the gravita-

tional field or not. .
We start off with an action integral which I denote by

I= % Lt (&Y

It is expressed as a time integral, the integrand L being
the Lagrangian. So with an action principle we have a
Lagrangian. We have to consider how to pass from that
Lagrangian to a Hamiltonian. When we have got mra
Hamiltonian, we have made the first step toward getting
a quantum theory.

You might wonder whether one could not Swo %.n
Hamiltonian as the starting point and short-circuit this
work of beginning with an action integral, mﬁﬁ.mnm a
Lagrangian from it and passing from the Lagrangian to
the Hamiltonian. The objection to trying to make this
short-circuit is that it is not at all easy.to formulate the
conditions for a theory to be relativistic in terms of the
Hamiltonian. In terms of the action integral, it is very
easy to formulate the conditions for the theory S.co
relativistic: one simply has to require that the action
integral shall be invariant. One can easily construct
innumerable examples of action integrals which are
invariant. They will automatically lead to equations of
motion agreeing with relativity, and any developments
from this action integral will therefore also be in agree-
ment with relativity.

When we have the Hamiltonian, we can apply a
standard method which gives us a first approximation to
a quantum theory, and if we are lucky we might be able
to go on and get an accurate quantum theory. You might

(5]




b.mﬁ..u..qgﬁ.o.z QUANTUM MECHANICS
again wonder whether one could not short-circuit that
- work to some extent. Could one not perhaps pass directly
from the Lagrangian to the quantum theory, and short-
cireuit altogether the Hamiltonian ? Well, for some simple
examples one caz do that. For some of the simple fields
which- are used in physics the Lagrangian is quadratic
in the velocities, and is like the Lagrangian which one
has in the non-relativistic dynamics of particles, For these
examples for whith-the Lagrangian is quadratic in the
velocities, peoplé have devised some methods for passing
directly from thé Lagrangian to the quantum theory.
Still, this limitation of the Lagrangian’s being quadratic
in the velocities is quite a severe one. I want to avoid this
- limitation and to work with a Lagrangian which can be
quite a .general function of the -velocities To get =
general formalism which will be applicable, for example
to the non-linear electrodynamics -which I mentioned
previously, I don’t think one can in any way short-
circuit the route of starting ‘with an action integral,
getting a Lagrangian, passing from the Langrangian to
the Hamiltonian, and then passing from the Hamiltonian
- to the quantum theory. That is the route which I want to
discuss in' this course of lectures, R
In orderto express things in a simple way to begin
- with, I would like to start with a.dynamical theory
involving only a finite number of degrees of freedom,
such. as ‘you are familiar with in particle dynamics. It
is then ‘merely a formal matter to pass from this

finite number of degrees of freedom to the infinite num-

ber of degrees of freedom which we need for a field
theory. BRI

" Starting with a finite number of degrees of freedom,
~ we have dynamical coordinates which I denote by q.

6]
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THE HAMILTONIAN METHOD.

The general oneis g,, 2 = 1,--+, N, N being the num-
ber of degrees of freedom. Then we have the velocities
dq,fdt = ¢,. The Lagrangian is a function L = L(g, §)
of the coordinates and the velocities.

You may be a little disturbed at this stage by the
importance that the time variable plays in the formalism.
We have a time variable ¢ occurring already as soon as
we introduce the Lagrangian, It occurs again in the
velocities, and all the work of passing from Lagrangian
to Hamiltonian involves one particular time variable.
From the relativistic point of view we are thus singling
out one particular observer and making our whole
formalism refer to the time for this observer. That, of
course, is not really very pleasant to a relativist, who
would like to treat all observers on the same footing.
However, it is a feature of the present formalism which
I do not see how one can avoid if one wants to keep to the
generality of allowing the Lagrangian to be any function
of the coordinates and velocities. We can be sure that the
contents of the theory are relativistic, even though the
form of the equations is not manifestly relativistic on
account of the appearance of one particular time in a
dominant place in the theory.

Let us now develop this Lagrangian dynamics and
pass over to Hamiltonian dynamics, following as closely
as we can the ideas which one learns about as soon as one
deals with dynamics from the point of view of working
with general coordinates. We have the Lagrangian
equations of motion which follow from the variation of
the action integral: _

mA&\ oL,
%(57)

— Hml?.

o4,
(71

(1-2)
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To go over to.the Hamiltonian formalism, we introduce
the momentum variables p,, which are defined by
e oL :
= = (1-3)

nta are independent functions
dssumption is too restrictive for
¢ are going to make, We want

independenit functions, of the velocities. In that case,
in relations connecting the momentum
e $(g;2) = 0.

eral independent relations of this
, -we' distinguish them one from
=1,.:+,'M, s0"we have

| S ke =0 ()
-+, '5/The.q’s and the p's-ave-the dynamical variables of the
. Hamiltonian theory. They are-connected by the relations
~ (1-4); " whic! called the primary. constraints of the

This - terminology is due to
it is a good one. :

&k us now: const the quantity p,d, — L. (When-
ever there is.a repeated suffix I assume a summation
over:all.valués:of that suffix.) Let us inake variations in

o nan = () on - () o,
=t - (5) 0 * e (1-5)
) {81]

ibility of these momenta not being -
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THE HAMILTONIAN METHOD

by (1-3). Now you see that the variation of this quantity
Pndn—L involves only the variation of the ¢'s and that of
the #’s. It does not Fﬁkﬁw the variation of the velocities.
That means that p,¢,% = can be expressed in terms of
the ¢'s and the p’s, independent of the velocities. Ex-~
pressed in this way, it is called the Hamiltonian H.

However, the Hamiltonian defined in this way is not
uniquely determined, because we may add to it any
linear combination of the ¢’s, which are zero. Thus, we
could go over to another Hamiltonian

H* = H + h_aawau C...@v

where the quantities c,, are coefficients which can be any
function of the g’s and the p's. H* is then just as good as
H: our theory cannot distinguish between H and H*.
The Hamiltonian is not uniquely determined.
We have seen in (1-5) that
oL
8H = gy 3pn — AWMW n-

This equation holds for any variation of the ¢'s and the
p's subject to the condition that the constraints (1-4) are
preserved. The ¢’s and the p's cannot be varied inde-
pendently because they are restricted by (1-4), but for
any variation of the ¢’s and the p’s which preserves these
conditions, we have this equation holding. From the
general method of the calculus of variations applied to 2
variational equation with constraints of this kind, we

deduce

, _ oH O¢m
4n = .mﬂq.- + QB.MMVM Qn.wv
alL aH o
and - e = by
Oy 9 " gy
[9]
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- symmetric in'f and’g

it is linear in eithern

or

(1-8)

ﬁmm.ﬂroArmm_u_.mm_.wﬁw v and (1-3), where the u, are
unknown. coeflicients, We have here the Hamiltonian

equations of. motion, describing how the variables ¢ and

p vary in time, but_these. equations involve unknown
coefficients th. . ..

It s ,npﬁwaﬁm\.wn__,.‘..‘.o”,_ﬂ.mnﬂ.omcnm a " certain_formalism
which ' enables: one .to.:Write these equations briefly,

namely the Poisson b racket formalism, It consists of the

following: If we have two functions of the ¢'s and the p's,
say f(g, #) and g(g, p), they have a Poisson bracket [, g]

which is defined by . .
L yw oy

| 121 0g2 0Py " O, Bg, (-9
The Poisson brackets ‘have certain properties which

follow. from - their . definition, namely : [f, g] is anti-

Lo D= 0
Ut fus]l = Uodl + Dnghete;  (1-11)
and we have the product law,

Vol = filfdl + oele  (-12)

~* Finally, there is: Em.wn_umome? known as :the Yacobi

Identity; connecting three quantities: -

- mH [+ ] -0 ()

| ‘With the help W,.om ._Fwwmmmmg bracket; one can rewrite -

R “[10]
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the equations of motion, For any function g of the ¢’s
and the p’s, we have

,_ % ., O -
&= Gt 55 bn (1-14)

If we substitute for ¢, and p,, their values given by (1-7)
and (1-8), we find that (1-14) is just

£ = [g H] + talg, $ul- (1-15)

The equations of motion are thus all written concisely in
the Poisson bracket formalism.

We can write them in a still more concise formalism
if we extend the notion of Poisson bracket somewhat,
As I have defined Poisson brackets, they have a meaning
only for quantities f and g which can be expressed in
terms of the ¢’s and the p’s, Something more general,
such as a general velocity variable which is not expressible
in terms of the ¢’s and p’s, does not have a Poisson
bracket with another quantity, Let us extend the meaning
of Poisson brackets and suppose that they exist for any
two quantities and that they satisfy the laws (1-10),
(1-11), (1-12), and (1-13), but are otherwise undeter-

‘mined when the quantities are not functions' of the ¢'s

and p’s.
- Then we may write (1-15) as

=12 H + tndy]. | - (1-16)

Here you see the coefficients « occurring in one of ‘the
members of a Poisson bracket. The coefficients u,, are’
not functions of the ¢'s and the p’s, so that we cannot
use the definition (1-9) for determining the Poisson
bracket in (1-16). However, we can proceed to work out

2 . [11]
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, ws; (1-10); (1-11); (1-12), definite, and we have the possibility of writing our
law we, have: equations of motion (1-16) in a very concise form:
T £ ) (1-21)
with a Hamiltonian I call the tote! Hamiltonian,
ma* =H + aaﬁa. C...NNV

Now let us examine the consequences of these
equations of motion. In the first place, there will be
some consistency conditions. We have the quantities ¢
which have to be zero throughout all time. We can apply
the equation of motion (1-21) or (1-15) taking g to be one
of the ¢’s. We know that § must be zero for consistency,
and,e0 .we get some consistency conditions. Let us see

t they are like. Putting g = ¢y and £ = 0 in (1-15),

o T@a: S + n_a._w?a. ,}s‘”_ ~ 0. AH:qu

We have here a number of consistency conditions, one
for each value of m. We must examine these conditions
to see what they lead to. It is possible for them to lead
directly to an inconsistency. They might lead to the
inconsistency 1 = 0, If that happens, it would mean

" that our otiginal Lagrangian is such that the Lagrangian
equations of motion are inconsistent. One can easily
construct an’ example with just one degree of freedom.

If we take L = ¢ then the Lagrangian equation of motion

Sl : (1-2) gives immediately 1 = 0. So you see, we cannot

ations;'to distinguish them : take the Lagrangian to be completely arbitrary. We must i

et impose on it the condition that the Lagrangian equations

-3

of motion do not involve an inconsistency., With this
restriction the equations (1-23) can be divided into three

: [13]
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~ Thiseq :
/(1-23). One:must again see which of the three kinds it is.
| Ifitiin‘of the sdoond kind, then we have £o push the
.~ .Process one stage further because we have a further

" LEGTURES ON-QUANTUM MECKANICS
“:One:ikind quation: reduces to 0 = 0, ie. it is
-identically satisfied, with the help of the primary con-

of iequation reduces to an equation
ws; thus involving only the ¢’s and
uation must be independent of the
‘otherwise it is of the first kind.

Wy =0 (124

a_.."m._m_n_pm:u.., an'equation. bﬁ..wmvsmw not reduce in eithet
‘of these ways;.it then imposes 2 condition on the u's,

.ot have to bother about any
the second kind means that we
1t on:the: Hamiltonian variables.
.up ‘in this ‘way are’called sec-

aty constraints are consequences
1 the.equations (1-3) that define the momentum
 variables, while for the secondary constraints, one has to

- -make use of the Lagrangian equations of motion as well,

. If we have: condary constraint turning up in our
¢t yet ‘another consistency condition,

then we g : 0
e can work out y according to-the ‘equation of

ve require that ¥ x 0. So we get

L BHiekadzo o

ation has to be treated on the same footing as

< _”.,r: .

y-differ ‘from: the primary con-

(.3
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.

.manobmmn,w constraint, We carry on like that until we have

exhausted all the consistency conditions, and the final
result will be that we are left with a number of secondary
constraints of the type (1-24) together with a number of
conditions on the coefficients u of the type (1-23).

The secondary constraints will for many purposes be
treated on the same footing as the primary constraints.
It is convenient to use the notation for them:

¢ 0, R=M+1,.... M+ K, (1-26)

where K is the total number of secondary constraints.
They ought to be written as weak equations in the same
way as primary constraints, as they are also equations
which one must not make use of before one works out
Poisson brackets. So all the constraints together may be
written as _

=0 j=1,...M+K=% (1-27)

Let us now go over to the remaining equations of the

‘third kind. We have to see what conditions they impose

on the coefficients u. These equations are

(6 H] + tinlp $n] 0 (1-28)

- where m is summed from 1 to M and j takes on any of mrn
- values from 1 to ¥. We have these equations involving

conditions on the coefficients #, insofar as they do not
reduce merely to the constraint equations. N
Let us look at these equations from the following
point of view, Let us suppose that the «’s are unknowns
and that we have in (1-28) 2 number of nob-roBomnﬁaocm
linear equations in these unknowns u, with coefficients -
which are functions of the ¢'s and the p’s. Let us look -

[15]
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for a solution of these equations, which gives us the
u's as functions of the ¢’s and the p’s, say

Uy = Oﬂsmwu ?) (1-29)

There-must exist a solution of this type, because if there
were none it would mean that the Lagrangian equations
of ‘motion are inconsistent, and we are excluding that

The solution is not unique. If we have one solution,
we may add to it any solution ¥ (g, p) of the homogene-
ous equations associated with (1-28):

. . .w\s_”ﬁu. ﬁa”_ = 0, . A Qumov
and that will give us another solution of the inhomogene-~
ous equations (1-28). We want the most general solution
of (1-28) and that means that we must consider @/ the

- independent solutions of (1-30), which we may denote by

Vanlg, 2), @ = 1, ..., 4. The general solution of (1-28)

ty = Up + 9V am (1-31)

in terms of coefficients v, which can be arbitrary.

Let us substitute these expressions for » into the total
Hamiltonian of the theory (1-22). That will give us the
total Hamiltonian

Hyp = H + Untn + 0%Varbne  (1-32)
We can wiite this as
Hy = H' + vybs, (1-33)
where H=H+ Usd, (1-33)’
and $a = Vanm (1-34)
[16]
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In terms of this total Hamiltonian (1-33) we still have the
equations of motion (1-21). . .

As a result of carrying out this analysis, we have
satisfied all the consistency requirements of the theory
and we still have arbitrary coefficients . The number of
the coefficients v will usually be less than the number of
coefficients #. The w's are not arbitrary but have to
satisfy consistency conditions, while the nw_m are arbitrary
coefficients. We may take the ’s to be arbitrary ?baﬁobm
of the time and we have still satisfied all the requirements
of our dynamical theory. . .

This provides a difference of the manmam.:mom ﬂmn:._-
tonian formalism from what one is familiar with in
elementary dynamics, We have arbitrary mcsomopm.om. the
time occurring in the general solution of the equations
of motion with given initial conditions. These m_..,ch.ﬁmnw
functions of the time must mean that we are using a
mathematical framework containing arbitrary features,
for example, a coordinate system ﬁwmo.: we can choose
in some arbitrary way, or the gauge in electrodynamics.
As a result of this arbitrariness in the mathematical
framework, the dynamical variables at mﬁ:nn times are
not completely determined by the initial %:m.BBmm
variables, and this shows itself up through arbitrary
functions appearing in the general moEﬂmoP

We require some terminology which will nbmv_o one to
appreciate the relationships between the quantities which
ocour in the formalism. I find the following annaﬁomomw‘
useful. I define any dynamical variable, R, 2 function of
the ¢’s and the p’s, to be first-class if it has zero Poisson

brackets with all the ¢'s:
Ry¢) =0, j=1 ceer Je (1-35)

[17]
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It is sufficient if these conditions hold weakly, Otherwise
R is second-class, If R is first-class, then [R, ¢,] has to be

strongly equal to some linear function of the ¢'s, as
anything that is weakly zero in the present theory is

strongly equal to some linear function of the ¢'s. The ¢’s
are, by definition, the only independent quantities which
are weakly zero. So we have the strong equations

- ..mm. $4] = ripbp. (1-36)

Before going on, I would like to prove a

Theorem: the Poisson bracket of two first-class
quantities is also first-class. Proof. Let R, S be first-class:
then in addition to (1-36), we have

_”M ¢ = .,.&,F. (1-36)

Let us monB [[R, S], &4 So can work out this Poisson
 bracket using Jacobi’s &amaJ\ (1-13)

_”_”.mw. .w_”_. mw\“_ _”_”w- &g”_, M“_ - _Hr.w.. &L. wm”_

= [t39¢5, S] = [s;p6p, R]
#17($ys 81+ [rips S1by — syy[$p, R

= [839s .x“_qr.

&0
by (1-36), G-um% the product law (1- umv and G:NS
The whole thing vanishes weakly. We have proved
therefore that [R, §]1is first-class,
. 'We have altogether four different kinds of constraints,
~We can divide constraints into first-class and second-
class, which is quite independent of the division into

. primary and secondary.
- T'would like woc to notice that H’ given 5 (1-33)" and

[18]
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the ¢, given by (1-34) are first-class, Forming the
Poisson bracket of ¢, with ¢, we get, by (1-34),
Veml#m #,] plus terms that vanish weakly. Since the
V,n are defined to satisfy (1-30), ¢, is first-class.
Similarly (1-28) with U,, for u,, shows that H’ is first-
class. Thus (1-33) gives the total Hamiltonian in terms
of a first-class Hamiltonian H ’ together with some first-
class ¢'s.

Any linear combination of the ¢’s is of course another
constraint, and if we take a linear combination of the
primary constraints we get another primary constraint.
So each ¢, is a primary constraint; and it is first-class.
So the final situation is that we have the total Hamil-
tonian expressed as the sum of a first-class Hamiltonian
plus a linear combination of the primary, first-class
constraints,

The number of Sgawonmonﬁ arbitrary functions of the
time occurring in the general solution of the equations of
motion is equal to the number of values which the suffix
a takes on. That is equal to the number of independent
ﬁHmBnQ first-class constraints, because all the wsmownsm;
ent primary first-class constraints are Eo_cmma in the
sum (1- uuv

That gives you then the mosﬂ.m_ situation. <<m have
deduced it by just starting from the Lagtangian equa-
tions of motion, passing to the Hamiltonian and Sop.rmbm
out consisténcy conditions,

From the practical point of view one can tell from ﬂwo
general transformation properties of the action _E..oma;
what arbitrary functions of the time will occur in the
general solution of the equations of motion. To each of

‘these functions of the time there must correspond some-
‘primary first-class constraint, So we can tell which

Tﬁ
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primary first-class constraints we are going to have

- without going through all the detailed calculation of

working out Poisson brackets; in practical applications
of this theory we can obviously save a lot of work by
using that method.

I would like to go on a bit more and develop one
further point of the theory. Let us try to get 2 physical
understanding of the situation where we start with
given initial variables and get a solution of the equations
of motion containing arbitrary functions. The initial
variables which we need are the ¢’s and the p's. We
don’t need to be given initial values for the coefficients v.
"These initial conditions describe what physicists would
call the initial physical state of the system. The physical
state is determined only by the ¢’s and the p’s and not by

" the coefficients .

Now the initial state must determine the state at later
times. But the ¢'s and the p’s at later times are not
uniquely determined by the initial state because we have
the arbitrary functions v coming in. That means that the
state does not uniquely determine a set of ¢’s and p's,
even though a set of ¢’s and p’s uniquely determines a
state, There must be several choices of ¢'s and p’s which
correspond to the same state. So we have the problem
of looking for all the sets of ¢’s and p’s that correspond to
one particular physical state. ,

All those values for the ¢'s and p’s at a certain time
which can evolve from one initial state must correspond
to the same physical state at that time. Let us take partic-
ular initial values for:the ¢’s and the p’s at time £.= 0,

. ‘and consider what the ¢’s and the p’s are after a short

tire interval 8¢, For a general dynamical variable g, with
initial value go, its value at time 8¢is -

[20]
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g8ty = go + &8
=g + _”%. N.‘.mn_.._”_ 8t
= go + 84{[g, H'] + vlg ¢} (1-37)

The coefficients v are completely arbitrary and at our
disposal. Suppose we take different values, ¢’, for these
coefficients. 'That would give a different g(8z), the

difference being

4g(88) = 84(vg — v5)[&: Pal- (1-38)

We may write this as
thmuv = mam%v &.L‘ G.:mov
where eq = 84w, — g) (1-40)

is a small arbitrary number, small because of the coeffi-
cient 8¢ and arbitrary because the v’s and the o''s are
arbitrary., We can change all our Hamiltonian variables
in accordance with the rule (1-39) and the new Hamil-
tonian variables will describe the same state. This
change in the Hamiltonian variables consists in applying
an infinitesimal contact transformation with a generating
function e,¢,. We come to the conclusion that the ¢,’s,
which appeared in the theory in the first place as the
primary first-class constraints, have this meaning: as
generating functions of infinitesimal contact transformations,
they lead to changes in the ¢'s and the p's that do not
affect the physical state.

However, that is not the end of the story. We can go on
further in the same direction. Suppose we apply two of
thes contact transformations in succession. Apply first
a contact transformation with generating function

[21]
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2.9, and then apply a second contact transformation
with generating function.y,¢,, where the gamma’s are
some new small:coefficients. We get finally

=g ,,.T,_._.H%,ﬁ,u_,_. velg + edlg 4ol 4ul. (1-41)

ﬁ retain’ the*second order terma involving wnomconm
ey, but I neglect the second order terms. involving &% or
involving 2. This is legitimate and sufficiesit. I-do that
because I'do not.want to write down more than I really
need for getting the desired result.) If we apply the two
transformations in succession in the reverse order, w
moﬂ m:»mu‘ .

.w- =g+ Yp.m%. ﬁn...._ +. ma_“N + volg ol @a.._ (1-42)
Now moﬂ us subtract awomo two. The difference is
. h_.m_ maﬂ&ﬁ_“m%. [ AR .“.o.“_ - _H..N ) ﬁa 1 Avau_v Aﬁum.mv
ww umoo? 8 aanﬂa. C 13) this no&ﬁoow to
L = ends ?, i N :.§

_ .H.Fm n_% chn also aoﬁamwowm ﬂo a ormumo in ﬂro m s and

the'p’s which: does not involve EQ change in'the vrwmﬁm_
state, vnomﬁa it is. made up by, ?.oonmmom which in-

divi n_cmE‘ mosﬁ involve “any change in aﬁ Eaa_o»_.

mnmﬁo. .H._Em we moo nrﬂ we can use.

Hﬁa_ ﬁa‘ , : .. o ﬁ-&mv

as"a. mobauamsw ?nonob of an EmES.ﬁB& contact
transformation and ‘it §= uﬂ: cause no ormnmo in the
vE«mHo& state.

el

R

——— ey i

T
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THE HAMILTONIAN METHOD

Now the ¢, are first-class: their Poisson brackets are
weakly zero, and therefore strongly equal to some linear
function of the ¢’s. This linear function of the ¢’s must
be first-class because of the theorem I proved a little

. while back, that the Poisson bracket of two first-class

quantities is first-class. So we see that the transformations
which we get this way, corresponding to no change in the
vgﬁn& state, are transformations for which the genera-
ting function is a first-class constraint, The only way
these transformations are more general than the ones we
had before is that the generating functions which we had
before are restricted to be first-class primary constraints.
Those that we get now could be first-class secondary

“constraints, The result of this calculation is to show that

we might have a first-class secondary constraint as a
generating function of an infinitesimal contact trans-
formation which leads to 2 change in the ¢'s and the p's
without changing the state.

For the sake of completeness, there is a little bit of
further work one ought to do which shows that a Poisson
bracket [H’, ¢,] of the first-class Hamiltonian H’ with
a first-class ¢ is again a linear function of first-class
constraints. This can also be shown to be a possible
generator for - infinitesimal contact ﬂnmnm_..onamco:m
which do not nrmnmo the state,

The final result is that those transformations of the
dynamical variables which do not change wr%mﬁmm states
are infinitesirnal contact transformations in which the
generating function is a primary first-class constraint or

~ possibly a secondary first-class constraint. A good many

of the secondary first-class constraints do turn up by the
process (1-45) or as [H', ¢,]. I think it may be that all the
first-class secondary oosmﬁﬁﬁm mgs_m be Eo_zmam

{23]
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among the transformations which don’t change the
physical state, but I haven’t been able to prove it. Also, I
haven’t found any example for which there exist mam_ﬂ-o_m&
secondary constraints which do generate a change in the
physical state,

[24]
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DR. DIRAC
Lecture No. 2

THE PROBLEM OF QUANTIZATION

We were led to the idea that there are certain changes in
the p’s and ¢’s that do not correspond to a change of
state, and which have as generators first-class secondary
constraints. That suggests that one should generalize the
equations of motion in order to allow as variation of a
dynamical variable g with the time not only any variation
given by (1-21), but also any variation which does not
correspond to a change of state. So we should consider 2
more general equation of motion

£ = [& Hil (2-1)

with an extended Hamiltonian Hy, consisting of the
previous Hamiltonian, Hy, plus all those generators
which do not change the state, with arbitrary coefficients:

Hy = Hy + vide (2-2)

Those generators ¢, which are not included already in
Hp will be the first-class secondary constraints, The
presence of these further terms in the Hamiltonian will
give further changes in g, but these further changes in g
do not correspond to any change of state and so they
should certainly be included, even though we did not

[25]
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arrive at these further changes of z by direct work from
the Lagrangian, _
That, then, is the general Hamiltonian theory. The
theory as T have developed it applies to a finite number of
degrees of freedom but we can easily extend it to the
case of an infinite number of degrees of freedom. Ouy
suffix denoting ¢ ¢ degree of freedom is 7 — L,...,N:
e may easily make &V infinite. We may further manan&u
ize it by allowing the number of degrees of freedom to be
continuously infinite. That is to say, we may have as oyur
¢'s and p’s variables x> P where x is a suffix which-can
SH.G on all values in a continyoys range. If we work with
this non.&nso.s.m %, then we have to change all our sums
over # in the previous work into integrals. The previous
work can all be taken over directly with this change,
There is just one ¢quation which we will have to think
of 'a bit differently, the equation which defines the
momentum variables,

drL
P .| N.W“. AH..MV

If # takes on a continuous range of <m_=mm._ we have to
:ba.mﬂmﬂmnm @.% this partial differentiation a process of
partial functional differentiation that can be made

- Precise in this way: We vary the velocities by 8¢, in the

Lagrangian and then put

SL = % 4 84,. (@2-3)

- The coefficient of 8¢, occurring in the integrand in 81, is

defined to be Do .
After giving this general abstract theor ink it
, . eneral ¥, I think it
ﬁoaﬂ bea rmhﬁ ifI gavea simple example as illustration.

mnmu

THE PROBLEM OF QUANTIZATION

I will take as an example just the electromagnetic field of
Maxwell, which is defined in terms of potentials A4,
The dynamical coordinates now consist of the potentials
for all points of space at a certain time. That is to say, the
dynamical coordinates consist of A,., where the suffix x
stands for the three coordinates x, x%, %8 of a point in
three~dimensional space at a certain time x° (not the
four x’s which one is used to in relativity). We shall have
then as the dynamical velocities the time derivatives of
the dynamical coordinates, and I shall denote these by a
suffix 0 preceded by a comma.

Any suffix with a comma before it denotes differentia-
tion according to the general scheme

d¢
m.: T odet mmua.v

We are dealing with special relativity so that we can
raise and lower these suffixes according to the rules of
special relativity: we have a change in sign if we raise or
lower a suffix 1, 2, or 3 but no change of sign when we
raise or lower the suffix 0.

We have as our Lagrangian for the Maxwell electro-
dynamics, if we work in Heaviside units,

L= |$ FpFwdse. o (25)

Here d% means dx! dx? dx%, the .integration is over
‘three-dimensional space, and F,, means the field
quantities defined in terms of the potentials by

Fp=A4,, - 4,, (2-6)

,H.Emhhmﬁgﬁmmnunmmmm _umowcmmzmmanmnﬁomn&mmnro
action integral of the Maxwell field. : .

3 [27]
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Let us now take this Lagrangian and apply the rules of
our formalism for passing to the Hamiltonian. We first
of all have to introduce the momenta, We do that by
varying the velocities in the Lagrangian. If we vary the
velocities, we have

8L

i

:W % PO §F,, o

it

% F* 84, | d%, 2-7)
Now the momenta B* are defined by
5L = % B*84,, & (2-8)

and these momenta will satisfy the basic Poisson bracket
relations

(4, BY] = g} 8%(x ~ 2); mv=0,1,2,3. (2-9)

In this formula 4 is taken at a point « in three-dimen-
sional space and B is taken at a point #' in the three-
dimensional space. g} is just the Kronecker delta func-
m%? mm@ — &'} is the three-dimensional delta function
of x — «', . .

We compare the two expressions (2-7) and (2-8) for
8L and that gives us

Bt = Fro, (2-10)
Now F*¥ is anti-symmetrical
Fov = _ (2-11)

So if we put p = 0, in (2-10) we get zero. Thus BY is
[28] |
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equal to zero, This is a primary constraint, I write it as a

weak equation:

B} = 0. (2-12)
The other three momenta B'(r = 1, 2, 3) are just equal
to the components of the electric field.

I should remind you that (2-12} is not just one primary
constraint: there is a whole threefold infinity of primary
constraints because there is the suffix » which stands for
some point in three-dimensional space; and each value
for x will give us a different primary constraint.

Let us now introduce the Hamiltonian, We define

that in the usual way by

2

]

" % BUA, o d% — L

v“ﬁ@;«o\m?o + w..mua.m_a + w..m.qcﬁ.wov d%x

]

.‘,@.ﬁam.} - m._.o.mﬂ‘o + bﬁ:.o;me.b 4%

i

[arr, + 185 - amyas 1)

I’ve done a partial.integration of the last term in (2-13)
to get it in this form. Now here we have an expression for
the Hamiltonian which does not involve any velocities.
It involves only dynamical coordinates and momenta. It
is true that F,; involves partial differentiations of the
potentials, but it involves partial differentiations only
with respect to x%, x%, 2% That does not bring in any
velocities. These partial derivatives are functions of the

dynamical coordinates.
We can now work out the consistency conditions by

[29]
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using the Primary constraints (2-12). Since they have to

remain satisfied at all times, [B% H] has to be zerg.,

This Ieads to the equation

This is again a constraint because there are no velocities
occurring in it, This is a secondary constraint, which
appears in the Maxwell theory in this way, If we proceed
further to examine the consistency relations, we must
“work out . .
[Br, H] = 0, (2-15)
We find that this reduces to 0 = 0. It does not give us
anything new, but is automatically satisfied. We have
therefore obtained all the constraints in our problem,
(2-12) gives the -primary constraints, (2-14) gives the
secondary constraints,
‘We now have to look to see whether they are first-class
or second-class, and we easily see that they are all fiyst-
class. The B, are momenta variables, They all have zero
Poisson’ brackets with each other. B, and B, also have
zero Poisson brackets with each other. And BY,, and Br,,.
also have zero Poisson brackets with-each other, All these
quantities are therefore first-class constraints. There are
no second-class constraints occurring in the Maxwell
electrodynamies.” . : o L .
- The expression (2-13) for H is first-class, so this H can

be taken as the H' of (1-33). Let us now see what the

total Hamiltonian is: _

mq = g. @FnF, +$B,B,) d% — % A.B, &%

) x \ v.B°d%, (2-16)
[30]

B, 0. (2-14)

THE PROBLEM OF QUANTIZATION

This v, is an arbitrary coefficient for each point in ﬁ.?.n?
dimensional space. We have just added on the primary
first-class constraints with arbitrary coeflicients, which is
what we must do according to the rules to get the total
Hamiltonian. .

In terms of the total Hamiltonian we have the equation
of motion in the standard form

£ = [g H). (1-21)

The g which we have here may be any field quantity at
some point x in three-dimensional space, or may also be
a function of field quantities at different points in three-
dimensional space, It could, for example, be an integral
over three-dimensional space. This g can be perfectly
generally any function of the ¢'s and the p’s throughout
three-dimensional space.
It is permissible to take g = 4, and then we get

kAo.o = ¢, ANIH.MV

because A, has zero Poisson brackets with o<wnﬁrm=.m
except the B, occurring in the last .SH.B.om Am-uo.v. This
gives us a meaning for the mngﬁm@ oo,.wmmouo:.ﬂ. Ug -
occurring in the total Hamiltonian. It is the time deriva-
tive of 4, o . o

Now to get the most general motion which is physicaily
permissible, we ought to pass over to the extended
Hamiltonian, To do this we add on the mnm?o_smm
secondary constraints with arbitrary coefficients u,. This
gives the extended Hamiltonian:

Hy = Hy + % u, B, d. (2-18)

Bringing in this extra term into the Hamiltonian allows

L31]
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a more general motion, It gives more variation of the ¢’s
and the p’s, of the nature of a gauge transformation.
When this additional variation of the ¢'s and the p’s is
brought in, it leads to 2 further set of ¢'s and p’s
which must correspond to the same state.

That is the result of working out, according to our
rules, the Hamiltonian form of the Maxwell theory.
When we've got to this stage, we see that there is a
certain simplification which is possible. This simplifica~
tion comes about because the variables 4,, B, are not of
any physical significance. Let us see what the equations
of motion tell us about 4, and By, B, = 0 all the time.
That is not of interest. 4, is something whose time
derivative is quite arbitrary. That again is something
which is not of interest. The variables 4, and B, are
therefore not of interest at all. We can drop them out from
the theory and that will lead to a simplified Hamiltonian
formalism where we have fewer degrees of freedom, but
still retain all the degrees of freedom which are physically
of interest,

In order to carry out this discard of the variables 4,
and B,, we drop out the term v,B° from the Hamiltonian.
This term merely has the effect of allowing 4, to vary
arbitrarily. The term — 448, in H, can be combined
with the #,B", in the extended Hamiltonian. The
coeficient #, is an arbitrary coefficient in any case.
When we combine these two terms, we just have this u,
replaced by #; = 4, — A, which is equally arbitrary, So
that we get a new Hamiltonian

H = [GFFy + 38,B) &% + [u. B, %
: (2-19)
[32]
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This Hamiltonian is sufficient to give the equations of
motion for all the variables which are of physical W.E.E.nmﬂ.
The variables 4,, B, no longer appear in it. This is the
Hamiltonian for the Maxwell theory in its simplest »..o:ﬁ.

Now the usual Hamiltonian which people work with in
guantum electrodynamics is not quite .ﬂrm same as that.
The usual one is based on a theory which was oﬂmusu:.w
set up by Fermi. Fermi’s theory involves putting this
restriction on the potentials:

4k =10 (2-20)

It is quite permissible to bring in H.Em nmmﬁoag on the
gauge. The Hamiltonian theory which I rmﬁ. given here
does not involve this restriction, so that it mu._os.w a
completely general gauge. It’s thus a somewhat apm.nn.m:_u
formalism from the Fermi formalism. It's a formalism
which displays the full transforming power of the
Maxwell theory, which we get when we have 83.120:\
general changes of gauge. This Maxwell theory gives us
an illustration of the general ideas of primary and
secondary constraints.

I would like now to go back to general ﬂrnoﬂw. E&. to
consider the problem of guantizing ﬁro. EwB_:oEms
theory. To discuss this question of quantization, let us
first take the case when there are no second-class
constraints, when all the constraints are first-class. <<_n
make our dynamical coordinates and momenta, ﬂw@. g's
and p's, into operators satisfying commutation relations
which correspond to the Poisson bracket relations of the
classical theory. That is quite straightforward. Then we
set up 2 Schrédinger equation

LAy 2.2
ik = HYy. (2-21)

[33]
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i is the wave function on which the g’s and the p's
operate. ' is the first-class Hamiltonian of our theory.

We further impose certain supplementary conditions
on the wave function, namely; :

¢k = 0. (2-22)

Each of cur constraints thus leads to'a m:wEoBo:ﬁmQ
condition on the wave function. (The constraints,
remember, are now all first-class,)

The first thing we have to do now is to see whether
these equations for i are consistent with one another. Let
us take two of the ‘supplementary conditions and see
whether they are consistent. Let us take (2-22) and

| b = 0. (2-22y
If we multiply (2-22) by 4,, we get
o b=, (2-23)
If we multiply (2-22)' by #,s we get
- o dg=0 (2-23y
If we now subtract these two equations, we get:
e

This further condition on Y is necessary for consistency.

Now: we don’t want to have any fresh conditions on I

We want all the conditions on 4 to be included among
(2-22). That means to say, we want to have (2-24) a
consequence:of (2-22) which means we require
 Be bl =cppdp (2-25)
[34]
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If (2-25) does hold, then (2-24) is a consequence of {2-22)
and is not a new condition on the wave function,

Now we know that the ¢'s are all first-class in the
classical theory, and that means that the Poisson bracket
of any two of the ¢’s is a linear combination of the ¢’s in
the classical theory. When we go over to the quantum
theory, we must have a similar equation holding for the
commutator, but it does not necessarily follow that the
coefficients ¢ are all on the left. We need to have these
coefficients all on the left, because the ¢’s will in general
be functions of the coordinates and momenta and will
not commute with the ¢’s in the quantum theory, and
(2-24) will be a consequence of (2-22) only provided the
¢’s are all on the left,

When we set up the quantities ¢ in the quantum
theory, there may be some arbitrariness coming in. The
corresponding classical expressions may involve quanti-

-~ ties which don’t commute in the quantum theory and

then we have to decide on the order in which to put the

factors in the quantum theory. We have to try to arrange
the order of these factors so that we have (2-25) holding

with all the coefficients on the left. If we can do that, then
we have the supplementary conditions all consistent
with each other. If we cannot do it, then we are out of
luck and we cannot make an accurate quantum theory.

-In any case we have a first approximation to the quantum

theory, because our equations would be all right if we

- look at them only to the order of accuracy of Planck’s

constant # and neglect quantities of order #2. |

I have just discussed the requirements for the supple~
mentary conditions to be consistent with one another.
There is a similar discussion needed in order to check
that the supplementary conditions shall be consistent

[35]
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with the Schrédinger equation. If we start with a ¥
satisfying the supplementary conditions (2-24) and let
that ¢ vary with the time in accordance with the Schro-
dinger equation, then after a lapse of a short interval of
time will our ¢ still satisfy the supplementary conditions?
We can work out the requirement for that to be the case

and we get
@ EN =0, (2-26)
which means that [¢,, H] must be some linear function of
the ¢'s: .
[$ H] = bypdy, (2-27)

if we are not to get a new supplementary condition.
Again we have an equation which we know is all right in
the classical theory. ¢, and & are both first-class, so
their Poisson bracket vanishes weakly, The Poisson
bracket is thus strongly equal to some linear function of
the ¢'s in the classical theory. Again we have to try to
arrange things so that in the corresponding quantum
equation we have all our coefficients on the left. That is
necessary to get an accurate quantum theory, and we need
a bit of luck, in general, in order to be able to bring it
about.

Let us now consider how to quantize a Hamiltonian
theory in which there are second~class constraints, Let
us think of this question first in terms of a simple
example. We might take as the simplest example of two
second-class constraints

@20 and p, z 0. (2-28)

If we have these two constraints appearing in the
theory, then their Poisson bracket is not zero, so they

[36]
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are second-class. What can we do with ﬂrmmn when we go
over to the quantum theory? We cannot impose (2-28)
as supplementary conditions on the wave function as we
did with the first-class constraints. If we try to put
g = 0, pyp = 0, then we should immediately get 2
contradiction because we should have (g, — paga)¥f =
thig = 0. So that won’t do. We must adopt some
different plan.

Now m% this simple case it’s pretty obvious é.rmﬁ the
plan must be. The variables ¢; and p, are not of interest
if they are both restricted to be zero. So E.n amm.:wn of
freedom 1 is not of any importance. We can just discard
the degree of freedom 1 and work with the other degrees
of freedom. That means a different definition m.om a
Poisson bracket. We should have to work with a definition
of a Poisson bracket in the classical theory

mm Wd mm md dovern = 2 N.
Hm.du"|m||m|m| summed oV 3
On Opn Oy Ogn (2-29)

This would be sufficient because it would deal with all
the variables which are of physical interest. Hrs.ﬂ we
could just take g; and p, as identically zero. There's no
contradiction involved there, and we can pass over to the
quantum theory, setting it up in terms only of the degrees
of freedomn = 2,..., N.

In this simple case it is fairly obvious what we have to
do to build up a quantum theory. Let us try now to
generalize it. Suppose we have p;, = 0, 9, = f(g, %nu.
r=2,..., N, so fis any function of all the other ¢’s
and p's. We could drop out the number 1 mo.m_.mm.om
freedom if we substitute f{g,, p,) for ¢, in the Hamiltonian
and in all the other constraints. Again we can forget

[37]
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about the number 1 degree of freedom and $imply work
with the other degrees of freedom and pass over to a
quantum theory in these other degrees of freedom;
Again we should have to work with the (2-29) kind of
Poisson bracket, referring only to the other degrees of
freedom. S S
That is the idea which one uses for quantizing a theory
which involves second-class constraints. The existence
of second-class’ constraints means that there are some
degrees of freedom which are not physically important,
We have to pick out these degrees of freedom and set up
new Poisson brackets referring only to the other degrees
of freedom which are of physical importance, Then in
terms of those new Poisson brackets we can pass over to
the quantum theory. I would like to discuss a general
procedure for carrying that out. ‘
For the present, we are going back to the.classical
theory. We have a number of constraints ¢; = 0, some
of them first-class, some second-class. We can replace

these constraints by independent linear combinations of

then, which will do just as well as the original constraints,
-We try to arrange to take the linear combinations in such
a way as to have as many constraints as possible brought
into the first class. There may then be some left. in the
-second class which we just cannot bring into the first
class by taking linear combinations of them. Those
which are left in the second class I will call Xsr
$=1,...,8 8 is the number of second-class con-
~straints which are such that no linear combination of

them is first-class, . : o
We take these surviving second-class constraints and

we form all their Poisson brackets with each other and -

arrange these Poisson brackets as a determinant 4: -
| - 138]
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0 [xoxal [xoxs]l - [xwxs]

4= |bexl 0 Doxl - Doxsd|

M

xs 1] [xsxal [xsrxs] -
I would like now to provea

Theorem: The determinant 4 does not vanish, not
even weakly. Progf: Assume that the determinant does
vanish. I'm going to show that we get a contradiction. If
the determinant vanishes, then it is of some rank 7" < S.
Now let us set up the determinant 4:

X1 0 [x1s X2 <+~ [xa x1)
A= X2 [x2s xh_ 0 _”x.n. X.L
5..: TG..Z. xL TS:.H. VGH_ US.Z. x.L

A has T + 1 rows and columns. T 4 1 might equal S
or might be less than .S, If we expand 4 in terms of the
elements of its first column, we will get each of these
elements multiplied into one of the m:mu..mwnonﬁ.mmmam of
4. Now I don't want all of ﬁromo.mca-mmnaaaﬁmﬁm_ to
vanish. It might so happen that they do 2ll vanish. And
in that case, I would choose the x’s which are referred to
among the rows and columns of 4 in a Qm.mﬁﬂabu.imM.
There must always be some way of choosing the s
which occur in 4 so that the sub-determinants don’t m._=
vanish, because 4 is of rank T So we choose Ea.x_m in
such a way that the coefficients of the &.anEm in the
first column are not all zero. . o

Now I will show that 4 has zero Poisson brackets with
any of the ¢’s. If we form the Poisson bracket of ﬂ.s.ww_
a determinant, we get the result by forming the Poisson

[39]
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vwmmwaﬂ of ¢ with the first column of the determinant,

m@&sm on the result of forming the Poisson bracket of ¢

%Mr the second column of the determinant, and so on.
us

) () x1 0 ces
[4A] = | [Bxal  Dxaxi]

Tr umu_iu_ _“xu...wt RL e
. x1 0 e
+ Xz H@wu Qwu Xu.”_“_ v

.
v
H

XT+1 _“ﬂ. _”x.,.__i. xLu v

X 0 _”ﬁ. [x1 N»H_ vee
-+ Xz _”XN-X.L 0 e I

: :

Nu.;e.u _..xu.._.u.. x1) [ Gm.e._.r xs)]

This looks rather complicated, but one can easily see
that every one of these determinants vanishes, In the first
place, the first determinant on the right vanishes: if ¢ is
first class, then the first column vanishes; if ¢ is second
omm.mm_ then ¢ is one of the x’s and we have a determinant
which is a part of the determinant 4 with T + 1 rows
and columns. But 4 is assumed to be of rank 7', so that
any part of it with T + 1 rows and columns vanishes,
Now, the second determinant on the right vanishes
weakly because the first column vanishes weakly.
mnaam.n_% all the other determinants vanish weakly, The
result is that the whole right-hand side vanishes weakly,

[40]
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Thus A is a quantity whose Poisson bracket with every
one of the ¢'s vanishes weakly.

Also, we can expand the determinant A in terms of
the elements of the first column, and get A as 2 linear
combination of the ¥'s. So we have the result that a
certain linear combination of the y’s has zero Poisson
brackets with all the ¢’s. That means that this linear
combination of the x’s is first class. That contradicts our
assumption that we have put as many y’s as possible into
the first class. That proves the theorem.

Incidentally, we see that the number of surviving x’s,
which cannot be brought into the first class, must be
even, because the determinant 4 is antisymmetrical.
Any antisymmetrical determinant with an odd number
of rows and columns vanishes. This one doesn’t vanish
and therefore must have an even number of rows and
columns.

Because this determinant, 4, doesn’t vanish, we can
bring in the reciprocal ¢, of the matrix whose determin-

ant is 4. We define the matrix ¢, by
ﬁu%mxa; X«L = Ogne
We now define new Poisson brackets in accordance

with this formalism: any two quantities £, # have a new
Poisson bracket defined by

[, n]* = [& 7] — [& xdewwlxen 7). (2-3D)

It is easy to check that new Poisson brackets defined
in this way satisfy the laws which Poisson brackets
usually satisfy: [, n]* is antisymmetrical between £and
7, is linear in £, is linear in », satisfies the product law
[£16, m]* = Eu[Eam]* + [n 1] * 2 and obeys the Jacobi
identity _Hm“ 1%, &* + ﬁs. S*m”_* + _”F £1*, &* = {.

[41]
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I don’t know of any neat way of proving the Jacobi
identity for the new Poisson brackets. If one just
substitutes according to the definition and works it out
in a complicated way, one does find that all the terms
cancel out and that the left-hand side equals zero, I
think there ought to be some neat way of proving it, but
I haven’t been able to find it. The straightforward
method I have given in the Canadian Journal of Mathe-
matics, 2, 147 (1950). The problem has been dealt with
by Bergmann, Physical Review, 98, 531 (1955).

Now let us see what we can do with these new Poisson
brackets. First of all, T would like you to notice that the
equations of motion are as valid for the new Poisson
brackets as for the original ones.

o Hal* = [, Hy] ~ [g, xlewslives Hi]
LR _H%w Npﬂu.“_

because the terms [y,, H,] all vanish weakly on account
of Hy being first-class, Thus we can write

£ =g m& *.
Now if we take any function £ whatever of the ¢’s and

2’s, and form its new Poisson bracket with one of the x's,

$ay x- we have :

(& xo]* H.m. Xs*] 1. (¢, Xslsw [Xss Xs*}
’ wmu R«L - _..m,. X«umu " U% AN..wov

i

I

-Thus we can put the y's equal to 0 before working out

new Poisson brackets. This means that the equation
| T x=0 (2-32)
may be considered as a strong equation,

[42]

THE PROBLEM OF QUANTIZATION

We modify our classical theory in this way, bringing
in these new Poisson brackets, and this prepares the
ground for passing to the quantum theory. We pass
over to the quantum theory by taking the commutation
relations to correspond to the new Poisson bracket rela-
tions and taking the strong equations (2-32) to be
equations between operators in the quantum theory. The
remaining weak equations, which are all first class,
become again supplementary conditions on the wave
functions. The situation is then reduced to the previous
case where there were only first-class ¢'s. We have
again, therefore, a method of quantizing our general
classical Hamiltonian theory. Of course, we again need a
bit of luck in order to arrange that the coefficients are
all on the left in the consistency conditions.

That gives the general method of quantization. You
notice that when we have passed over to the quantum
theory, the distinction between primary constraints and
secondary constraints ceases to be of any importance.
The distinction between primary and secondary con-
straints is not a very fundamental one. It depends very
much on the original Lagrangian which we start off with.
Once we have gone over to the Hamiltonian formalism,
we can really forget about the distinction between
primary and secondary constraints. The distinction
between first-class and second-class constraints is very
important. We must put as many as possible into the
first class and bring in new Poisson brackets which
enable us to treat the surviving second-class constraints
as strong. . ,

4 - [43]
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QUANTIZATION ON CURVED SURFACES

We started off with a classical action principle. We took
our action integral to be Lorentz-invariant, This action
gives us a Lagrangian, We then passed from the Lagrang-
ian to the Hamiltonian, and then to the quantum theory
by following through certain rules. The result is that,
starting with a classical field theory, described by an
action principle, we end up with 2 quantum field theory.
Now you might think that that finishes our work, but
there is one important problem still to be considered:
whether our quantum field theory obtained in this way
is a relativistic theory. For the purposes of discussion,
we may confine ourselves to special relativity. We have
then to consider whether our quantum theory is in
agreement with special relativity. .

We started from an action principle and we required
that our action should be Lorentz-invariant. That is
sufficient to ensure that our classical theory shall be
relativistic, The equations of motion that follow from a
Lorentz invariant action principle must be relativistic
equations. It is true that when we put these equations of
motion into the Hamiltonian form, we are disturbing

[44]
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the four-dimensional symmetry. We are expressing our
equations in the form

¢ % [g, Hyl. (1-21)

The dot here means dg/dt and refers to one absolute
time, so that the classical equations of motion in the
Hamiltonian form are not manifestly relativistic, but we
know that they must be relativistic in content because
they follow from relativistic assumptions.

However, when we pass over to the quantum theory
we are making new assumptions. The expression for Hy
which we have in the classical theory does not uniquely
determine the quantum Hamiltonian. We have to decide
questions about the order in which to put non-commut-
ing factors in the quantum theory. We have something
at our disposal in choosing this order, and so we are
making new assumptions. These new assumptions may
disturb the relativistic invariance of the theory, so that
the quantum field theory obtained by this method is not
necessarily in agreement with relativity. We now have to
face the problem of seeing how we can ensure that our
quantum theory shall be a relativistic theory.

For that purpose we have to go back to first principles.
It is no longer sufficient to consider just one time variable
referring to one particular observer; we have to consider
different observers moving relatively to one another. We
must set up a quantum theory which applies equally to
any of these observers, that is, to any time axis, T'o get a
theory involving all the different time axes, we should
first get the corresponding classical theory and then pass
from this classical theory to the quantum theory by
the standard rules.

I would like to go back to the beginning of our

451
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Hamiltonian development and consider a special case,
We started our development by taking a Lagrangian L,

which is a function of dynamical coordinates and veloci--

ties ¢, ¢, introducing the momenta, then introducing the
Hamiltonian. Let us take the special case when I is
homogeneous of the first degree in the g's. Then
Euler’s Theorem tells us that

bgg =L Y

That just tells us that p,g, — L = 0, Thus we get in
this special case a Hamiltonian that is zero.

We necessarily get primary constraints in this case.
There must certainly be one primary  constraint,
because the p’s are homogeneous functions of degree
zero-in the velocities. The p's are thus functions only of
the ratios of the velocities. The number of p's is equal to
N, the number of degrees of freedom, and the number of
ratios of the velocities is N — 1. N functions of NV — 1
ratios of the velocities cannot be independent. There

~ must be at least one function of the p’s and ¢’s which is

equal to zero; there must be at least one primaty con-
straint, There may very well be more than one. One can
also see that, if we are to have any motion at all with a
zero Hamiltonian, we must have at least one primary

-first-class constraint.

,_Smgﬁ%gamag_aagmo:wio&mmamﬁo?
ian. S B

Hy = H' + v,

. O H must be a first-class Hamiltonian, and as 0 is certainly

- a first-class quantity we may take H’ = 0. Our total

[46]
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Hamiltonian is now built up entirely from the primary
first-class constraints with arbitrary coefficients:

Hr = v, (3-2)

showing that there must be at least one primary first-
class constraint if we are to have any motion at all.
Our equations of motion now read like this:

& = vylg, dal.

We can see that the ¢’s may all be multiplied by a factor
because, since the coefficients v are arbitrary, we may
multiply them all by a factor. If we multiply all the
dgldt’s by a factor, it means that we have a different
time scale, So we have now Hamiltonian equations of
motion in which the time scale is arbitrary, We could
introduce another time variable = instead of ¢ and use r
to give us equations of motion

2 % vlg, gl (3-3)

So we have now a Hamiltonian scheme of equations of
motion in which there is no absolute time variable. Any
variable increasing monotonically with ¢ could be used as
time and the equations of motion would be of the same
form. Thus the characteristic of a Hamiltonian theory
where the Hamiltonian H' is zero and where every
Hamiltonian is weakly equal to zero, is that there is no
absolute time, . _

We may look at the question also from the point of

- view of the action principle. If I is the action integral,

then . _ .
I= % Lig §)dt = g‘ L ?. m,w dr,  (3-4)
1471
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because L is homogeneous of the first degree in the
dgfdt. So we can express the action integral with respect
to 7 in the same form as with respect to £. That shows
zz.:,. the equations of motion which follow from the action
principle must be invariant under the passage from # to
7. The equations of motion do not refer to any absolute
time.

We have thus a special form of Hamiltonian theory,
but in fact this form is not really so special because,
starting with any Hamiltonian, it is always permissible

to take the time variable as an extra coordinate and

bring the theory into 2 form in which the Hamiltonian is
weakly equal to zero. The general rule for doing this is
the following: we take ¢ and put it equal to another
dynamical coordinate ¢,. We set up a new Lagrangian

dg, dgldr
L* = 2oy (g 20T
dr L AQ. &m.o?r.v

d
L* ?swmmv,_ kR=0,1,2...,N (3-5)

it

L* involves one more degree of freedom than the original
L. L* is not equal to L but

.T*&u%g.

Thus the action is the same whether it refers to L* and
7 or to L and £ So for any dynamical system we can
treat the time as an extra coordinate g, and then pass to
2 new Lagrangian L*, involving one extra degree of
freedom and homogeneous of the first degree in the
velocities, L* gives us 2 Hamiltonian which is weakly
equal to zero.

This special case of the Hamiltonian formalism where

[48]
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the Hamiltonian is weakly equal to zero is what we need
for a relativistic theory, because in a relgtivistic theory
we don’t want to have one particular time playing a
special role; we want to have the possibility of various
times = which are all on the same footing. Let us see in
detail how we can apply this idea.

We want to consider states at specified times with
respect to different observers, Now if we set up a space-
time picture as in Fig. 1, the state at a certain time refers
to the physical conditions on a three-dimensional fiat
space-like surface S; which is orthogonal to the time
axis. The state at different times will refer to physical
conditions on different surfaces S; Si ... Now we
want to bring in other time axes referring to different
observers and the state, with respect to the other time
axes, will involve physical conditions on other flat
space-like surfaces like S;. We want to have a Hamilton-
ian theory which will enable us to pass from the state,
S, say, to the state S}. Starting off with given initial
conditions on the surface S; and applying the equations
of motion, we must be able to pass over to the physical
conditions on the surface S;. There must thus be four
freedoms in the motion of a state, one freedom corre-
sponding to the movement of the surface parallel to
itself, then three more freedoms corresponding to a
general change of direction of this flat surface. That
means that there will be four arbitrary functions occur-
ring in the solution of the equations of motion which we
are trying to get. So we need a Hamiltonian theory with
(at least) four primary first-class constraints.

There may be other primary first-class constraints
if there are other kinds of freedom in the motion,
for example, if we have the possibility of the gauge

[49]
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Sy

> xixdyd

Frounz 1

transformations of electrodynamics, To simplify the

discussion, I will ignore this possibility of other first-
class primary - constraints, and consider only the ones
which arise from the requirements of relativity,

We:could proceed to set up our theory referring to

these flat space-like surfaces which can move with the

four freedoms, but I would like first to consider a more

[50]
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)

3 xlx2x3

Figure 2

general theory in which we consider a state to be defined

on an arbitrary curved space-like surface, such as S
of Fig. 2. This represents a three-dimensional surface
in space-time which has the property of being every-
where space-like, that is to say, the normal to the surface
must lie within the light-cone. We may set up a Hamil-

- tonian theory which tells us how the physical conditions

mmhu
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vary when we go from one of the curved space-like
surfaces to a neighboring one.

Now, bringing in the curved surfaces means bringing
in something which is not necessary from the point of
view of special relativity, If we wanted to bring in
general relativity and gravitational fields, then it would
be essential to work with these curved surfaces, but for
special relativity, the curved surfaces are not essential.
However, 1 like to bring them in at this stage, even for
the discussion of a theory in special relativity, because I
find it easier to explain the basic ideas with reference
to these curved surfaces than with reference to the fat
surfaces. The reason is that with these curved surfaces
we can make local deformations of the surface like
88 in Fig. 2, and discuss the equations of motion with
respect to these local deformations of the surface.

One way of proceeding now would be to refer our
action integral to a set of curved surfaces, like S, take
the amount of action between two neighboring curved
surfaces, divide it by some parameter 8r expressing the
distance between these two surfaces, take this amount of
action as our Lagrangian, then apply our standard
method of passing from the Lagrangian to the Hamilton-
ian. Our Lagrangian would necessarily be homogeneous
of the first degree in the velocities with respect to the
time parameter = which specifies the passage from one of
these space-like surfaces to a neighboring one, and it
would lead to a Hamiltonian theory for which the
Hamiltonian is weakly equal to zero.

However, I don’t want to go through all the work of
following through in detail what we get from an action
principle. I want to short-circuit that work and discuss
the form of the final Hamiltonian theory which resuits.

[52]
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We can get quite a lot of information about the form of
this Hamiltonian theory just from our knowledge that
there must be freedom for the space-like surface to
move arbitrarily so long as it remains always space-like.
This freedom of motion of the space-like surface must
correspond to first-class primary constraints in the
Hamiltonian, there being one primary first-class con-
straint for each type of elementary motion of the surface
which can be set up. I shall develop the theory from
that point of view.

First of all we have to introduce suitable dynamical
variables. Let us describe a2 point on the space-like
surface S by three curvilinear coordinates (x!, 42, x%)
= (x"). In order to fix the position of this space-like
surface in space-time, we introduce another set of
coordinates y4(4 = 0, 1, 2, 3), which we may take to be
rectilinear, orthogonal coordinates in special relativity.
(I use a capital suffix for referring to the y coordinate
system and a small suffix such as r for referring to the »
coordinate system.) The four functions y,, of a7, will
specify the surface S in space time and will also specify
its parameterization, i.e. the system of coordinates
xl, &2, x°.

We can use these y, as dynamical coordinates, ¢’s. If
we form

=P =1,23) (3-6)

== ey
.uc_..ﬂ Y

this is a function of the ¢’s, the dynamical coordinates.

s . s R
Ya= 3> (3-7)

7 being the parameter changing from one surface to the

[53]
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neighboring surface, will be a velocity, a ¢. Thus y, are

the dynamical ‘coordinates needed for describing the

surface and ¥, are the velocities.

We shall need to introduce momentum variables w,
conjugate to these dynamical coordinates. The momen.
tum variables will be connected with the coordinates by
the Poisson bracket relations

_u.cw. Wry] = Eard¥(x — ®). (3-8)

We shall need other variables for describing any
physical fields which occur in the problem. If we are
dealing with a scalar field ¥, then V(x) for all values of
xt, 4% &* will  provide us with further dynamical
coordinates, ¢’s. V, will be functions of the ¢’s. 8V/ar will
be a velocity. The derivative of V" in any direction is
expressible of terms of 8V/ér and ¥, and so is expressible
in terms of the dynamical coordinates and velocities,
The Lagrangian will involve these s differentiated in
general directions and is thus a function of the dynamical
coordinates and velocities. Far each V, we shall need a
conjugate momentum U, satisfying the Poisson bracket
conditions

V@, U = ¥ = ). (3.9

That is how one éo:.E treat a scalar field, There is a

similar method for vector, tensor, or spinor fields, just

bringing in the necessary additional suffixes. I need not
go into that, B : :
Now let us see what the Hamiltonian will be like.
The Hamiltonian has to be a linear function of primary
first-class constraints of the type (3-2). First of all T
shall put down what ‘the primary first-class constraints
are like. There must be primary first-class constraints

[54]
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which allow for arbitrary deformations of the surface,
'They must involve the variables # which are conjugate
to the y's, in order to make the y’s vary, and they will
involve other field quantities, We can express them in
the form

wy + K, % 0, - (3-10)

where K, is some function of the Hamiltonian variables,
the ¢’s and p’s, not involving the w’s.

Now we can assert that the Hamiltonian is just an
arbitrary linear function of all the quantities (3-10):

Hy = % cAwy + Kp)dos. (3-11)

This is integrated over the three x’s which specify a point
on the surface. The ¢’s are arbitrary functions of the
three &’s and the time, .

"The general equation of motion is of course g » lg, Hr].

- We can get a meaning for the coefficient ¢ by taking this

equation of motion and applying it for g equal to one of
the y variables. For g = y, at some particular point
xt, %2, x® we get - o

Ya = ﬁ Yar ,‘.n,a?&. + W‘E &m&;

i

% Oy wh + K] d%. (3-12)

Here the * attached to a field quantity ¢, w, or Kp de-
notes the value of that quantity at the point X', X%, X%,
¥4 has zero Poisson brackets with K because K} is
independent of the w's, so we just have to take into
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account the Poisson bracket of y, with w = wp(x’).
This gives us the delta function and so

Ya = 4 (3-13)

Thus the coefficients ¢, turn out to be the velocity
variables which tell us how our surface varies with the
parameter r. We can get an arbitrary variation of the
surface with 7 by choosing these ¢, in an arbitrary way.

This tells us what the Hamiltonian is like for a field
theory expressed with respect to states on curvilinear
surfaces.

We can make a deeper analysis of this Hamiltonian by
resolving the vectors which occur in it into components
which are normal and tangential to the surface. If we
have any vector whatever, {4, we can obtain from £, a
normal component

£ = £l

where /4 is the unit normal vector, and tangential
components (referred to the x coordinate system)

mw - wnnu\.\w.

The ! are determined by the y4 and are thus functions of
the dynamical coordinates. Any vector can be resolved
in this way into a part normal to the surface and a part
tangential to the surface. We have the scalar product law

Mbdh = m._.dk + v\ﬂam_.dn- Am.uu—h_.v

where y,, dx" dx® is the metric in the surface referred to
the x-coordinate system. y™ is the reciprocal matrix of
the v, (r, 5 = 1,2, 3).

We can use this scalar product law (3-14) to express

[56]
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our total Hamiltonian in terms of the tangential and
normal components of w and K:

0

Hy = [0y + K@

I

..‘ @&.ASF + KL) + y"y(w, + Nﬂ.bv d°%,
(3-15)
Here y = y4, and 3, = 34

We shall need the Poisson bracket relationships be-

tween the normal and tangential terms in (3-15). I will
first write down the Poisson bracket relations for the

different components of w. We have of course
Teh. ﬂem.”_ = 0, ) ﬁwlu@u

referred to the external coordinates y; but when we
resolve our @'s into normal and tangential components,
they will no longer have zero Poisson brackets with each
other. The Poisson brackets can easily be worked out by
straightforward arguments. I don’t want to go through
the details of that work, I will just mention that the
details can be found in a paper of mine (Canadian
Journal of Mathematics, 3, 1 (1951)). The results are

[y, w;) =w,8 (x — &) + w8 ((x — &), (3-17)
we..wm%.x. - H..v. a..“_.wv
=28 (x — &) — w O(x — ), (3-19)

[0, wr]

foy, wi]

]

Now we know that

[w, + K, w, + K] % 0 forp,» =75 or L. (3-20)
[57]
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We can infer that
[w, + K,, w} + K]
= (0 + K)3,(x ~ #) + (0] + K)S,(x — o)
(3-21)
[, + Ky, o + K7
= (0l + K{)8,(x ~ ), (3-22)
fw, + Ky, ) + KY) .
= =2+ KB (x < o) — (0 + K), 8 ),
(3-23)

These results could be worked out directly from the
definitions of the normal and tangential components .of
the w's, but they can be inferred more simply by the
following argument. Since w, + K, w, + K, are all
first class, their Poisson brackets are zero weakly. Thus
[0, + Koy 0, + K} [W, + Ky w) + K] and [w,
+ K, @i + K}] must all be weakly equal to zero. We
can now infer what they are equal to strongly, We have
to put on the right-hand side in each of (3-21,) (3-22,) and
* (3-23) a quantity which is weakly equal to zero and which
is therefore built up from w, K, and w, + K, with
certain. coefficients. Further, we can see what these
coefficients are by working out what terms containing w
there are on'the right-hand sides. Terms containing w’s
can arise only from taking the Poisson bracket of aw
with a w, according to (3-17), (3-18), and (3-19),
Taking a Poisson bracket [, K'] will not lead to anything
involving %, because it means taking the Poisson bracket
of a w momentum with some functions of dynamical
coordinates and momenta other than w’s, and that won’t
involve the w momentum variables. Similarly the Poisson
bracket of 2 X with a X won’t involve any w variables,

Thus the only e variables which occur on the right side of
Is8]
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(3-21) will be the ones which occur on the right side of
(3-17). We have to put certain further terms in the
right side of (3-21) in order that the total expression
shall be weakly equal to zero, It is then quite clear what
we should put here, namely, (w, + K8 (x — 2 +
(wr + K7)3 (% — '), We do the same with the right
sides of (3-22), (3-23). . :

The next thing to notice is that the terms w, + K, in
the Hamiltonian (3-15) correspond to a motion in which
we change the system of coordinates in the curved
surface but do not have the surface moving. It corre-
sponds to each point in the surface moving tangentially
to the surface,

Let us put y; = 0, which means that we are taking no
motion of the surface perpendicular to itself but are
merely making a change of the coordinates of the
surface, and then we have equations of motion of the

type .
= ",ﬁ._.uu.\.._“%. Wy + .Wa“_ d. Amuw.a.v

This must be the equation of motion which tells us how
& varies when we change the system of coordinates in the
surface without moving the surface itself. Now this
change in g must be a trivial one, which can be inferred

- merely from thé geometrical nature of the dynamical

variable g, If g is a scalar, then we know how that changes

when we change the system of coordinates «%, 4%, 42, If
it is a component of a vector or a tensor there will be a

rather more complicated change for g, but still we can

work it out; similarly if g is a spinor, In every case, this

change of g is a trivial one. That means that X, can be

determined from geometrical arguments only.

5 - sl
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I will give one or two examples of that, For 2 scalar
field V with a conjugate momentum U, there is a term

V.U ~ (3-25)

in K,, For a vector field, say a three-vector A4,, with
conjugate B*, there is a term

4,8 ~ (4,5, (3-26)

in K,; and so on for tensors, with something rather more
complicated for spinors. The first term in (3-26) is the
change in 4, coming from the translation associated with
the change in the system of coordinates, and the second
is the change in the 4, arising from the rotation associated
with the change in the system of coordinates, There is no
such rotation term coming in in the case (3-25) of the
scalar,

We can obtain the total X, by adding the contribution
needed for all the different kinds of fields which are
present in the problem. The result is that we can work
out this tangential component of K just from geometrical
arguments, One can see in this way that the tangential
component of K is something which is not of real
physical importance, it is just concerned with the mathe-
matical technique. The quantity which is of real physical
importance is the normal component of X in (3-15).
This normal component of K added on to the normal
component of w gives us the first-class constraint which
is associated with a motion of the surface normal to
itself. That is something which is of dynamical impor-
tance,

The problem of getting a Hamiltonian field theory
on these curved surfaces involves finding the expressions
K to satisfy the required Poisson bracket relations

[6o]
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(3-21), (3-22), and (3-23). The tangential part of K can
be worked out from geometrical arguments as I discussed,
and when we have worked it out we should find of course
that it satisfies the first Poisson bracket relation (3-21).
The second Poisson bracket relation (3-22) involves X,
linearly and this Poisson bracket relation- would be
satisfied by any quantity K, which satisfies the condition
of being a scalar density. This Poisson bracket relation
really tells us that if the quantity K, varies suitably under
a change of coordinate system X1, X9 X3, this Poisson
bracket relation will be fulfilled. The difficult relation to
fulfill is the third one, which is quadratic in K. So the
problem of setting up a Hamiltonian field theory on
curved space-like surfaces is reduced to the problem
of finding 2 normal component of K which is a scalar
density and which satisfies the Poisson bracket relation-
ship (3-23).

One way of finding such a normal component of K is
to work from a Lorentzinvariant action principle. We
might obtain all the components of K by working from
the action principle. If we did that, the tangential part of
K which we get would not necessarily be the same as that
built up from terms like {3-25) and (3-26), because it
might differ by a contact transformation. But one could
eliminate such a contact transformation by rewriting the
action principle, adding to it a perfect differential term.
This doesn’t affect the equations of motion. By such a
change of the action principle, one can arrange that the
tangential part of K given by the action principle agrees
precisely with the value which is obtained by the simple
application of geometrical arguments, We are then able
to find the normal component of K by working with our

_general method of passing from the action principle to

[6r]
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the Hamiltonian, If the action principle is relativistic,
then the normal component of X obtained in this way
would have to satisfy the condition (3-23),

We can now discuss the passage to the quantum
theory. Quantization involves making the quantities w
and the variables which enter in X into operators. We
have to be careful now how we define the tangential
and the normal components of w, and I choose this way
to define them:

| W = ya .01, (3-27)
putting the momentum variable  on the right. (In the
quantum theory, you see, the result is different, depend-
ing on whether we put the w on the right or the left.)
Similatly,

wy = Liwh, (3-28)
Then these quantities are well defined.
. Now in the quantum theory we have the weak equa-
tons w, + K, ~ Gand w, + K, = 0, which provide us
with supplementary conditions on the wave function:

@+ KY=0, - (329)
C (L + KW =0, © (3-30)
corresponding to (2-22). We require that these supple-

mentary conditions be consistent. According to (2-25),
we must arrange that in the commutation relations

]

(3-21), (3-22), and (3-23) the coefficients on the right-

hand sides stand before (on the left of) the constraints.

In the case of (3-21), the tangential components, the
conditions fit if we choose the order of the factors in
K, so that the momentum variables are always on the
right. We have now in (3-21) a number of quantities,
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linear in the momentum variables with the momentum
variables on the right, and the commutator of any two
such quantities will again be linear in the momentum
variables with the momentum variables on the right.
Thus we shall always have the momentum variables on
the right and we shall always have our factors occurring
in the order in which we want them to. .

Now we have the problem of bringing in K, which
cannot be disposed of so simply. K| will usually involve
the product of non-commuting factors and we have to
arrange the order of those factors so that (3.22) and (3-23)

“ shall be satisfied with the coeflicients occurring on the

left in every term on the right-hand side. The equation
(3-22) is again a fairly simple one to dispose of. If we
simply take K, to be a scalar density, that is all that is
needed, because we have w, + K, occurring on the
right-hand side without any coeflicients which don’t
commute with it; the only coefficient is the delta function,
which is a number.

But the relationship (3-23) is the troublesome one.
For the purposes of the quantum theory, 1 ought to
write out the right-hand side here rather more explicitly:

[w, + Ky w), + Ki] = ~2y%w, + K)3,(x - &)
— o, + K)S(x — &) (3-31)

I’'ve written this out with the coefficients ™ occurring on
the left, and that is how we need to have these coefficients
in the quantum theory. . -

The problem of setting up a quantum field theory on
general curved surfaces involves finding K, so that this
Poisson bracket relationship (3-31) holds with the coeffi--
cients ™ occurring on the left, If we do satisfy (3-31),
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then the supplementary conditions (3-30) are consistent
with each other, and we already have (3-29) consistent
with each other and (3-30) consistent with (3-29).

There we have formulated the conditions for our
quantum theory to be relativistic. We need a bit of luck
to be able to satisfy the conditions. We cannot always
satisfy them. There is one general rule which is of
importance, which tells us that when we've got a K
satisfying these conditions and certain other conditions,
we can easily construct other K,’s to satisfy the condi-
tions. Let us suppose that we have a solution in which
K, involves only undifferentiated momentum variables
together with dynamical coordinates which may be
differentiated. There are a number of simple fields for
which K, does satisfy the Poisson bracket relations
(3-22) and (3-23) and does have this simple character.
Then we may add to K, any function of the undifferen-
tiated ¢’s. That is to say, we take a new K,

K =K, + $(9)-

Then we see that adding on this ¢ to K| can affect the
right-hand side of (3-31) only by bringing in a multiple
of the delta function. We cannot get any differentiations
of the delta function coming in, because the extra terms
come from Poisson brackets of ¢(g) with undifferen-
tiated momentum variables. So that the only effect on
the right-hand side of adding the term ¢ to K, can be
adding on a multiple of the delta function. But the
right-hand side has to be antisymmetrical between x
and ', because the left-hand side is obviously antisym-
metrical between x and &’. That prevents us from just
adding a multiple of the delta function to the right-hand
side of (3-31), so that it is zot altered at all. Thus if the
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original K satisfies the Poisson bracket relation (3-31),
then the new one will also satisfy it.

There is a further factor which has to be taken into
account to complete the proof. ¢ may also involve I’

= 4/ detg,,. One finds that [w,, I"] involves &(x ~ x')
undifferentiated (one just has to work this out) and thus
we can bring I'into ¢ without disturbing the argument.
In fact, we have to bring in I' in order to preserve the
validity of (3-22), which requires that K} and K, shall be
scalar densities, We must thus bring in a suitable power
of I' to make ¢ a scalar density. .

This is the method which is usually used in practice
for bringing in interaction between fields without
disturbing the relativistic character of the theory. For
various simple fields the conditions turn out to be
satisfied. We have the necessary bit of luck, and we can
bring in interaction between fields of the simple charac-
ter described and the conditions for the quantum theory
to be relativistic are preserved.

There are some examples for which we don’t have the
necessary luck and we just cannot arrange the factors in
K, to get (3-31) holding with the coefficients on the
left, and then we do not know how to quantize the
theory with states on curved surfaces. But actually, we
are trying to do rather more than is necessary when we
try to set up our quantum theory with states on curved
surfaces. For the purposes of getting a theory in agree-
ment with special relativity, it would be quite mcmmo_mmm
to have our states defined only on flat surfaces. That will
involve some conditions on K, which are less stringent
than those which I have formulated here. And it may be
that we can satisfy these less stringent conditions without
being able to satisfy those which I have formulated here.
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An example for that is provided by the Born-Infeld
electrodynamics, which is a modification of the Maxwell
electrodynamics based on a different action. integral, an
action integral which is in agreement with the Maxwell
one for weak fields, but differs from it for strong fields.
Hr.mm Born-Infeld electrodynamics leads to a classical X,
which involves square roots. It is of such a nature that it

~ doesn’t seem possible to fulfill the conditions which are

necessary for building up a relativistic quantum theory
on curved surfaces. However, it does seem to be possible
to build up a relativistic quantum theory on flat surfaces,
for which the conditions are less stririgent.

166]
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Lecture No. 4

QUANTIZATION ON FLAT SURFACES

We have been working with states on general space-like
curved surfaces in space~time. I will just summarize the
results that we obtained concerning the conditions for a
quantum field theory, formulated in terms of these
states, to be relativistic. We -introduce variables to
describe the surface, consisting of the four coordinates
¥4 of each point 4™ = (%, x2, 2°) on the surface. The #’s
form a curvilinear system of coordinates on the surface.
Then the y's are treated as dynamical coordinates and
there are momenta conjugate to them, w,{(%), again
functions of the #’s. And then we get 2 number of pri~
mary first-class constraints appearing in the Hamiltonian
formalism, of the nature - . : :

wy, + K, 2 0. (3-10)

The K's are independent of the w’s, but may be functions -
of any of the other Hamiltonian variables. The K's will
involve the physical fields which. are present. We
analyze these constraints by resolving them into com-
ponerits - tangential to the surface and normal to the
surface. The tangential components are o

w, + Km0, (4-1)
{671
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and the normal component is

w, + K, %0, (4-2)

s.mﬂw this analysis, we find that the X, can be worked
out just from geometrical considerations. The K, should
vm looked upon as something rather trivial, ummonmmﬁon
with transformations in which the coordinates of the
surface are varied, but the surface itgelf doesn’t move
The first-class constraints (4-2) are associated EEH.
.mﬁ motion of the surface normal to itself and are the
important ones physically.

Certain Poisson bracket relations (3-21), (3-22), and
a...mmv have to be fulfilled for consistency. Some o.m the
Poisson bracket relations involve merely the X, and they
are automatically satisfied when the X, are chosen in
mnnoamm.na with the geometrical requirements. Some of
the consistency conditions are linear in X, and they are
automatically satisfied provided we choose X, to be a
mo&mm .n_anme. Then finally we have the consistency
oonm::onm which are quadratic in the K, and those are
.&.o important ones, the ones which cannot be satisfied by
trivial arguments, .

,E.woma important consistency conditions can be satis-
%om in the classical theory if we work from a Lorentz-
invariant action principle and calculate the X, by
moH.Ho@nm the standard rules of passing from the action
principle to the Hamiltonian. The problem of getting a
relativistic quantum theory then reduces to the problem
of mEmme choosing the non-commuting factors which
occur in the quantum K| in such a way that the quantum
consistency conditions are fulfilled, which means that the
commutator of two of the quantities (4-2) at two points

. 1 .2 .3 . -
in space x%, ¥%, x° has to be a linear combination of the
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constraints with coefficients occurring on the left. These
quantum consistency conditions will usually be quite
difficult to satisfy. It turns out that one can satisfy them
with certain simple examples, but with more complicated
examples it doesn’t seem to be possible to satisfy them.
That leads to the conclusion that one cannot set up
a quantum theory for these more general fields with the
states defined on general curved surfaces.

I might mention that the quantities K have a simple
physical meaning. K can be interpreted as the momentum
density, K, as the energy density; so the momentum
density, expressed in terms of Hamiltonian variables,
is something which is always easy to work out just from
the geometrical nature of the problem and the energy
density is the important quantity which one has to
choose correctly (satisfying certain commutation rela-
tions) in order to satisfy the requirements of relativity.

If we cannot set up a quantum theory with states on
general curved surfaces, it might still be possible to set
it up with states defined only on flat surfaces.

We can get the corresponding classical theory simply
by imposing conditions which make our previous curved
surface into a flat surface. The conditions will be the
following: The surface is specified by y4(#); in order to
make the surface flat, we require that these functions

shall be in the form
Yalx) = ay + b ge",

where the @'s and ¥’s are independent of the #’s. This
will result in the surface being flat, and in the system of
coordinates & being rectilinear, At present we are not
imposing the conditions that the &' coordinate system
shall be orthogonal: I shall bring that in a little later.

[69]
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We are thus working with general, oblique, rectilinear
axes ", .

We now have our surface fixed by quantities a,, b,,

and these quantities will appear as the dynamical
variables needed to fix the surface, We have far fewer of
them than previously. In fact, we have only4 + 12 = 16
variables here, We have these 16 dynamical coordinates
to fix the surface instead of the previous Ya(#), which
meant 4. 003 dynamical coordinates,
. When we restrict the surface in this way, we may look
* upon the restriction as bringing anumber of constraints
into our Hamiltonian formalism, constraints which
express the 4- 0%y coordinates in terms of 16 coordinates,
These constraints will be second-class. Their presence
means a reduction in the number of effective degrees of
freedom for the surface from 4.c0® to 16, a very big
reduction! .

In a previous lecture I gave the general technique for
dealing with second-class constraints. The reduction in
the number of effective degrees. of freedom leads to a
new definition of Poisson brackets. ‘This general tech-
nique is not needed in our present case, where conditions
 are sufficiently simple for one to be able to use 2 more
direct method. In fact, we can work out directly what
_ effective momentum variables remain in the theory when

we have reduced the: number of effeéctive degreés of
freedom for the surface, :

With our dynamical coordinates restricted in this way,

- we have of course the velocities restricted by the equation

o Pa = dg o+ by, " (4-4)

The dot refers to-differentiation with respect to some
. parameter 7. As 7 varies, this flat surface varies, moving

,, (701
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parallel to itself and also changing its ditection. .H_w.o
surface thus moves with a.four-fold freedom, and .mum
motion is expressed by our taking a4, ,, to be functions
of the parameter .

The total Hamiltonian is now

% ey + Kp) d

i % (w, + Kg)d + b % (0, + K ) d%, (4-5)

Hy

i

(I have taken the quantities d?, 4%, outside the m.ﬁomnm_
signs, because they are independent of the & variables.)
(4-5) involves the w variables only through the com-
binations ._. w, d°x and ._. xtw, d3x. We have here 16 com-
binations of the w's, which will be the new momentum
variables conjugate to the 16 variables &, & which are

now needed to describe the surface. .
We can again express Hy in terms of the normal and

tangential components of these quantities:
Hy = dtl, ._. (w0, + K,)d% + b, % @ + K7) d%
+ b4, .ﬁ #(w, + K) & + by b % #(wt + K% d%,
2 | T (4-6)

Let us now bring in the condition that the &* coordin-
ate system is orthogonal, That means

babd = gy = =B (#-7)

Up.manopmmmum (4-7) with namvoﬁ.ﬁo ™y We get .
byt 4+ bybt =0 O 4-8)
[71] -
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(I have been raising the A suffixes quite freely because
the b coordinate system is just the coordinate system of
special relativity.) This equation tells us that b b2 is
msn&gaoﬁo between r and 5. So the last term in ?w'ov
is equal to

15,54 % (W@ + K¥) - 2w + K)} &,

.Zo.é you see that we don’t have so many linear com-
Enms.oum of the ='s occurring in the H, as before. The
only linear combinations of the w’s which survive are the
following ones:

P = % w, &, (4-9)
P, = % w, d°%, (4-10)
and also M, = .‘, x'w, dx, (4-11)
and M, = % (w0, — mo) . (4-12)

(We can raise and lower the suffixes 7 quite freely now
because they refer to rectilinear orthogonal axes.) These
are the momentum variables which are conjugate to the
variables needed to fix the surface when the surface is
restricted to be a flat one referred to rectilinear orthogonal
coordinates.

‘The whole set of momentum vartables included in
(4-9), (4-10), (4-11), and (4~12) can be written as P, and
M,, = —M,,, where the suffixes p and v take on 4
values, a value 0 agsociated with the normal component
and 1, 2, 3 associated with the three x's. u, v are mBmm
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suffixes referring to the ¥ coordinate system, to distin-
guish them from the capital suffixes A referring to the

fixed y coordinate system.
So now our momentum variables are reduced to just

10 in number, and associated with these 10 momentum
variables we have 10 primary first-class constraints,
which we may write

P, + 5, %0, (4-13)

M,, + my % 0, (4-14)

where p = % K, d°, (4-15)
b= .ﬁ K, d*, (4-16)

m, = | %K, d%, (4-17)

and ey = % @K, — 5K) % (#18)

We have now 10 primary first-class constraints

associated with 2 motion of the flat surface. In Lecture
(3) I said that we would need 4 primary first-class
constraints (3-10) to allow for the general motion of a
flat surface, We see now that 4 is not really adequate.
The 4 has to be increased to 10, because 4 elementary
motions of the surface normal to itself and changing its
direction would not form a group; in order to have these
elementary motions forming a group, we have to extend
the 4 to 10, the extra 6 members of the group including
the translations and rotations of the surface, which

motions affect merely the system of coordinates in the

surface without affecting the surface as a whole. In this
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way we are brought to a Hamiltonian theory involving
10 primary first-class constraints,

We have now to discuss the consistency conditions,
the conditions in terms of Poisson bracket relations
which are necessary for all the constraints to be first-
class. Let us first discuss the Poisson bracket relations
between the momentum variables P, M,, We are
given these momentum variables in terms of the
variables (4-9) to (4-12), and we know the Poisson
cnmowa.n relations (3-17), (3-18), and (3-19) between the
w variables, so .we can calculate the Poisson bracket
relations between the P and M variables. It is not really
necessary to go through all this work to determine the
Poisson bracket relations between the P and M variabies,
It is sufficient to realize that these variables just corre-
spond to the operators of translation and rotation in four-
dimensional flat space-time, and thus their Poisson
bracket relations must just correspond to the commuta-
tion relations between the operators of translation and
rotation. In either way we get the following Poisson
bracket relations:

[Py P) =0 (4-19)

which expresses z.umﬁ the various translations commute;

[Pur Mye] = 80,85 ~ g,,P,; (4-20)

. and E_E,hﬁ Eﬁ&u = l%.nbE.‘q + %thun + %nq.aeb

= &yl (4-21)

Let us now .oonmmaa.n ﬁ..ra requirements for the equations
(4-13) and (4-14) to be first-class, The Poisson bracket
of any two of them must be something which vanishes

‘weakly and must therefore be a linear combination of

[74]
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them. So we are led to these Poisson bracket relations:

[Py + 2w By + 2] = 0, (#-22)

_Mun + Py Enq + ._ﬁnL = .mt_uﬁmuq -+ Nqu
- %E-Qu » t .wu.ovg Q.ummv

and TE..& + My Mpy + Mps] = —gu (M, + myg)

.+- %.—EAERQ + .uatqv + %EQAEFQ |_l 3¢bv - %__—SAEEB + stbv.
(4-24)

The argument for getting these relations is that, on the
right-hand sides we had to put something which is
weakly equal to zero in each case, and we know the terms
on the right-hand sides which involve the momentum
variables P, M because these terms come only from the
Poisson brackets of momenta with momenta and so are
given by (4-19), (4-20), and (4-21). (I have already used
the same argument in the curvilinear case for (3-21),

(3-22), and (3-23), so there is no need to go into detail

here. For example, see how (4-23) comes about. The
terms involving P are just the same as in (4-20). They
come from the Poisson bracket of P and M. The remain-
ing terms are filled in in order to make the total expres-
sion weakly equal to zero.) (4-22), (4-23), and (4-24) are

. the requirements for consistency.

We can make a further simplification, which we could
not do in the case of curvilinear coordinates, in this way:

- Let us suppose that our basic field quantities are chosen

to refer only to the » coordinate system. They are field
quantities at specific points & in the surface, and we can
choose them so as to be quite independent of the y
coordinate system, Then the quantities K, K, will be
quite independent of the y coordinate system, and that
means that they will have zero Poisson brackets with the

L - [7s]



LECTURES ON QUANTUM MECHANICS

variables P, ], We then have a zero Poisson bracket
between each of the variables p, m and each of the P, A/,

This condition follows with the natural choice of
dynamical variables to describe the physical fields
which are present. We cannot do the corresponding
simplification when we are working with the curved
surfaces, because the g,, variables that fix the metric will
enter into the quantities K;, K,. The result is that we
cannot set them up in a form which does not refer at all
to the y coordinate system, because the y coordinates
enter into the g,, variables. However, with the flat
surfaces, we can make this simplification, and that
results in equations (4-22), (4-23), and (4-24) simplifying

to
[P 2] = 0; (4-25)
[Dus Mool = Guobo — Eualypi (4-26)
- and
[y Mps] = —gupty, + wﬁbﬁnq Tt Suotp = LvaMype
(4-27)

P and M have disappeared from these equations, so
the consistency conditions now involve only the field
variables, and not the variables, which are introduced
for describing the surface. In fact, these conditions
merely say that the p, m shall satisfy Poisson bracket
relations corresponding to the operators of translation
and rotation in flat space-time. The problem of setting
up a relativistic field theory now reduces to finding the
quantities p, 7 to satisfy the Poisson bracket relations
(4-25), (4-26), and (4-27).

These quantities, remember, are defined in terms of
K, and K, the energy density and the momentum
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density. The expression for the momentum density is just
the same as in curvilinear coordinates. It is determined
by geometrical arguments only. Our problem reduces to
finding the energy density K, leading to p’s and m’s
such that the Poisson bracket relations (4-25), 4-26), and
(4-27) are fulfilled.

If we work from a Lorentz-invariant action integral
and deduce K from it by standard Hamiltonian methods,
K, will automatically satisfy these requirements in the
classical theory. The problem of getting a relativistic
quantum theory then reduces.the problem of suitably
choosing the order of factors which occur in K, so as to
satisfy the equations (4-25), (4-26), and (4-27) also in the
quantum theory, where the Poisson bracket becomes a
commutator and the p, m involve non-commuting
quantities.

Let us look at (4-25), (4-26), and (4-27) and substitute
for p and m their values in terms of K's. Then you see
that some of these conditions will be independent of K.
These are automatically satisfied when we choose K,
properly, in accordance with the geometrical require-
ments. Some of the conditions are linear in K. These
will be satisfied by taking K, to be any three-dimensional
scalar density in the space of the ¥'s. So that there is no
problem in satisfying the conditions which are linear in
K,. The awkward ones to satisfy are the ones which are
quadratic in K. They are the following:

ﬁ % K, d%, % K %&_ - % K d%. (4-28)

(This equation comes from (4-26) where we put p = 1,
p=r,ando = 1.)
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| [oku o, [« L] = - [k, - k) s
(4-29)

(from (4-27) where we take v = | and ¢ = L). So the
problem of getting a relativistic quantum field theory
now reduces to the problem of finding an energy density
K| which satisfies the conditions (4-28) and (4-29) when
we take into account non~-commutation of the factors,

. We can analyze these conditions a little more when we
take into account that the Poisson bracket connecting K,
at one point and. K] at another point will be 2 sum of

terms involving delta functions and derivatives of delta

mcuomgm_h
(Ki, Ki] = ad + 25,8, + c,8,, +.... (4-30)

(This delta is the three-dimensional delta function in-
volving the three coordinates x and the three coordinates
x' of the first and second points.) Here g = a(x),
b = b(x), ¢ = &(x),... One could have the coefficients
involving also «’, but then one could replace them by
coeflicients involving x only at the expense of making
some changes in the earlier coefficients in the series,
There is no fundamental dissymmetry between # and «’,
only a dissymmetry in regard to the way the equation ig
written., - o R
(4-30) is the general relationship connecting the
- energy density at two points. Now for many examples,
including all the more. usual fields, derivatives of the
delta function higher than the second do not occur, Let
us examine this case further. : .
“Assume " derivatives higher that. the second do not
occur. That means that the series (4-30) stops at the

[781 |
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third term. In this special case we can get quite a bit .om
information about the coefficients 4, b, ¢ by B&a.:m use
of the condition that the Poisson bracket ?-mS\ is anti-
symmetrical between the two points & and &', Inter-
changing x and &’ in (4-30), we get
KL, K\]=4d8~ N@“m.__ + Crdyrs

= a'd — 2(48),, + (61:8)s
(since ab,(x")/ox" = 0, ﬂo.v

= ad — 2(b,8), + (¢148).5s "

=(a— 2by + )8 + ( — 2b, + 2¢,,)5,

An . T T8, _.av +a§w.2. :m&...ms

The expression (4-31) must equal minus mﬁn expression
(4-30) identically, In order that the coefficients of §,,
shall agree we must have

trs = O, (4-32)

This then makes the coefficients of 8, agree. Finally, in
order that the coefficients of & mw.m_: agree, we must have

a "‘ @1-*- . A*t-wwv

_ [K., K] = 2b;8, + b,,8. (4-34)

Lt us now substitute in (4-28) and (4-29). They become :
.‘.R,. d%x = -:.a«ﬁv.ma + b, +) d% d%'

- g. b, db. @)
(Note that &, = %,/oa* = —8,,.) _ .
[791]
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- % (K, ~x,K,) d% = % % 25,8, + by,8) d Ao’

.“A - N&qm.u + &,.Ru?.b d%

= .‘Aml.&q@u + xb) d%.  (4-36)

‘This is what our consistency conditions reduce to, and
we see that they are satisfied by taking b, = X,. This is
not quite the most general solution; more generally we
could have

by = K, + b, (4-37)

for any quantity 4,, satisfying the condition that
% (6s — 6,) &% = 0, (4-38)

Thus ¢ can have any symmetrical part and its anti-
symmetrical part must be a divergence.

That gives the general requirement for a field theory
to be relativistic. We have to find the energy density K,
satisfying the Poisson bracket relation (4-34) where 3, is
connected with the momentum density by (4-37). If we
work out the energy density from a Lorentz-invariant
action then this condition will certainly be satisfied in
the classical theory. It might not be satisfied in the
quantum theory because the order of the factors might
be wrong. It is only when one can choose the order of the
factors in the energy density so as to make (4-34), (4-37)
hold accurately that we have a relativistic quantum
theory. The conditions which we have here for a quantum
theory to be relativistic are less stringent than the ones

[80]
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which we obtained when we had states defined on
general curved surfaces,

I would like to illustrate that by taking the numB_u_o.om
Born-Infeld electrodynamics, This isan &nns.o%mm_sam
which is in agreement with Maxwell electrodynamics for
weak fields but differs from it for strong fields. (We now
refer the electromagnetic field quantities to some
absolute unit defined in terms of the charge of the
electron and classical radius of the electron, so that we
can talk of strong fields and weak fields.) The general
equations of the Born-Infeld electrodynamics follow

from the action principle: :

7= % VTt TR &R (4-39)

We may use curvilinear coordinates at ».r.mm stage.
Zuv gives the metric referred to these curvilinear co-
ordinates and F,, gives the electromagnetic field referred
to the absolute unit. .
‘We can pass from this action integral to a mm._,i:ommwb
by using the general procedure. The result is to give
us a Hamiltonian in which we have, in addition to the

- variables needed to describe the surface, the dynamical

coordinates 4,, » = 1,2, 3. 4, turns out to be an unim-
portant variable just like in the Maxwell field. The
conjugate momenta D" to the 4, are the components of
the electric induction, and satisfy the Poisson bracket
relations

[4,, D*} = %mﬁx - x'). (4-40)

It turns out that in the Hamiltonian we only have 4
occurring through its curl, namely through the field
quantities:

[81]
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B = §oF, = g4, (4-41)

& =1 when (rst) = (1, 2, 3) and is anti-symmetrical
between the suffixes. The commutation relation between
Band Dis

[B', D] = &8 (x — &), (4-42)
The momentum density now has the value

K, = F,D*, (4-43)

This is just the same as in the Maxwell theory. It is in
agreement with the general principle that the momentum

density depends only on geometrical arguments, i.e. on

the geometrical character of the fields we are using, and
the action principle doesn’t matter.
The energy density now has the value

.W._. = .ﬁ.ﬁ.l Ksﬁ Drs + W_. .wmv — u\z " m_.: Uﬁ.u:wtu
: (4-44)

Here y,, is the metric in the three-dimensional surface
and :

=T = det y,,. - (4-45)

If we work with curved surfaces we require K, to
satisfy the Poisson bracket relation (3-31). In the classical
theory it must do so because it is deduced from a
Lorentz-invariant action integral. But we cannot get it
to satisfy the required commutation relationship in the

quantum theory. The expression for X 1. has a square root -

occurring in it, which makes it very awkward to work
with. It seems to be quite hopeless to try to get the
commutation relations correctly " fulfilled with the
coefficients y™ occurring on the left, So jt does not seem
to be possible to get 2 Born~Infeld quantum electro-
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dynamics with the state defined on general curved
surfaces.

:ma.ﬁ us, however, go over to flat m:ﬂmm.oam. For that
purpose, we need to work out the wonmwom .rn»o_an
relationship (4-34). Now we know that conditions are
all right in the classical theory. Q_mmmam:x we must
therefore have the Poisson bracket relationship:

K, K3l = 2K,8, + K, 8. (4-46)

We can see without going into detailed calculations ﬁr..“ﬁ
this must hold also in the quantum theory, because K, is
built up entirely from the quantities D*and B, When we
work things out in the quantum theory, we shall have the
D’s and the B's occurring in a certain order, vc.ﬁ the
D’s and B’s all commute with each other when we take
them at the same point, We see that from (4-42), If we

put the x’ = x we get

[B", D¥] = £48,(0) = 0 (4-47)

(the derivative of the delta function with the argument 0
is to be taken as zero). Thus we are not bothered by the
non-commutation of the D's and the B’s that occur in

- K;. We must therefore get the classical expression, so

that the consistency conditions are fulfilled. -

So for the Born-Infeld electrodynamics, the con-
sistency conditions for the quantum theory on flat
surfaces are fulfilled, while they ate not fulfilled on
curved surfaces, Physically that means that we can
set up the basic equations for 2 quantum 5.8@. of the
Born~Infeld - electrodynamics 'agreeing with special
relativity, but we should have difficulties if we ﬁmﬁmﬁm to
have this quantum theory agreeing with general nm_maﬁﬂw. .

That completes the discussion of the consistency

- [83]
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requirements for the quantum theory to be relativistic.
However, even if we have satisfied these consistency
requirements, we have not yet disposed of all the diffi-
culties. There are some quite formidable difficulties
still lying ahead of us. If we were dealing with a system
involving only 2 finite number of degrees of freedom,
then we should have disposed of all of the difficulties,
and it would be a straightforward matter to solve the
differential equations on . But with field theory, we
have an infinite number of degrees of freedom, and this
infinity may lead to trouble. It usually does lead to
trouble. .

We have to solve equations in which the unknown,
the wave function ¢, involves an infinite number of
variables. The usual method that people have for solving
this kind of equation is to use perturbation methods in
which the wave function is expanded in powers of some
small parameter, and one tries to get a solution step by
step. But one usually runs into the difficulty that after a
certain stage the equations lead to divergent integrals.

People have done a great deal of work on this problem.
They have found methods for handling these divergent
integrals which seem to be tolerable to physicists
even though they cannot be justified mathematically, and
they have built up the renormalization technique,
which allows one to disregard the infinities in the case of
certain kinds of field theory.

So, even when we have formally satisfied the con-
sistency requirements, we still have the difficulty that
we may not know how to get solutions of the wave
equation satisfying the required supplementary con-
ditions. If we can get such solutions, there remains the
further problem of introducing scalar products for these

[84]
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solutions, which means considering these solutions as
the vectors in a Hilbert space. It is necessary to introduce
these scalar products before we can get a physical
interpretation for our wave function in terms of the
standard rules for the physical interpretation of quantum
mechanics. It is necessary that we should have scalar
products for the wave functions which satisfy the
supplementary conditions, but we do not need to worry
about scalar products for general wave functions which
do not satisfy the supplementary conditions. There may
be no way of defining scalar products for these general
wave functions, but that would not matter at all. The
physical interpretation for quantum mechanics requires
that scalar products exist only for wave functions

satisfying all the supplementary conditions.
You see that there are quite formidable difficulties in

getting the Hamiltonian theory to work, in connection
with quantum mechanics. So far as concerns classical
mechanics, the method seems to be fairly complete and
we know exactly what the situation is; but for quantum
mechanics we have only really started on the problem.
There are the difficulties of finding solutions even when
the supplementary conditions are formally consistent,
and possibly also the difficulty of introducing scalar
products of the solutions.

The difficulties are quite serious, and they have led
some physicists to challenge the whole Hamiltonian
method. A good many physicists are now working on the
problem of trying to set up a quantum field theory
independently of any Hamiltonian, Their general
method is to introduce quantities which are of physical
importance, then to bring in accepted general principles
in order to impose conditions on these quantities; and
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their hope is that ultimately they will get enough con-
ditions imposed .on these quantities of physical impor-
tance to be able to calculate them. They are still very
far from achieving that end, and my own belief is that it
will not be possible.to dispense entirely with the
Hamiltonian method. The Hamiltonian method domin-
ates mechanics from the classical point of view. It may be
that our method of passing from classical mechanics to

quantum mechanics is not yet correct. I still think that in .

any future quantum theory there will have to be some-
thing corresponding to Hamiltonian theory, even if it is
not in the same form as at present, :

I have given the treatment of the Hamiltonian method
as far ds it has yet been developed, Itis quite-a general and
powerful method which can be adapted to a variety of
problems. It can be adapted to problems where singu-
larities (point or surface) occur in the field, The general
idea governing this development of the Hamiltonian
theory is to find an action 1 which involves certain
parameters g, such that when we vary the g's, 81 is linear
in the 8¢’s, It is indispensable that we should have 87
linear in the 8s in order that we may apply the treatment
describéd in these lectures, S _
- The way to bring about Linearity when we have
singularities is to work in terms of curvilinear coordinates,

~and not to vary any equations' which determine the
position of a singular point or a singular surface. For
example, if we -are dealing with a ‘singular _surface

- specified by an equation Sf(x) = 0, then we must have a

variation principle in which f(x) is not varied. If we

allow f(x) to vary, if we treat [ itself as providing some of

" the ¢’s, then we do not have §7 linear in the 8¢'s, But we

can keep f(x) fixed with respect to some curvilinear
o [86]
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coordinate system x and we can vary the mﬁmm.oa by
varying the curvilinear coordinate system sﬁ.woﬁ
varying the function f. Then the general method s&_mr I
have discussed here works very well in the classical
theory. When we go over to quantization we have the
difficulties arising which I have discussed,
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