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Quantum gravity induced Lorentz invariance violation in the standard model: Hadrons
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Progress in t
�lP=L�2, whe
semiclassical
L � 1011lP, a

1550-7998=20
In a previous letter, we have observed that the infinities of the standard model (SM) are a source of
Quantum Gravity effects at lower energies. This analysis implies the existence of Lorentz invariance
violation (LIV) within the SM. In this paper we obtain the LIV for mesons and nucleons using chiral
lagrangian and Heavy Baryon Chiral Perturbation Theory. We use them to study several effects, including
the GZK anomaly.
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I. INTRODUCTION

In recent times Quantum Gravity Phenomenology has
seen a revival[1– 4]; Most of it involve some sort of
Lorentz invariance violations(LIV’s)[5–7]. Recently [8],
some of the previous results has been subjected to severe
criticism.

In [9], we realized that the main effect of QG is to affect
the measure of integration of Feynman graphs at large four
momenta by a tiny LIV. The classical lagrangian is un-
changed. Similarly, it can be stated that QG deforms the
metric of space-time, introducing a tiny LIV proportional
to (d-4)�, d being the dimension of space time in
Dimensional Regularization and � being the only arbitrary
parameter in the model. This deformation of the integration
measure (or space-time metric) could be due to quantum
fluctuations of the metric of space-time produced by QG:
virtual black holes as in [1], D-branes as in [10], compac-
tification of extra-dimensions or spin-foam anisotropies
[11]. A theoretical derivation of � will have to wait for
additional progress in the theories of QG1

Modified dispersion relations could exist without a pre-
ferred frame (DSR) [14]. But, in our proposal the classical
lagrangian is invariant under usual linear Lorentz trans-
formations but not under DSR. So our LIV is closer to
radiative breaking of usual Lorentz symmetry than to DSR.
The regulator R defined below and the deformed metric of
Sec. III are given in a particular inertial frame, where
spatial rotational symmetry is preserved. The preferred
frame is the one where the Cosmic Background
Radiation is isotropic.

In the standard model, such LIV implies several effects
truly remarkable, which depend on one arbitrary parameter
(�).The main effects are:
ress: jalfaro@puc.cl
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must explain why the LIV parameter is so small.

his direction is in [3,4,13]. There � appears as
re lP is Planck’s lenght and L is defined by the
gravitational state in Loop Quantum Gravity. If
n � of the right order is obtained
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The maximal attainable velocity (MAV) for particles is
not the speed of light, but depends on the specific couplings
of the particles within the standard model. According to the
very stringent bounds coming from the Ultra High Energy
Cosmic Rays (UHECR) spectrum [12,13], this LIV of the
dispersion relations is the only compatible with the data.

Also, the couplings between particles in the SM, deter-
mine different MAV for each particle, which is needed to
explain the Greisen [15], Zatsepin and Kuz’min [16](GZK)
anomaly [6,13,17]. In a few years, the Pierre Auger
Observatory [18] will provide abundant new data in the
highest energy range of the spectrum, which can be used as
powerful tests of Lorentz invariance.

Birrefringence occurs for charged leptons, but not for
gauge bosons: Photons and neutrinos have different MAV,
which could be tested in the next generation of neutrino
detectors such as NuBE [19,20]; Left and right helicity
electron have different MAV.

Vertices in the SM will pick up a finite LIV.
The previous analysis can be applied only when pertur-

bation theory is justified. In the standard model this is true
for leptons, weak gauge bosons and the photon; and QCD
due to asymptotic freedom. But in the case of hadrons we
cannot rely on usual perturbation theory to compute the
LIV. Most of the relevant physics involve hadrons, so we
have to extend the methods of [9] to this case.

In the present work, we compute the LIV for hadrons
using chiral lagrangian and Heavy Baryon Chiral Per-
turbation Theory. These are the standard effective theories
used to describe the QCD physics at low energies, where
the description in terms of gluons and quarks fails.

As a result, several effects become available to test the
predictions of [9]. In particular, we give precise criteria to
determine the sign and size of �.

This paper is organized as follows: In Secs. II and III we
review the main arguments of [9]. In Sec. II, we present the
LIV cutoff regulator and study its effects on One Particle
Irreducible Green functions (1PI); Sec. III defines LIV
dimensional regularization and explain how to proceed in
the case of fermions; Explicit one-loop computations are
contained in Sec. IV, using the cutoff regulator and LIV
-1  2005 The American Physical Society
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dimensional regularization; the LIV for mesons and bary-
ons are found in Sec. V; Reactions thresholds are contained
in Sec. VI; Bounds on � are derived in Sec. VII;
Section VIII contains our conclusions.

II. REGULATOR OF THE INTEGRATION
MEASURE AND 1PI GRAPHS

For renormalizable theories, we consider the effect of
the Lorentz asymmetry of the measure using the replace-
ment Z

ddk !
Z

ddkR
�
k2 � �k20
�2

�
R is an arbitrary function, � is a cutoff with mass dimen-
sions, that will go to infinity at the end of the calculation.
To recover the original integral, R�0� � 1. R�1� � 0 to
regulate the integral. � is a real parameter. For logarithmi-
cally divergent integrals, the divergent term is Lorentz
invariant whereas a finite LIV part proportional to � re-
mains when the cutoff goes to infinity.

1PI graphs are modified as follows:.
Self-energy Bosons: 	�p� � 	�0� � A�p�p �

convergent,

A� � c2�
� � a�

c2 is the wave function renormalization counterterm; a�

is a finite LIV.
Self-energy Fermions:�p� � �0� � s��p�,

s� � s�� � a�=2

s is a wave function renormalization counterterm; a� is a
finite LIV.

The on-shell condition is:

p2 � m2 � a�p�p � 0

If spatial rotational invariance is preserved, the nonzero
components of the matrix a are:

a00 � a0; aii � �a1

So the maximum attainable velocity (MAV) for this parti-
cle will be:

cm �

��������������
1� a1
1� a0

s
� 1� �a1 � a0�=2 (1)

The dependence on R amounts to a multiplicative factor.
So ratios of LIV’s are uniquely determined.

Vertex correction This graph has D � 0, so the regulator
R will induce a tiny LIV.

Gauge Bosons 2

���p� � c���p�p���p� (2)
2A Chern-Simons term is absent due to the symmetry k� �
> � k�, which is preserved by the regulator.

024027
c��� is antisymmetric in � and �� and symmetric by
��; �� < � > ��; �; c��� is given by a logarithmically
divergent integral.As in the previous cases we obtain:

c��� � c2��
���� � ������ � a��� (3)

c2 is a Lorentz invariant counterterm and a��� is a LIV.
III. LIV DIMENSIONAL REGULARIZATION

We consider dimensional regularization in a d-
dimensional space with an arbitrary constant, positive met-
ric g�. The Minkowski metric is obtained by Wick rota-
tion. Here g � det�g�� , k2 � g�k�k and � � 2� d

2 .
LIV dimensional regularization consists in:
1) Calculating the d-dimensional integrals using a gen-

eral metric g�.
2) Gamma matrix algebra is generalized to a general

metric g�,f��; �g � 2g�.
3) At the end of the calculation, replace g� � �� �

�4��2���0�0Res��0 and then take the limit � � >0.
Res��0 is the residue of the pole at � � 0.
To define the counterterms, we use the minimal sub-

straction scheme(MSS); that is we substract the poles in �
from the 1PI graphs.

These definitions preserve gauge invariance, because the
integration measure is invariant under shifts.

As a concrete example, let us consider QED. The elec-
tron self-energy to one loop is given by:

�i2�q� � ��ie�2
Z ddk

�2��d
1���
g

p �� �ik6 � m�

k2 � m2 � i0

 ��
�i

�k � q�2 � �2 � i0
(4)

To obtain the LIV, we have to evaluate (we have introduced
a parameter � and put it to zero afterwards):

�iL2�q� � 2i��ie�2
Z ddk

�2��d
1���
g

p
��k6 ��k:q

�k2 ��� i0�3
(5)

� �2i��ie�2�d � 2�
Z ddk

�2��d
1���
g

p
k6 k:q

�k2 � �� i0�3
(6)

� ��ie�2
�d � 2�

2

1

�4��d=2
q6
��2� d=2�

�2�d=2
(7)

but

q6
��2� d=2�

�2�d=2
� q�

�
!�

a �
�4��2�Res��0

2
!�
0 !0a

�

 �a ��2� d=2�

�2�d=2
� (8)

q6 �
�4��2�
2

q0�
0 (9)
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The last q6 uses the Minkowski metric. It follows that,

�iL2�q� �
e2�
2

q0�0 (10)

LIV Dimensional Regularization makes stronger our
claim that these tiny LIV’s come from Quantum Gravity.
In fact the sole change of the metric of space time is a
correction of order � to the Minkowsky metric which can
be due to quantum fluctuations of the gravitational field.
IV. EXPLICIT ONE-LOOP COMPUTATIONS

A. Example: g�3 in six space-time dimensions

To illustrate the method using the cutoff regulator, we
consider g"3 in six space-time dimensions.

The one-loop contribution to the self energy of the
particle is:

i	�q� �
��gi�2

2

Z d6k

�2��6
1

k2 � m2 � i0


1

�k � q�2 � m2 � i0
(11)

The term containing the LIV is:

L�i	� � �2q�qg2B� (12)

B� �
Z d6k

�2��6
k�k

�k2 � m2 � i0�4
(13)

To evaluate B�, introduce the regulator of the integra-
tion measure,

R �
��2

k2 ��2 � ak20 � i0
(14)

define k � �p and take the limit �� >1. In this way we
verify that the LIV is mass independent. Since a < <1, we
keep only the first order in a. We end up with:

LB� � a
Z d6p

�2��6
p20p�p

�p2 � 1� i0�2�p2 � i0�4
(15)

Therefore:

L�i	� � �
g2aq20i

24�4��3
(16)
B. LIV in the standard model

We follow [21,22] and use LIV Dimensional
Regularization.

Photons
In the SM the photon self-energy can be written:

i�� � i�q2g� � q�q�

�
�23e2

48�2�
� finite

�
(17)
024027
so that the LIV photon self-energy in the SM is:

L���q� � �
23

3
e2�q�q�����!�

0 !
0 � ��!�

0 !�
0

� ��!�
0 !�
0 � ���!

0!
�
0 � (18)

It follows that the maximal attainable velocity is

c� � 1�
23

6
e2� (19)

We have included the coupling to quarks and charged
leptons as well as 3 generations and color.

C. Fermions

Similarly, in the SM, the fermion self-energy is given by:

�4�2��q� � �
1

�
q6
X
graphs

�jcV � cAj
2PL � �jcV � cAj

2PR�

� finite (20)

where the fermion-gauge boson vertex is:

i�k�cV � cA�5� (21)

and PL�PR� are the L(R) helicity projectors.
Therefore

L�q� �
�
2

q0�0
X

graphs

�jcV � cAj
2PL � �jcV � cAj

2PR�

(22)

Using this last result, we obtained the MAV for neutrinos
and charged bosons [9]. Since we will use them later, we
write the answer below.

MAV Neutrinos:

c � 1� �3� tan2'w�
g2�
8

(23)

MAV Electron. Birrefringence:
Define: eL � 1��5

2 e, eR � 1��5

2 e, where e is the electron
field. We get

cL � 1�
�

g2

'wcos
2 �sin2'w � 1=2�2 � e2 � g2=2

�
�
2
;

(24)

cR � 1�
�
e2 �

g2sin4'w

cos2'w

�
�
2

(25)

The difference in maximal speed for the left and right
helicities is ��5 10�24�.

It can be readely checked, employing R*-gauges, that
the LIV is gauge invariant. The gauge parameter affects the
Lorentz invariant part only.
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V. MESONS AND BARYONS

In order to apply our results to the computation of the
UHECR spectrum and other phenomena, we must calcu-
late the maximal attainable velocity (MAV) of hadrons. As
we mentioned before, the problem is hadronization. One
way to get an estimation of the effect is using effective
lagrangians.

We use the results of [23,24] for the wave function
renormalization of pions and nucleons in the chiral lagran-
gian and Heavy Baryon Chiral Perturbation Theory. They
get:

Z�1
� � 1�

4m2�
3�4��2F2

1

�
� finite (26)

Z�1
N � 1�

9g2Am2�
4�4��2F2

1

�
� finite (27)

Here, m� is the renormalized pion mass, F is the renor-
malized decay constant of pions and gA is the axial vector
coupling constant, in the chiral limit.

Using the LIV metric, we can read off the MAV for pions
and nucleons:

c� � 1�
2m2��

3F2
cN � 1�

9m2�g2A�

8F2
(28)
VI. REACTION THRESHOLDS

Knowing the LIV for nucleons, pions, photons and
electrons, we proceed to study the reactions involved in
the GZK cutoff. We follow the discussion in [6,13]. The
main difference with these works is that our MAV are
correlated, because all of them are dependent on one
parameter �.

A. Photo-Pion Production �� p ! p� �

We start our discussion with the photo-pion production
� � p ! p � �. Using the corrections provided in the
dispersion relation (28) for pions and nucleons, we note
that, for the photo-pion production to be allowed, the
following condition must be satisfied

2!cE2� � 4E�! �
m2��2mp � m��

mp � m�
: (29)

where E� is the produced pion energy and !c � cp � c�.

B. Pair Creation �� p ! p� e� � e�

Pair creation, � � p ! p � e� � e�, is abundant in the
part of the spectrum previous to the GZK limit. When the
dispersion relations for fermions are considered for both
protons and electrons, we find
024027
!c
me

mp
E2 � E! � me�mp � me�; (30)

where E is the incident proton energy and !c � cp � ce.
VII. BOUNDS ON �

In order to analyze the threshold conditions (29) and
(30), in the context of the GZK anomaly, we must establish
some criteria. In the first place, as it is done in [13,25], the
conventionally obtained theoretical spectrum provides a
very good description of the phenomena up to an energy
�4 1019 eV. The main reaction taking place in this well
described region is the pair creation � � p ! p � e� �
e� and, therefore, no modifications are present for this
reaction up to �4 1019 eV. As a consequence, and since
threshold conditions offer a measure of how modified
kinematics is, we will require that the threshold condition
(30) for pair creation not be substantially altered by the
new corrective terms.

Now, we want to explain the GZK anomaly. Since for
energies greater than �8 1019 eV the conventional theo-
retical spectrum does not fit the experimental data well, we
shall impose that QG corrections be able to offer a viola-
tion of the GZK-cutoff. The dominant reaction in the
violated E > 8 1019 region is the photo-pion production
and, so, we must require that the new corrective terms
present in the kinematical calculations be able to shift the
threshold significantly to forbid the reaction.

We begin our analysis with the threshold condition for
pair production. In this case we have:

!c
me

mp
E2 � E! � me�mp � me�; (31)

with !c � cp � ce. From the above condition, the mini-
mum soft-photon energy !min for the pair production to
occur, is

!min �
me

E
�mp � me� � !c

me

mp
E: (32)

It follows therefore that the condition for a significant
increase or decrease in the threshold energy for pair pro-
duction becomes j!cj � mp�mp � me�=E2. In this way, if
we do not want kinematics to be modified up to a reference
energy Eref � 3 1019, we must impose the following
bound

jcp � cej <
�mp � me�mp

E2ref
� 9:8 10�22: (33)

Similar treatments can be found for the analysis of other
astrophysical signals like the Mkn 501 �-rays [26], when
the absence of anomalies is accepted.

Let us now consider the threshold condition for the
photo-pion production. We have
-4



. . PHYSICAL REVIEW D 72, 024027 (2005)
2!cE2� � 4E�! �
m2��2mp � m��

mp � m�
: (34)

In order that the above condition be violated for all ener-
gies E� of the emerging pion, and therefore no reaction
take place, the following inequality must hold

c� � cp >
2!2�mp � m��

m2��2mp � m��
� 3:3 10�24�!=!0�2:

(35)

where !0 � KT � 2:35 10�4 eV is the thermal CMBR
energy.

Combining the two reactions and the standard values,
m� � 139 MeV; gA � 1:26; F � 92:4 MeV, we get an
upper and lower bound on �

2:2 10�21 > �� > 1:3 10�24 (36)

We see that � < 0, in order to suppress the photo-pion
production, thus removing the GZK-cutoff. This implies
that photons are the fastest particles and they arrive before
neutrinos coming from the same source of GRB. Moreover,
photons become unstable. They decay in a electron-
positron pair above an energy E0[6]. See below.

Since cphoton > cproton, the strong bound of [27] is
avoided: Proton is stable under Cerenkov radiation in
vacuum.

If no GZK anomaly is confirmed in future experimental
observations, then a stronger bound for the difference c� �

cp will follow. Using the same assumptions to set the
restriction (33) when the primordial proton reference en-
ergy is Eref � 2 10

20 eV, we find

jc� � cpj < 2:3 10�23: (37)

In terms of �, this last bound may be read as

j�j < 9:1 10�24; (38)

which is a stronger bound over � than (33), obtained from
pair creation.

Photon unstability
It has been pointed out in [6,27] that if cphoton > celectron

then the process � ! e� � e� is allowed above an energy
E0:

E0 � me

������
2

!c

s
(39)

where !c � c� � ce.
In our case, we have:

!cL � ��
�
23

6
e2 �

�
g2

cos2'w
�sin2'w � 1=2�2

� e2 � g2=2
��
2
�

(40)

QUANTUM GRAVITY INDUCED LORENTZ INVARIANCE .
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!cR � ��
�
23

6
e2 �

�
e2 �

g2sin4'w

cos2'w

��
2
�

(41)

Therefore,

EL0 � 2:3 10
8 GeV ER0 � 1:9 10

8 GeV (42)

So, we should not detect photons with energies above
2:3 108 GeV

Neutral pion Stability
Following [6] we study the main decay process of neu-

tral pion �0 ! � � �. This becomes suppressed if c� >
c� and above an energy

E� �
m������������������������

2�c� � c��
q (43)

Using the bound c� � c� < 10�22 obtained in [27], we get

j�j < 5:4 10�23 (44)

In our numerical estimates we have chosen � � �5
10�23.

We get E� � 1019 eV. Therefore we expect that neutral
pions above this energy are stable, so they could be a
primary component of UHECR. Photons will be unstable
above this energy by the same mechanism. Notice however
that photons are unstable at a lower energy due to electron-
positron pair creation (42).
VIII. CONCLUSIONS

In this paper we have computed the LIV induced by
Quantum Gravity on Baryons and Mesons, using the Chiral
Lagrangian approach. This permitted to fix that � < 0, in
order to explain the GZK anomaly. Studying several avail-
able processes, we found bounds on �:

From pair creation and absence of photo-pion creation:
2:2 10�21 > �� > 1:3 10�24.

From pion stability and the most stringent experimental
bound found in [28]: j�j < 5:4 10�23.

Then, several predictions are obtained: Photons are un-
stable above an energy 2:3 108 GeV.

Neutral pions are stable above an energy E� � 1019 eV;
so they could be a primary component of UHECR, thus
evading the GZK cutoff.
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