Wedge product
| dx∧dy = (dx⊗dy - dy⊗dx) |
(1) |
Properties:
| dx∧dx = 0 |
|
|
| dx'∧dy' =
Jacobian(x',y';x,y)dx∧dy |
|
(2)
|
A differential form of rank p or a p-form is defined by:
| A = Ai1….ipdxi1∧….dxip |
(3) |
We have
| ap∧bq
= ( -
1)pqbq∧ap |
(4) |
Exterior derivative
| dAp = Ai1….ip,jdxj∧dxi1∧….dxip |
(5) |
It follows that d is
nilpotent:d2A = 0
Leibnitz's rule:
| d(ap∧bq)
= d
ap∧bq
+ ( -
1)pap∧dbq |
(6) |
Hodge'star:
| ⋆(d
xi1∧….d
xip) = εi1….ipip
+
1….ind
xip +
1∧….d
xin |
(7) |
We have that:
| ⋆⋆ωp = ( -
1)p(n -
p)ωp |
(8) |
Proof:
| w = wi1….ipd
xi1∧….d
xip |
|
|
| ⋆w = wi1….ipεi1….ipip
+
1….ind
xip +
1∧….d
xin |
|
|
| ⋆⋆w = wi1….ipεi1….ipip
+
1….in⋆(d
xip +
1∧….d
xin) = |
|
|
wi1….ipεi1….ipip
+ 1….inεip +
1…inj1…jpd
xj1∧d
xjp =
( - 1)p(n -
p)wj1….jpd
xj1∧…d
xjp = ( -
1)p(n -
p)w |
|
|
|
|
|
We have used the identity:
| εi1….ipip
+
1….inεip
+
1…inj1…jp
= ( - 1)p(n - p) |
εi1….ipip
+
1….inεj1….jpip
+ 1….in |
= |
| ( - 1)p(n -
p)(n -
p)!(δi1j1δi2j2….δipjp
+ …)(p! terms) |
|
|
|
|
|
Induction on p:
| p = 1,
εi1….ipip
+
1….inεj1….jpip
+ 1….in =
Aδi1j1 |
|
|
| Put i1 = j1
and sum |
|
|
| We get: |
|
|
| A = = (n - 1)! |
|
|
| p = 2, |
εi1….ipip
+
1….inεj1….jpip
+ 1….in =
A(δi1j1δi2j2
-
δi1j2δi2j1) |
|
| ∑(i1 =
j1,i2 =
j2) gives |
|
|
| n! = A(n2 -
n) |
|
|
| A = (n - 2)! |
|
|
| Suppose that for p = a,
εi1….iaia
+
1….inεj1….jaia
+ 1….in =
(n -
a)!∑σϵSasgn(σ)δi1σ(j1)….δiaσ(ja) |
|
|
Define
We have that:
ap∧⋆bp
= ap
i1….ipbp
j1…jpεj1….jpjp
+
1….jnd
xi1∧….d
xip∧d
xjp + 1
…∧d
xjn = ap
i1….ipbp
j1…jpεj1….jpjp
+
1….jnεi1….jnd
x1…∧d
xn = ap
i1….ipbp
i1…ipd
x1…∧d
xn =
bp∧⋆ap |
(10) |
Therefore:
| (ap,bp)
= ∫Map
i1….ipbp
i1…ipd
x1…∧d
xn |
(11) |
From equation (10) is easy to see that (a,b)
defines an inner product of (real) p-forms.
In particular:
Adjoint of the exterior derivative:
| (ap,d
bp - 1) =
(δap,bp
- 1) |
(13) |
We start from the identity:
| ∫Md(bp
-
1∧⋆ap)
= 0 = ∫M(d
bp -
1∧⋆ap + ( -
1)p - 1bp -
1∧d⋆ap) |
|
|
That is:
| (ap,d
bp - 1) = (d
bp -
1,ap) = ( -
1)p( - 1)(n - p +
1)(p - 1)(bp -
1,⋆d⋆ap) |
|
|
| p + n p - n -
(p - 1)2 |
|
|
| Notice that p - (p - 1)2
= - (p - 1)(p - 2) + 1 |
is odd |
|
| ( - 1)p( - 1)(n -
p + 1)(p - 1) = ( - 1)np +
n + 1 |
|
|
So,
| δ = ( - 1)n p +
n + 1⋆d⋆ |
(14) |
From (13) we get:
| (δ2ap +
1, bp - 1) =
(ap +
1,d2bp -
1) = 0 |
|
, for all ap + 1 |
Then,