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the Palatini principle based on tetrads and SO(3,1) connections. This
route was studied in some detail by Kijowski [127]. Unfortunately, the
canonical theory based on such connections has second class constraints
(in 3+1 dimensions). When one eliminates these, non-polynomialities are
introduced and one is led back to the traditional Hamiltonian formulation
[61]. It is remarkable that in 241 dimensions one actually can formulate
the theory in terms of connections, although historically this was realized
later and through a different construction. We will review the 2+1 case
later.

In 3+1 dimensions, the only successful attempt to obtain a canonical
theory in terms of a connection that yields first class constraints is that
due to Ashtekar [51]. It is based on the use of self-dual connections. Not
only do the constraints remain first class but they are relatively simple
polynomial functions. The price to be paid is that the self-dual connec-
tions are complex. In the next subsections we will develop this formalism.
The treatment will follow closely the book by Ashtekar [2], we direct the
reader to it for extensive details.

7.3.1 Tetradic general relativity

To introduce the new variables, we first need to introduce the notion
of tetrads. A tetrad is a vector basis in terms of which the metric of
spacetime looks locally flat,

gab = €L€YNLT, (7.23)

where nr; = diag(—1,1,1,1) is the Minkowski metric, and equation (7.23)
simply expresses that g,5, when written in terms of the basis el is locally
flat. If spacetime were truly flat, one could perform such a transformation
globally, integrating the basis vectors into a coordinate transformation
el = 9z!/82". In a curved spacetime these equations cannot be inte-
grated and the transformation to a flat space only works locally, the flat
space in question being the “tangent space”. From equation (7.23) it is
immediate to see that given a tetrad, one can reconstruct the metric of
spacetime. One can also see that although g,; has only ten independent
components, the el have sixteen. This is due to the fact that equation
(7.23) is invariant under Lorentz transformations on the indices I, J....
That is, these indices behave as if existing in flat space. In summary,
tetrads have all the information needed to reconstruct the metric of space-
time but there are extra degrees of freedom in them, and this will have a
reflection in the canonical formalism.
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7.8.2 The Palatint action

We now write the Einstein action in terms of tetrads. We introduce a
covariant derivative via DK = 0,K1 + war’ K. Here w,”’ is a Lorentz
connection (its associated covariant derivative annihilates the Minkowski
metric). We define a curvature by Qu'7 = dj,wy’’ + [wa,ws]!”, where
[,] is the commutator in the Lorentz Lie algebra. The Ricci scalar of
this curvature can be expressed as e?e%Q!) (indices I, J are raised and
lowered with the Minkowski metric). The Einstein action can be written
as

S(e,w) = /d4m e etel QL) (7.24)

where e is the determinant of the tetrad (equal to v/—g).

We will now derive the Einstein equations by varying this action with
respect to e and w as independent quantities. To take the metric and
connection as independent variables in the action principle was first con-
sidered by Palatini [128].

As a shortcut to performing the calculation (this derivation is taken
from reference [2]), we introduce a (torsion-free) connection compatible
with the tetrad via V,e% = 0. The difference between the two connections
we have introduced is a field Cy7”, defined by C,;/Vy = (D, —V,)V;. We
can compute the difference between the curvatures (R./ is the curvature of
Vo), Q! — Ry = V[aCb]I I 4 C[aI M Cy . The reason for performing
this intermediate calculation is that it is easier to compute the variation
by reexpressing the action in terms of V and C,’’ and then noting that
the variation with respect to w,” is the same as the variation with respect
to CI/. The action therefore is

S= [z e eteh(Ru? + VuCy? + Cu™MCyps’). (725

The variation of this action with respect to C,!” is easy to compute:
the first term simply does not contain C,!’ so it does not contribute.
The second term is a total divergence (notice that V is defined so that it

annihilates the tetrad), the last term yields eg\‘}e?\],&f‘[” 5.1,(] Cor™N. It is easy to
check that the prefactor in this expression is non-degenerate and therefore
the vanishing of this expression is equivalent to the vanishing of Cyx ™.
So this equation basically tells us that V coincides with D when acting on
objects with only internal indices. Thus the connection D is completely
determined by the tetrad and ) coincides with R (some authors refer
to this fact as the vanishing of the torsion of the connection). We now
compute the second equation, straightforwardly varying with respect to
the tetrad. We get (after substituting Q'Y by Rg'7 as given by the



174 7 Quantum gravity

previous equation of motion)
e$ReT — 1R.MNeS,ehel =0, (7.26)

which, after multiplication by ey, just tells us that the Einstein tensor
Ry — %Rgab of the metric defined by the tetrads vanishes. We have
therefore proved that the Palatini variation of the action in tetradic form
yields the usual Einstein equations.

There is a difference between the first order (Palatini) tetradic form
of the theory and the usual one. One sees that a solution to the Ein-
stein equations we presented above is simply €% = 0. This solution would
correspond to a vanishing metric and is therefore forbidden in the tradi-
tional formulation since quantities, such as the Ricci or Riemann tensor
are not defined for a vanishing metric. However, the first order action and
equation of motion are well defined for vanishing triads. We therefore see
that strictly speaking the first order tetradic formulation is a “general-
ization” of general relativity that contains the traditional theory in the
case of non-degenerate triads. We will see this subtlety playing a role in
subsequent chapters. It should be noticed that the potential of allowing
vanishing metrics in general relativity offers new possibilities for some old
questions, since one could envisage the formalism “going through”, say.
the formation of singularities. It also allows for topology change [129].

Is there any advantage in this formulation over the traditional one?
The answer is no. If one performs a canonical decomposition of the first
order tetradic action, one finds that the momentum canonically conjugate
to the connection is quadratic in the tetrads. The factorizability of the
momenta leads to new constraints in the theory that turn out to be second
class. If one eliminates them through the Dirac procedure one returns to
the tragditional formulation [61].

7.8.3 The self-dual action

Up to now the treatment has been totally traditional. We will now take
a conceptual step that allows the introduction of the Ashtekar variables.
We will reconstruct the tetradic formalism of the previous subsection but
we will introduce a change. Instead of considering the connection w,!’
we will consider its self-dual part with respect to the internal indices
and we will call it 4,77, i.e., 14,1/ = %EMN”AGMN. Now, to really be
able to do this, the connection must be complex (or one should work in
an Euclidean signature). Therefore for the time being we will consider
complez general relativity and we will then specify appropriately how to
recover the traditional real theory. The connection now takes values in
the (complex) self-dual subalgebra of the Lie algebra of the Lorentz group.
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We will propose as action,
S(e, A) = /d4:1: e ebel Fop' K, (7.27)

where F,;7K is the curvature of the self-dual connection and it can be
checked that it corresponds to the self-dual part of the curvature of the
usual connection.

We can now repeat the calculations of the previous subsection for the
self-dual case. When one varies the self-dual action with respect to the
connection A,7’ one obtains that this connection is the self-dual part of a
torsion-free connection that annihilates the triad (if one repeated step by
step the previous subsection argument, the self-dual part of C,’ would
vanish). The variation with respect to the tetrad follows along very sim-
ilar lines except that .7’ is everywhere replaced by F,,/. The final
equation one arrives at again tells us that the Ricci tensor vanishes. Re-
markably, the self-dual action leads to the (complex) Einstein equations.
This essentially can be explained by the fact that the two actions differ
by terms that on-shell are a pure divergence. This implies that the imag-
inary part of the equations of motion identically vanishes. If one works it
out explicitly one finds that this corresponds to the Bianchi identities.

7.3.4 The new canonical variables

As we said before, if one takes the Palatini action principle in terms of
tetrads and performs a canonical decomposition, second class constraints
appear and one is led back to the traditional formulation. A quite different
thing happens if one decomposes the self-dual action. Let us therefore
proceed to do the 3+1 split. As we did before, we introduce a vector
t® = Nn® 4+ N°*. Taking the action

S(e,A) = /d4a: e etey Fy'/ (7.28)

and defining the vector fields E¢ = gf¢? (where ¢¢ = 62 + n®n, is the
projector on the three-surface), which are orthogonal to n*, we have

S(e, A) = / &z (e ESESFLY — 2 ¢ E¥eingntF,'Y).  (7.29)

We now define E} = ,/gE¢, which is a density on the three-manifold. The
determinant of the triad can be written as e = N,/g. We also introduce
the vector in the “internal space” induced by n®, defined by n; = e?ng.
With these definitions, and exploiting the self-duality of F,,!/ to write
FabIJ = —i%GIJMNFabMNa we get

S(e, A) = / d*z (—iNESESe! ynFMN — 2NnbE¢n Fo'7). (7.30)
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The action is now written in canonical form and the conjugate variables
can be read off directly. The configuration variable is the self-dual con-
nection A, . The conjugate momentum is the self-dual part of —zEﬁe M-

oo = Efymny — EI EMN- (7.31

Now, in terms of the canonical variables the Lagrangian takes the form

/ BrTr(—7 LAy + N°7OFpy — (A - 1) Do® — N7%70Fy),  (7.32
2

where all references to the internal vector n! have disappeared. The
projection of the spacetime connection on the time-like direction (A-t) is
arbitrary and acts as a Lagrange multiplier.

Since n is not a dynamical variable it can be gauge fixed. We fix
n! = (1,0,0,0) and therefore e//XIn; = e!/K0  Since Al7 and 7§,
are self-dual, they can be determined by their 0/ components. We may
therefore define

Afz = iAgIa E;l = fior (7.33

where internal indices i, j refer to the SO(3) Lie algebra. In fact, as is

well known the self-dual Lorentz Lie algebra is isomorphic to the (com-
plexified) SO(3) algebra
The new variables satisfy the Poisson bracket relations

{4i(z), B (y)} = +i66:6% (z — y). (7.34

The constraints may be read off from the Lagrangian (7.32) and take
the form

G' = D,E*, (7.35
C,=E'FL,, (7.36
H = ESESFE, (7.37:

and the Hamiltonian is again a linear combination of the constraints.

The last four equations correspond to the usual diffeomorphism and
Hamiltonian constraints of canonical general relativity. The first three
equations are extra constraints that stem from our use of triads as funda-
mental variables. These equations, which have exactly the same form as a
Gauss law of an SU(2) Yang-Mills theory, are the generators of infinites-
imal SU(2) transformations. They tell us that the formalism is invariant
under triad rotations, as it should be.

Notice that a dramatic simplification of the constraint equations has oc-
curred. In particular the Hamiltonian constraint is a polynomial function
of the canonical variables, of quadratic order in each variable. Moreover,
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the canonical variables, and the phase space of the theory are exactly those
of a (complex) SU(2) Yang-Mills theory. The reduced phase space is ac-
tually a subspace of the reduced phase space of a (complex) Yang-Mills
theory (the phase space modulo the Gauss law), since general relativity
has four more constraints that further reduce its phase space. This re-
semblance of the formalism to that of a Yang-Mills theory will be the
starting point of all the results we will introduce in the rest of the book.

In terms of the new variables, the structure of the constraints is sim-
ple enough for the reader to be able to compute the constraint algebra
without great effort (this computation can also be carried out with the
traditional variables and the results are the same). We only summarize
the results here. To express them in a simpler form (and to avoid confus-
ing manipulations of distributions while performing the computations),
it is again convenient to smooth out the constraints with arbitrary test
fields and to perform some recombinations. We denote

G(N:) = [ doNi(DuE", (7.38)
C(N) = / PrNP B, — G(NOAL), (7.39)
H(N) = / dPzNed B ELFE,, (7.40)

and as before the notation is unambiguous. The constraint algebra then
reads

{G(Ni), G(N;)} = G([Ni, N;]), (7.41)
{C(N),C(M)} = C(LzN), (7.42)
{C(N),G(N:)} = G(LzNy), (7.43)
{C(V), H(M)} = H(LgM), (7.44)
{G(N:),H(N)} =0, (7.45)
{H(N), H(M)} = C(K) — G(4,K"), (7.46)

where the vector K is defined by K® = 2E¢EX(NO.M — M3,N). Here
we clearly see that the constraints are first class. The reader should
notice, however, that the algebra is not a true Lie algebra, since one
of the structure constants (the one defined by the last equation) is not
a constant but depends on the fields Ea (through the definition of the

vector K).
The new variables are simply related to the traditional Hamiltonian
variables:

AL =T —iK:  q¢® =E!E], (7.47)
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where K! = K,,E® and T is the spin connection compatible with the
triad.

The evolution equations for the canonical variables are obtained taking
the Poisson brackets of the variables with the Hamiltonian,

AL = —ie"* NEPF oy — NOF,, (7.48;
EB; = i* Dy(NE2EL) — 2D, (N1aE%), (7.49

1

A similar simplification to that introduced in the constraints is evident
in the equations of motion.

As we mentioned above, because of the self-duality used in the definition
of the canonical variables, these are in general complex. The situation is
totally analogous to that introduced when we discussed the harmonic
oscillator and Maxwell theory in the Bargmann representation in section
4.5. If we want to recover the classical theory we must take a “section”
of the phase space that corresponds to the dynamics of real relativity.
This can be done. One gives data on the initial surface that correspond
to a real spacetime and the evolution equations will keep these data real
through the evolution. Now, strictly speaking, this procedure is not reallyv
canonical, since we are imposing these conditions by hand at the end.
That does not mean it is not useful*. In fact, one can eliminate the
reality conditions and have a canonical theory. However, much of the
beauty of the new formulation is lost, in particular the structure of the
resulting constraints is basically that of the traditional formalism.

The issue of the reality conditions acquires a different dimension at the
quantum level. A point of view that is strongly advocated, and may turn
out to be correct, is the following. Start by considering the complex theory
and apply the usual steps towards canonical quantization After the space
of physical states has been found, when one looks for an inner product.
the reality conditions are used in order to choose an inner product that
implements them. That is, the reality conditions can be a guideline to
finding the appropriate inner product of the theory. One simply requires
that the quantities that have to be real according to the reality conditions
of the classical theory become self-adjoint operators under the chosen
inner product. This solves two difficulties at once, since it allows us to
recover the real quantum theory and the appropriate inner product at
the same time. This point of view is strictly speaking a deviation from
standard Dirac quantization, and works successfully for several model
problems [130]. The success or failure in quantum gravity of this approach

* A non-trivial example where it can be worked to the end is the Bianchi II cosmology [132].
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i8 yet to be tested and is one of the most intriguing and attractive features
of the formalism. (For a critical viewpoint, see reference [131].)
In terms of the basic variables, the reality conditions are

(Be By — Bo™, (7.50)
(7B Do(E} BS))" = (% B{" Do(B) ). (7.51)

This particular form of the reality conditions may be useful to select real
initial data for classical evolutions. However, if one wants to impose the
conditions as adjointness relations of operators with respect to a quantum
inner product, it is clear that one would need to recast the conditions in
terms of physical observables, since these are the only quantities defined
in the space of physical states. In particular equations (7.50),(7.51) are
not well defined in that space.

Up to now we have discussed the theory in vacuum. There is no diffi-
culty in incorporating matter fields in the new variable formulation. The
constraints can be made polynomial in a natural fashion for coupling to
scalar fields, Yang-Mills fields, and fermions. It is remarkable that Dirac
fermions can be introduced only coupled to the self-dual part of the con-
nection. A complete discussion can be found in references [133, 2].

It is immediate to include a cosmological constant in the framework.
In the Einstein action the cosmological constant appears as [ d*z/=gA.
This action can be immediately canonically decomposed as

Sh = / dt / PrNgA, (7.52)

and this can be written in terms of the new variables noting that the
determinant of the three-metric is given by

qg= %mbceikagEgEg. (7.53)

The only change introduced in the canonical theory is that the Hamil-
tonian constraint gains an extra term,

o A e
H(N) = / o BB + 2 f BrNnace P EIEVEE.  (754)

And again, is a polynomial expression. There is no modification to the
other constraints, since the entire term in the action is proportional to V.

7.4 Quantum gravity in terms of connections

7.4.1 Formulation

The casting of general relativity as a theory of a connection has important
implications at the quantum mechanical level. One can now proceed to
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quantize the theory exactly like we did in chapter 5, picking a polarization
in which wavefunctions are functionals of a connection

U[A]. (7.55

The Gauss law will immediately require that these be gauge invan-
ant functions, i.e., functionals in the space of connections modulo gauge
transformations. Notice that this is a significant departure from the tra-
ditional picture where one considered functionals of a three-metric, or if
one imposed the diffeomorphism constraint, of a three-geometry.

As in the Yang-Mills case a representation for the Poisson algebra of
the canonical variables considered can be simply achieved by representing
the connection as a multiplicative operator and the triad as a functionai
derivative:

AL T(A) = AL T(A), (7.56
EeU(A) = 52‘ T(A). (7.57

It should be emphasized that a difference with the Yang-Mills case
arises since the connection is complex. The wavefunctions considered
are holomorphic functions of the connection and the functional derivative
treats as independent the connection and its complex conjugate.

We would now like to use this choice in the representation of the canon-
ical algebra to promote the constraint equations to operatorial equations.
Since the constraint equations involve operator products, a regularization
is needed. This is a fundamental point. Most of the issues one faces
when promoting the constraints to wave equations do not have a unique
answer unless one has a precise regularization. There is not a complete
regularized picture of the theory at present. We will introduce some of
the issues in this chapter and will return to them in chapters 8 and 11 as
we develop the quantum theory and some of its consequences.

Ignoring for the time being the regularization issue, one can promote the
constraints formally to operator equations if one Picks a factor ordering.
Two factor orderings have been explored: with the triads either to the
right or the left of the connections.

7.4.2 Triads to the right and the Wilson loop

If one orders the triads to the right, the constraints become

ad D 6 8
g = am, (75 |
2 .0

C,=F} (7.59)
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7:2 = eiij(f.b—'_k' (760)

This ordering was first considered by Jacobson and Smolin [134] because
the Gauss law and the diffeomorphism constraint formally (without a
. regularization) generate gauge transformations and diffeomorphisms on
the wavefuctions.

There is a potential problem when one considers the algebra of con-
straints. Remember that it is not a true algebra, but as we discussed,
the commutator of two Hamiltonians has a structure “constant” that de-
pends on one of the canonical variables, the triad. This means that in
this ordering such a “constant” would have to appear to the right of the
resulting commutator, which is not expected. In fact, an explicit calcu-
lation of the formal commutator shows the triads appear to the right.
Therefore, it is not immediate that acting on a solution the commutator
of two Hamiltonians vanishes and it has to be checked explicitly.

The simplest solution to the constraints in this representation is

U[A] = constant. (7.61)

This state is annihilated by all the constraints formally and it is easy to
check that it is also annihilated with simple point-splitting regularizations.
This state is less trivial than one may imagine. It has been explored
in the context of Bianchi models and it has a quite non-trivial form if
transformed into the traditional variables [135].

Jacobson and Smolin set out to find less obvious solutions to the con-
straint equations in this formalism. If one starts by considering the Gauss
law, one would like the wavefunctionals to be invariant under SU (2) gauge
transformations. An example of such functionals is the Wilson loop,

W(A,y) = Tr(Pexpf(ydyaAa(y)). (7.62)

In fact, as we have seen any gauge invariant function of a connection
can be expressed as a combination of Wilson loops. In view of this, one
can consider Wilson loops as an infinite family of wavefunctions in the
connection representation parametrized by a loop ¥,(A4) = W (v, A) that
forms an (overcomplete) basis of solutions to the quantum Gauss law
constraint.

What happens to the diffeomorphism constraint? Evidently Wilson
loops are not solutions. When a diffeomorphism acts on a Wilson loop,
it gives as a result a Wilson loop with the loop displaced by the diffeo-
morphism performed. Therefore they are not annihilated by the diffeo-
morphism constraint and cannot become candidates for physical states of
quantum gravity. In spite of that, they are worth exploring a bit more.
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Remember they form an overcomplete basis in terms of which any physi-
cal state should be expandable (since any physical state has to be gauge
invariant). We will therefore explore what happens when we act witk
the Hamiltonian constraint on them. To perform this calculation we only
need the formula for the action of a triad on a holonomy along an open
path 77 ,

B @U08) = 55570 08) = § 8@~ pUGrU ), (763

where 7¢ are —i1/2/2 times the Pauli matrices.

The reason why we are considering an open path is to avoid ambiguities
when we act with the second derivative. The expression for the action on
the Wilson loop we are interested in is obtained in the limit in which o
and o' coincide. We now act with a second triad,

6 6 o/ _
FAL(@) sAl () ) =

+ j{ dy? }( d28(z — )8(z — U ()P U () TUR). (764
Y 7y

We now take the trace and obtain the action of the Hamiltonian,
H (37)‘1"7[/1] =

Fh(@)e | dv* §, d="b(a ~1)éle = T PUO;)

+ Pt § d8(z - )é(e - ATEUERPUGL)|, (7165
v 7y

where the notation U(v;,) denotes the portion of the loop going from y
to z through the basepoint o.

If the loop has no kinks or intersections, the portion 4¥ shrinks to a
point due to the presence of the Dirac delta functions and the action of
the Hamiltonian can be written as

7'2(55)‘1’7[14]
Ffb(w)fijk {

o |

dy® f dz%6(z — y)é(z — z)’IY(Ti'rjU('y;o))
Y
+ f dy® f d28(z — y)8(z — 2)Te(FrU (L)) =

fdyb f dz*8(z — y)§(z — 2)Tx (67U (7Y,)) | , (7.66)
Y v




