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Within loop quantum gravity we construct a coarse-grained approximation for the Einstein-Maxwell theory
that yields effective Maxwell equations in flat spacetime comprising Planck scale corrections. The correspond-
ing Hamiltonian is defined as the expectation value of the electromagnetic term in the Einstein-Maxwell
Hamiltonian constraint, regularized in the manner of Thiemann, with respect to a would-be semiclassical state.
The resulting energy dispersion relations entail Planck scale corrections to those in flat spacetime. Both the
helicity dependent contribution of Gambini and Pullin and, for a value of a parameter of our approximation,
that of Ellis and co-workers are recovered. The electric-magnetic asymmetry in the regularization procedure
yields nonlinearities only in the magnetic sector which are briefly discussed. Observations of cosmological
gamma ray bursts might eventually lead to the needed accuracy to study some of these quantum gravity effects.
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. INTRODUCTION JE E 2
U—W:C 1_§E—+O E—) , (2)
It has been recently suggested that quantum gravity ef- QG QG

fects might be indeed observaljte-3]. Among the diverse o o

phenomena where these observations could take place Wéich implies a retardation time

can distinguish(see e.g[4,5]) (i) strain noise induced in

gravitational wave detectorsii) neutral kaon systems and E L

(iii ) the energy dependent time of arrival of photons or neu- At~ Ego (©)

trinos from distant sources. Experimental sensitivities in

each of the above situations can be argued to be at the edgve h ianal . ith h
of what is required to reveal quantum gravity phenomena, ith respect to a signal propagating with speetVhen we

. . . 0
namely Planck length sensitivities. In this work we focus oncOnsider cosggologma! distances=10"° ly and an energy
the third possibility. The idea is to look for modified disper- SC@€Eqe=10" GeV in Eq.(3), the corresponding values
r

. . . - e At=10°% s (E~20 MeV) and At=10°s (E
tsr;c;nfcrﬁ:]?tlons of photons with energyand momenturk, of ~0.20 MeV). In order to detect such effects, an experimen-

tal time resolutiondt at least of ordeAt is required. Thus,

short and intense bursts traveling large distances would be

the best candidates. Recent observations pointing towards
, (1)  the possibility of attaining such conditions ar@) some
gamma ray burst€GRB) originate at cosmological distances
(~10% ly) [6] and(ii) sensitivitiesst up to submillisecond
scale have been achieved in GRB observat{@fisnd they

c2k2= g2

le 0| = 2
é:EQG EQG

where¢ is a numerical factor of order one arithg is an are expected to improve in future spatial experim¢8is
energy scale of ordee 10'° GeV, which signals the need of P P P P

considering the quantum character of gravity. The above ex- It is thus timely to investigate whether candidate quantum

pression leads to the following modification of the speed Oigrawty t,heorles_can_account fo_r EQL). Modifications to .
light in vacuum Maxwell’s equations in vacuum, induced by quantum gravity

effects, have been calculated by Gambini and P{i8ih By
considering a semiclassical regime in which the electromag-
netic field is a classical object whereas space is described by

. ) . ,
Email address: jalfaro@fis. puc.cl loop quantum gravity, they obtained the dispersion relations
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where = labels the helicity of the photon andp,  dence in the first case coincides with that found later by Ellis
~10 %2 cm is the Planck length. This modification, being et al. using string theory method21].
helicity dependent, yields parity violation and birefringent In this work we extend our approach to the case of pho-
effects. tons. The corrections obtained within our approximation con-
On the other hand, a string theory approach proposed btain those of9] and, for a given value of a parameter in our
Ellis etal. [10] suggests that a D-brane recoil in the scheme, those dfLO]. In addition, we briefly discuss higher
guantum-gravitational foam induces a distortion in the sur-order nonlinearities arising in the magnetic sector of the ef-
rounding space, which modifies the photon propagatioriective Maxwell Hamiltonian.
properties. For a review of this approach see for example The organization of the paper is as follows. In Sec. Il we
Ref. [11]. The dispersion relations obtained via this secondecall some basic aspects of loop quantum gravity which are
procedure are necessary for our analysis. After reviewing Thiemann’s regu-
larization of the Hamiltonian constraint of the Einstein-
K Maxwell theory in Sec. Ill, we provide a general description
w(k)= k( 1— g_) , (5) of our approximation in Sec. IV. The corrections arising from
Mp the electric and magnetic sectors are calculated in Sec. V.
Once the effective Hamiltonian is obtained, we derive the
with £>0. They arise from parity conserving corrections to modified Maxwell equations together with the corresponding
Maxwell’s equations which lead to a first ordén 1/Mp) dispersion relations in Sec. VI. Section VII contains a brief
helicity independent effect in the dispersion relations that igtnalysis of the non-linear effects arising from the magnetic
linear in the photon energy. No birefringent effects appear a$ector. An outline of redshift effects on cosmological photon
this order. In this approach, the redshifted difference in thdime delays is given in Sec. VIII. Finally, Sec. IX contains a
time arrival of two photons with present-day enerdigsand ~ discussion of the results.
E, has been calculated. For the BATSE data, when the red-
shifts z of the GRB are known, a small subset of coincident
photon pulses corresponding to channéR@-50 ke\f and Il. LOOP QUANTUM GRAVITY
channel 3100-300 keV are fitted and\t is calculated10].

C ; : . In this section we summarize the main ingredients defin-
No significant effect in the data available is found._ On theing this approach and also denominated quantum geometry

52]. Among the main results along this approach one finds:

. . _2 .
having a short tlm(.e_s_tructure on scalgio s. Were th's. (i) well defined geometric operators possessing a discrete
the case, the sensitivity of the analysis would be greatly im-

i . . . 'spectrum, thus evidencing discreteness of spagg (ii) a
proved. Alternative studies based upon effective perturbatlv?h- - f lack hol
quantum gravity[12], open system techniqueid3] and icroscopic account for black hole entrof#3] and, more

; . recently, hints on quantum avoidance of a would-be classical
quantum light cone fluctuatiorjd4] have been performed. ecently, hints on quantum avoidance of a would-be classica

. . . ,_cosmological singularity24]. (For a review on these topics
The study of cosmological neutrinos could also prowdeSee for egxample ?Qe[ZS:][) - ( P
an excellent arena to probe quantum gravity induced propa- To begin with it is assumed that the spacetime manifdld

gation effects because space is practically transparent tr?as topologyX X R, with S a Riemannian 3-manifold. Here
them, even at very high energies. In fact, the fireball modela co-triade’ is defilned witha.b ¢ beina spatial t.ensor
which is one of the most popular models of GRB, predicts. a ' PSR gsp

the generation of T6—10'° eV neutrino bursts(NB) indices and,j k, ... beingsu(2) indic?asi. Thus the corre-
[15,16. The planned Neutrino Burster ExperimeiituBE) S_PO”d'i”Q thre_e-metrlc is given ey, = ea?b; In a(_jd|t|pn, a
will measure the flux of ultrahigh energy neutrings10  field K; is defined _byKab=sgr[det(eJC)]Kaeb, which is re-
TeV) over a~1 kn? effective area, in coincidence with sat- lated to the gxtr|n5|c curvatute,, of 2.A (l:)anonlcal pair for
ellite measured GRB'§17]. It is expected to detect20 the gravitational phase space iKyEj/«), where E?
events per year, according to the fireball model. Other rel= 3 €**ejjxehet and« is Newton’s constant. It turns out that
evant experiment aimed at observing ultra high energy cossuch a canonical pair yields a complicated form for the
mic rays, including neutrinos, is the OWL-Airwatch project Hamiltonian constraint of general relativity. A convenient ca-
which expects to see-3x 10°~ 1% cosmic ray events with nonical pair, making this constraint polynomial, was intro-
energies>107° eV [18,19. Notably, this experiment is able duced by Ashteka26]. Nevertheless, two severe difficulties
to investigate time correlations among high energy neutrino0 proceed with the quantization remain€d:the implemen-
and gamma-rays. Hence in the foreseeable future, it might bi@tion of a diffeomorphism covariant regularization for the
possible to study quantum gravity effects on observed astrglensity-weight two Hamiltonian constraint hereby obtained
physical neutrinos and photons. At the least, such observand (i) the extension to non-compact groups of the diffeo-
tions could be used to restrict quantum gravity theories.  morphism covariant techniques already developed for gauge
Motivated by these interesting possibilities, we have caltheories with compact group&7]. In fact, the Ashtekar vari-
culated the quantum gravity induced modifications to neuables EAL=T",—iK}, iE¥ ) [26], with T, being the tor-
trino propagation in20], within the loop quantum gravity sion free connection compatible wit,, are complex val-
framework. We obtained corrections to the velocity of propa-ued. Namely the gauge group iSL(2,C), which is
gation which are proportional tk(p) together with helicity = noncompact.
dependent corrections of ordeklf)2. The energy depen- Some proposals to come to terms with difficulily were:
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to consider real connection variablE28], to implement a Diffeomorphism constraints are well defined operators on
Wick transform[29] and to define tractable reality con- H,,Yyielding no anomalies. There exists a dense subsfpace
straints[30]. All of these left open(i). Thiemann subse- of H,,, so that its topological duab’ includes a complete
quently proposed to solveé) and (ii) by incorporating real set of solutions to the diffeomorphism constraint. They are
connection variables while keeping the density weight oneharacterized by generalized kndts. diffeomorphism in-
character of the Hamiltonian constraint. He further providedvariant classes of graphsBesides, a diffeomorphism invari-

a quantum version of the theory in the pure gravity case, aant Hilbert space is obtained for such states with an inner
well as in those cases including the coupling of matter tgproduct that represents real observables by self-adjoint op-
gravity [31]. His approach is next reviewed, since we rely erators.

upon it for our analysis of the electromagnetic case. Furthermore 4, admits a basis in terms of the so called

Let us start with the following canonical pairs for the spin network states. A spin network is a triple,f, 5) con-

Einstein-Maxwell system:A;,=T',+ K} ,E{/ ) for the grav-  sisting of a graphe, acoloring defined by a set of irreducible

ity sector and A,,E*/Q?) for the electromagnetic sector. representationsyq, . .. J,,) of SU(2), with J; correspond-

The latter has gauge group(1) andQ is the electromag- ing to the edge; of « and a set of contractor®q, . . . ,py).

netic coupling constant, related to the dimensionless finﬁere, a Contractan is just an intertwining operator from the

structure constant bygy=Q?%. The corresponding contri- tensor product of representations of the incoming edges at

butions to the Hamiltonian constraint are the vertexv, to the tensor product of representations of the
outgoing edges. Compactness ®U(2) makes the vector

3 space of all possible contractopg finite, for a given] and
Heinsteid N1 = Ed XNK\/ﬁtr(z[Ka'Kb]_Fab) vertex v,. An additional non-degeneracy condition is in-
cluded:j, is not trivial for any edges and « is taken to be
X[Ea,Ep]), (6) minimal (i.e. any othera’, occupying the same points ¥

asa, can always be built by subdividing the edgesagfbut
not the other way around
HMaxweII[N]:j d3xN Gab [E2EP+ B2BP]. . A spin network state is £~ cyIin_dricaI funct.io_n(a func-
3 2Q?%Jdetq — — — — tion that depends on the connection at the finite number of
edges of a graphon A/G, constructed from a spin network

HereF,, is the curvature oA, andgb is the magnetic field

of theU(1) connectiorA. The actual classical configuration -

space is the spacd/G of (both connections modulo their Tajd A=l yi(he (A)@i1p], (@)

gauge transformations. Indeed, this is what occurs in gauge

theories where the fundamental field is a connection. This _

completes the classical description of the phase space of ther all Ae A, which includes distributional besides smooth

theory. connectionshei(A) is an element oSU(2) associated with
The quantum arena is given as follo\&7]. As in any  the edges; and “” stands for contracting, at each vertex

quantum field theory, because of the infinite number of deof «, the upper indices of the matrices corresponding to all

grees of freedom, an enlargement of the classical configurahe incoming edges and the lower indices of the matrices

tion space is required. This is far from trivial since the mea-assigned to the outgoing edges, with all the indicep,af

sures defining the scalar product, which are _req_uire_d to Givenapaira,f the vector space generated by 5, for
provide a Hilbert space, get concentrated on distributional o

fields and hence lie outside the classical configuration spacg.” possible contractors associated witly in the way stated

The key idea to build up such an enlargement is to mak®reviously, is denoted by 5. Then

Wilson loop variablegtraces of parallel transport operators

well defined. The resulting spac4/G can be thought of as -

the limit of configuration spaces of lattice gauge theories for Hau—= @a,ngdjx- 8

all possiblefloating (i.e. not necessarily rectangulaattices.

Hence, geometric structures on lattice configuration space .

are used to implement a geometric structure.4ig;. This ~ Wherea,j run over all the pairs consisting of minimal graphs

enables to define a background independent calculus on @nd irreducible nontrivial representation labelings. The sum

which, in turn, leads to the construction of the relevant meais orthogonal and the spac@sg/, are finite dimensional. It

sures, the Hilbert space and the regulated operators. suffices to define an orthonormal basis within each of them.
In line with the Dirac procedure for constrained systems, Note that the aforementioned construction?ef,, holds

one first ignores the constraints and constructs an auxiliargctually for any diffeomorphism covariant theory of connec-

Hilbert spacel,,, So that the set of elementary real func- tions with compact gauge group. The choiceSd(2) cor-

tions on the full phase space is represented by self-adjointsponds to the case of gravity described in terms of real

operators inH,,,. It turns out thatH,, is justL?(A/G,uo),  connection variables. So the generalization we are interested

with uq being a suitable measure that implements the selfin to include both gravity and the electromagnetic field is

adjointness property. H=H>XDoHID  The spin network states for the com-
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states, the present approach yields results relying only on the

following assumptions(i) peakedness of the statés) well

To extract physical information we will further need a def!ned expectgnon valugs a’““i” existence of a coarse-
grained expansion involving ratios of the relevant scales of

state describing a flat continuous spateat scales much ) -
larger than the Planck length, but not necessarily so at dist-he problem: the Planck lenglip, the characteristic length

tances comparable to Planck length itself. States of this kiné and the_ electromagnetic wavelength States _fulﬁllmg
were introduced under the name of we&S@] for pure grav- such requirements are referred tovesuld-be semiclassical
ity. Flat weave stateBV), having a characteristic lengtb, statesin the sequel.

were first constructed by considering collections of Planck
scale circles randomly oriented. If one probes distarttes
> [ the continuous flat classical geometry is regained, while
for distancesd< £ the quantum loop structure of space is
manifest. In other words, one expects a behavior of the type Thiemann has put forward a consistent regularization pro-
(W|Gap| W) = 84+ O(Ip/L). It was soon realized that such cedure tq (_1ef|ne the quantum Hamlltonl_an constraint of gen-
states could not yield a nontrivial volume due to the lack oferal relativity on¢,,,, both for pure gravity and matter cou-
self intersectiong33]. Couples of circles, intersecting at a Plings[31]. The basis of his proposal is the incorporation of
point, were also considered as specific models of weaves f#€ volume operator as a convenient regulator, since its ac-
overcome this defedt34]. With the recent advances on the tion upon spin network states is finite. We use his regulariza-
kinematical Hilbert spacé{,, it became clear that all pro- tion for the Einstein-Maxwell theory, which naturally allows
posed weaves were afflicted by two undesirable featureghe semiclassical treatment here pursued.

First, they are defined to be peaked at a spedifat or Consider the electric part of Eq(6). The identity
curved metric, but not at a connection. This is in contrast1/x{Al,V}=2 sgn(detl)e!, allows to rewrite it as

with standard semiclassical states in terms of coherent states,

for example. Second, the known weave states do not belong

either toH,,, Or to a dense subspace of[85]. It may be

pound system are denoted BY, [; 5 c,q[AA] with E,(i
labeling theU(1) coloring and contractors, respectively.

Ill. THE REGULARIZATION

possible to come to terms with such difficulties by defining 1 1 [AL(x),V}
coherent states for diffeomorphism covariant gauge theories HE[N]= lim — | d3xN(x) ;Ea(x)
[36] or by implementing a genuine statistical geomé8¥], 2k%Q? o €8Js 2(detq)*(x)—

for instance. Both approaches have recently achieved sub- ,
stantial progress. 5 {As(Y). V)
Nonetheless, in order to extract physics, there is the alter- X Ld YX(X,Y) mﬁ (y),
native possibility of using just the main features that semi-
classical states should have, namely peakedness on both ge-
ometry and connection together with the property that they
yield well defined expectation values of physical operators.
An advantage of this alternative is that one may elucidate 1 . i
some physical consequences before the full fledged semiclas- = 2202 iILﬂO Ld3x NOX){AZ(X), YV (X, €)}E*(X)
sical analysis is settled down. Indeed, such an alternative
may be considered as complementary, in the sense of hinting _
at possible features of semiclassical states which could be Xf d3yXE(x,y){A'b(y),\/V(y,e)}Eb(y), 9
further elaborated. After its completion, a rigorous semiclas- 2
sical treatment should tell us whether the results arising from
this alternative turn out to hold or not. The weakness of the
treatment resides on its generality, since no detailed featurddith x.(x,y) =II3_; 6(e/2—|x*—y?|) being the characteris-
of the would-be semiclassical states are used—as opposdit; function of a cube with volumes® centered atx and
say, to the original weave states—and hence a set of numenA(x, €) := [d3y x(x,y) Vdetq(y) being the volume of the
cal coefficients cannot be calculated. Evaluating them will bebox as determined by,,. Remarkably alle dependence
the task of the rigorous semiclassical treatment. resides here. This is possible dueHguei having density
On top of the purely gravitational semiclassical states, aveight one and it is achieved at the price of explicitly break-
generalization is required to include matter fields. For ouiing diffeomorphism covariance. This is harmless as far as
analysis it will just suffice to exploit the same aspects ofdiffeomorphism covariance is regained once the regulator is
peakedness and well defined expectation values, extended d@moved. This is the case indef&l]. Next, let3, be trian-
include the case of the electromagnetic field. The semiclasyulated into tetrahedrA. Hence, the integral ovet in Eq.
sical states here considered will describe flat space and @) is just a sum over the contributions of each tetrahedron
smooth electromagnetic field living in it. Such a state is de-p
noted by|W,I§,l§) and has a characteristic lengthSince no The form of Eq.(9) suggests to focus upon the term inside
detailed information is used on how the semiclassical state isach integral. As we will see below, this indeed simplifies the
constructed in terms of, say, a graph, as opposed to weawamnalysis. Let
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@i[f]:=f d3xf(x)ga(x){A‘a(x),\/V(x,e)}=§ Ld3x f(X) EB){AL(X),VV(x,€)}

=§ Lf(x)e(x)/\{Ai(x),\/V(x,e)},

O'f]1=:>, O[f]. (10)

A

Also let us use the dual OF: eyci=*Epc=epcqEY. For a two-surfaceS, [se=3[sE%epqdX*A\dx =3[ snyE%pdx”
/\dx°=fSEdndE, ‘e being the volume two-form. Hencg&(S):=fse is the flux of E* throughS. Recalling that

tr(rihSL{hs_l,\/V(x,e)})=tr< 7 Tmfldt s BO{ADN (s M), VWX, €) |+ - -
L 0
5im ! - la me—1
—— % [ s AR ) Ve +

1 .
~ S SDIALS 0D, Wik} (11)

and that, for small tetrahedré),E(FJK)~%eabcs?(A)sﬁ(A)Ea, it follows

) 1 )
f(0) €M REF (7 hs (4){Ns () WV (D), 1= = 7 F(0) € eansH(A)SHA)ESI(A){Ay(s 1 (0).\V(x,€)}

:‘%f(")vO'(A)E‘”‘{Az(SF 1(0)),\W(x,€)}

=— %f f e/ \{A(x),VV(x,¢€)}. (12)
A
We have then
4 2 .
04[f]=-— af(v)eJKL@E(FJK)tr( 7hg (a){hs (), W@ (A),0)}), (13

where we are denoting bsg(A),sk(A),s (A) the edges of the tetrahedtahavingv as common vertex. As statel;i is a

surface parallel to the face determineddyyA),sk(A) which is transverse te (A).
Hence

1 . i ri
HE[N]= 2w Im AEA OL[N1®",[x].

Next one replaceE? andV(x,€) by its quantum counterparts and adapts the triangulation to the graptresponding to
the state acted upon, in such a way that at each vertek v and triplet of edge®,e’,e” a tetrahedron is defined with
basepoint at the vertex(A)=v and segments;(A), | =1,2,3, corresponding ts(e),s(e’),s(e"), respectively{31]. Here it
is assumed that"’ e, s?s’s%=0. The arcs connecting the end pointssgfA) ands;(A) are denoted,;(A), so that a loop
a,J::s,oansjl can be formed. Besides, the face spanned by the segéafsands;(A) is calledF,;.

The action of the regulated operator hereby obtained gets concentrated in the vertices of the graph, as expected from the
explicit appearance of the volume operator. In successive steps we replace
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N 21 A A =
OL[NT=— 57 = N@(A) e DEF ytr(7hg ([N () VV(0(4),€)]) (14)
o 21 A : _ =
O [x]= = 37 7 X (A)w(A))MNPREF (7 hy anhg (1) NV @(A).€)]) (15
to obtain
2 8 \2 i . _ R
HAINI =~ 125 02 . N<v>(§ %) v(A):vE(Ar):v tr(7'hs, [ N5 () VY@ (A),)) ™K DE(F )

Xtr(heyanhe s VW @A), 1) "NPRE(FY, ). (16)

The valencen(v) of the vertexv yields the contributiorE(v)=n(v)[n(v)—1][n(v)—2]/3! of the adapted triangulation at
each vertex ofy. Also, ase—0, v(A)=v(A’) are the only contributions left over. The final expression for the electric piece
of the Hamiltonian constraint given if81] is obtained by the explicit action of this operator on cylindrical functions. We
refrain from doing that here because the form of the operdi®ris better suited for our approximation given below.

As for the magnetic part ofl yawen We proceed similarly. Since

he=e /S OAD) = | | f 1dtéa(t)Aa(s(t))+ e
1-i | dis(nA
1 1
(=)= [ AU OAL) =i [ BRaS+ = —i0P(F o+ - =i eI DSUDB(A)
- 0 - Fok™ -

(17

and

f(v)eJKL(EaJK— 1)tr(TihSL(A){hs_L%A) V(X e D~i %GJKLEabCSgSCKSEf(U)Ea(l)){Aid(U),\/m}
1 .
:iEUOI(SJvSK;SL)(ng(U)Ea(U){AId(v),\/V(X,f)}

=i 00l(A) (o) B0 AL (0), \VTX,e)}

=i %JAf(x)B'(x)/\{Ai(x),vV(x,e)}, (18
we can write
HE[N]= ! lim Y, EL[NIE [ x] (19)
2k2Q%oan’ . 4 ’
where
. 2
Eu[f1=i gy f0) e, — Ditr(rihg (yihg Ta) V(X )}, (20)

Contrasting=|, with ©!, we notice(i) different numerical factors(2/3!) for theformer while — (2/3!) for thelatter and
(ii) to leading order, the magnetic flux““(h, —1) has as its counterpart the electric fled-®F(F ;).

The quantum version of the above operators is obtained using
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.. 21 =
EL[f]:=i 3 ﬁf(u)sJKL(h - 1)tr(rihSL(A)[hs_L%A) V(X €)]).

__¥JK(A)

Finally, one gets the regularized magnetic piece of the Hamiltonian constrdi@tjas

1 2 8 \? -
HEN]=+ ———= > N(v)( ) > EMMr(nhg wlhs by VD (he )= 1)

ﬁ22K2Q2 veV(y) ? E(U) v(A)=v(A")=v
X MNP, N (s VW D) (g )= 1) (21)

The electric and magnetic piecestdf;.,wen Can be treated in a unified manner in terms of fluxes. To see this recall that for
Abelian gauge fields

i @A _i¢B
N a)=€ 1 () A A 2((0) = o195 (F ).

where(i)B(FJK) is the flux of the magnetic field through the surfdeg .
Then the full electromagnetic Hamiltonian is

Hyvaswell N1= =+

2 8 \2 - _ -
N“’)(aav)) > trhg sty VD Ty oy VD)

722 Kk2Q? vEV(y) v(A)=v(A')=0

X eMKLEMNPL (@ 19°%(Fa) — 1) (e 19°CFiun) — 1) — HE(F 1, ) DE(Fiyn) - 22)

Let us emphasize the structure of the above regularizedponding normalization of the Wilson loop, we conclude that
included in the SU(2) trace. The basic entities that have[#]=M L, which in fact leads tavg,y = Q% to be the

regularize the electromagnetic part are the correspondingimensionless fine-structure constant, as defined by Thi-
fluxes: one is associated with the magnetic field, WhiChemann[31].
enters through a product of exponential flux factors, while
the other is related to the electric field, entering in a bilinear
product of fluxes. Thus, in the quadratic field approxima-
tion the effective Hamiltonian preserves duality invariance.
Nevertheless, the magnetic sector includes higher powers in ) o ] ]
the field expansion. Hence, nonlinearities in the field equa- 1he effective Maxwell Hamiltonian is defined by consid-

tions, inducing duality violations, arise only via the magneticering the expectation value of thé(1) gauge sector of the

IV. GENERAL STRUCTURE OF THE CALCULATION

field. ~quantum Hamiltonian constraint with respect|W,E,§).
Before proceeding let us recall that, according to Thi-Inside this expectation value operators are expanded around
emann’s conventions, in flat space we must have all relevant vertices of the triangulation in powers of the

segments;(A), which have lengths of ordég . In this way,
1 a systematic approximation is given involving the scdles
H vaswell = f d3x—— (E?E2+B2B?), (23)  <L<N\, where\ is the de Broglie wavelength of the photon.
2%~ Our corrections to the Maxwell Hamiltonian arise from such
an approximation.
whereQ is the electromagnetic coupling constant. The elec- e do the full calculation of the magnetic sector, includ-
tromagnetic potential is denoted By, and the corresponding  jng the non-linear contributions to ordis. Next, to obtain
electromagnetic tensor Hy,,. The units are such that the ¢ glectric sector, it is enough to consider only the quadratic
gravitational connectio\, has dimensions of I/ (inverse  terms in the magnetic Hamiltonian and make the replace-
length and the Newton'’s constart has dimensions df/M mentB—E.
(length over magsAlso we have tha{t|l§|/Q2]= M/L3. Tak- In the case of the magnetic sector, the general form of the
ing the dimensions o, to be 1L, according to the corre- expectation value igrecalling that 14°=7%2/17)

103509-7



ALFARO, MORALES-TEZOTL, AND URRUTIA PHYSICAL REVIEW D 65 103509

W TS >(2—8 )2 > (WEBIF,q®)...Fpq)
[ J— v _— , B, v) ... 1%
2Q% 1% véuly 3LE(W)] ,a)=va’)=v B Pofin

X3 PF o) T, PIPI P s(A),s(A))|W,E,B). (24
To proceed with the approximation we think of space as made up of boxes, each centered at a givérapodimtith

volume £3~d3x. Each box contains a large number of vertices of the semiclassical gtatép), but is considered as

infinitesimal in the scale where the space can be regarded as continuous. Also, we assume that the magnetic operators are

slowly varying inside the boxlg<<\), in such a way that for all the vertices inside the box one can write

(W.EB|...Fap(v) ... |W,E,B)=peanB(X). (25

HereF ;5= daAr— dpAas Ba(x) is the classical magnetic field at the center of the box arisl a dimensionless constant to be
determined in such a way that we recover the standard classical (83ulh the zeroth order approximation. In the next
section we show that
E 1+Y
. (_) | (26

lp

with Y being a parameter defining the leading order contribution of the gravitational connection to the expectation value.
Applying to Eq.(24) the procedure just described leads to

B_ a a 2 ’ 1w
HO= 3 NR)Fpq,(R) - F g, (%) . (0 P (%) 3 13| 37 T
v =v =v P
oo 1. .
X(W,E,B]| 3la,. 0 PaPid1--Pniny  s(A),S(A"))|W,E,B)
P " -
(27)
=2 NGOF (80 - P q (R . FF o)X T, POt i)
HB:f d3x N(X %) F F o, (X) p a, (X)((?al _aamE Pq(i))Tal...ampqplqll”pnqn()_())'
PAPLUL - - - Pryg ;
The box-averaged tensﬁral L, S (X), defined by
R 2 8 2 1 Mr‘l+l
Ta . pqplql---pnqn(x): 2 <_| ) 2 — 5
1oefm veBox |3 E(W)) 0y San=e | 2Q% I}
R R .
X(W,E,BI5T PaPLL - Prfingy ,5(A),S(A"))|W,E, B), (28)
ii|3 ap...q
P " -

is constructed from flat space tensors likg,, €, In this  respectively. In our previous wofl20] we have se¥ =0 on

way we are demanding covariance under rotations at ththe basis that the coarse graining approximation, defined by

scaleL. the scaleL, does not allow for the connection to be probed
When averaging inside each box, the scaling of the expetelow 1/£. On the other hand, by adopting naive kinematical

tation values of the gravitational operators is estimated accoherent states for representing semiclassical states, one

cording to would setY =1 for two reasons(i) to guarantee that Eq.
v (29) yields just zero in the limiti—0, in agreement with a

(W,E,gl Ay .|W,I§,I§>~ N l l_P L flat connection andii) because such an scaling would satu-
—— —— L\ L rate the Heisenberg uncertainty relatif88]. Nonetheless,

(29) physical semiclassical states may imply a leading order con-
. . - 3 tribution with’Y' # 0,1, thus we choose to considéras a free
(WEB[...\V, ... WEB)~...13%. ., (300 parameter here.
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In order to make the transition to the electric sector it is convenient to express the effective Hamilt®miateths of the
magnetic field, which amounts to a redefinition of the expres&adhin the form

He= f A N(X)B,(X) ... By (N (... B ()R, , " "(%). (31)
The relation between the box-averaged tengoed T is

7\ — P19 Pnd va
-I—al...ampqplql PnQn(X)_qurE ' 1r1 co.€ " nrnRal...a f1--+In(x). (32

By expanding Eq(22) to different powers irs{(A) one  with A%=(v,—v;)® The infinite series in parentheses is
can systematically determine all possible contributions to the
effective electromagnetic Hamiltonian at a given ordérin 1 1 1 e*—1

=14+ —x+ —x2+—x3 =
F(x) 1+2!x+3!x Xt SE (35

V. THE CALCULATION

In this section we provide the details of the calculation ofY/€'ding

the Maxwell effective Hamiltonian up to ordép. Let us )

start with the magnetic sector. jvaa(i)anzF(Aar?a)(AaAa(Jl))- (36)
The two main ingredients in E422) which contribute to iy -

the expansion in powers of the segmesf) are (i) the

trace factors involving the gravitational operators &ifdthe | the following we employ the notatiod®V,= A - V. Using

magnetic flux through each surfag;(4). the above result in the three integrals appearing in(B8).
First we calculate the flux of the magnetic field throughang after some algebra, we obtain

the surfacd-|; . A convenient way to do this is via the Stokes

theorem DB(F 1) =F1(S,- V.85 V)38 02A0(5) — dpAa(0)]
<I>B(Fu)=fF Ban%d’x= fF (VX A),n?d®x =F1(§-V,8;-V)s3s e, B(v), (37)
N 13 o
_ where the gradient acts upon the coordinates.dfhe func-
=J dt s%(t)Ay(t) tion Fy is
ap
G+§ G+s, Fl(x,y):y(e*—l)—x(ey—l)
= A dx2+ A dx® Xy(y—X)
7] - o+
5 © 1 Xn_yn
+ f AL, (33 __n; (n+1)! x—y (39
v+SyT

Here the notation i§, ={s?} and analogously fof. We are  Let us emphasize that,(x,y) is just a power series in the
using straight line trajectories joining the vertices of the Cor_vgrlablesx andy. Expanding to fourth order in the segments
responding triangle. s/ we obtain

The basic building block in Eq33) is

1 1
®B(F =1+ §(s,°+ %) de+ = (sSsU+ ¢S

12

i 1
sza(i)an=f Aalv1+t(02=01) (02— v1)dt
A .

v1

. +5589) dcdgt . .. %sf‘sﬁ’eabcgc(v). (39)
=f Ay(v;+t A)A%dt
° Notice that the combination
=1+ iAbab 1
2! = sPsheanc=ANe (40)

2

1
—_(Aby 2 a
+3! (A%0p)"+ - ')A Aa(v), (349 is just the oriented area of the triangle with vertexand
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sidess;, s5, joining at this vertex, having valud and unit A
normal vectom,. M1sk(a)=SkSi 57 b
In order to make the bookkeeping clear, let us denot& by
the combination arising from E¢22) whose expectation i 1
. ab ! a.b.c d
value we are calculating Majk(a)*=SkSi 37 (X Xk) Fap— SkS3SkS) gFanFca:

i
1 1. . JKL MNP M3JK(A)::S§SS’4T(X§+XJXK+X§)Eab_S§SSSCKS\(]j
=T oo aWViLaWipar€ € :
2Q2 14
x (e 198(F30 — 1) (e 19BF _ 1), 41) X| 231 X+t Xk FapFea
1
Here + 1 grFan(Xk X)) Feq
— sishstsists) i—F FedF (44)
R B _ K=J2K2J 2K J4‘3!7abicdief!
Wi La=tr(7ihg a)[hs {4y, YV, ). (42)

according to the previous analysis. We are using the notation
X =§,-V=sld,. Let us remark that, contrary to the electric
Some remarks are in order before we proceed further. Outase, the magnetic contribution will incorporate non-linear
final goal is to obtain a power expansion of H4l) up to  terms due to the expansion of the exponential in powers of
orderlé. Since, as we will show in the sequel, the normal-B. This implies that the exact duality symmetry of Maxwell
ization factor converting magnetic operators inside the semiequations in vacuum will be lost due to quantum gravity
classical expectation value into classical fields outside th&orrections.
expectation value is proportional tbef ~*, we have to take Next let us consider the gravitational contributions to Eq.
some care regarding the expansion of the given quantities if?2). arising from Eq.(42), which we expand as
powers ofs{*. A detailed power counting analysis in the ex-

pression(41) shows that the terrw; L(a) IN EQ.(42) is to be
expanded up to ordes®, while each magnetic factor with

(e 1*°(Fa0 — 1) is required to have the following properties:

the terms proportional t& are to be expanded up to order

s*, those proportional t&2 up to orders® and finally those

proportional toF3 up to orders®. This will lead to the fol-

lowing contributions inT: the terms proportional t&? in-

clude the expansion up to ordgt, the terms proportional to

F2 include the expansion up to ordst and the terms pro-

portional toF* include the expansion up to ordst’. The  The scaling properties of the above gravitational operators

final result is that the semiclassical expectation value of théinder the semiclassical expectation value are

magnetic contributioi will be proportional tol3, which is

incorporated in the volume element, times corrections up to I_P) m

orderl3. L)

Let us now continue with the calculation of the contribu- (47)

tion to Eq. (41) due to the magnetic flux by writing the

expansion Let us emphasize that t_he res() is a consequence (_)f the
scaling of the expectation value of the connection given by
Eq. (29).

. = (=) For the productv; | y\W; p, We need only

(e kD —1)= 3 (®B(F )"

" _aa a.b a.b.c 4
Wi La= S{Wia+ S S Wiap T S{ S| S| Wiapc T O(S"W), (45)

1 1 =
WiaZE[Aiav\/v]v Wiabzgfijk[Ajai[Akbi\/V]]-

1 ~
Wiabc= — ZS[Ajaa[Ajb v[Aic:\/;]]]- (46)

3/2
= = > P
<WvE’E|---Wial---an---|W’E’E>—>F

—1 n! ~ ~
" Wi L aWipar=UzptUgpt Uy ptO(sW?) (49
=M13ka) T Magka) T Magkca) with
+O(s'F3) (43)
- _ ~ard
UzLp=S[Sp WiaWiq ,
where UsLp=S{Sp Sp WiaWige + SS.'Sp WiapWid
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_ sanrdarearf
UsLp=S[Sp Sp Sp WiaWigef e 1 ( 2 8 )2
o 2\ 31
+ SESI S Sp WighWige vEBox 2Q%\ 3! E(v)
a.b.crd 2
+ 88 SE SHWiap Wig - (49 D> M~ 1, JKL_MNP
76 ab6 UU6 €
v(A)=v(A)=0 41p
Here all thew’s are evaluated at a common vertex A bCrt ot rd . 5 o
At this level it is convenient to state the res(ito sum X sgS3S S uS' NS R(W, E, Blw;cwig|W, E, B).

overlL) (56)

In order to simplify the product of vectos§ (s'f,) appear-
ing in the sequel and also to exhibit the internal symmetry
properties of the quantities involved, it is convenient to keep
in mind the relations

1 =
SESPWiap= gSESEEijk[Aja ,[Akb,\/;]]

1 ~ ~ KJlLea oboC abc — a
:_SﬁSEEijk(AjaAkb\/;_Aja\/;Akb LR SISt =del(s) €S,  dets)=delsy),

8
- - €Pe,,q=255 . (57)
_Akb\/;AjaJr \/;AkbAja): . o _
In this way, Eq.(56) can be rewriten in the simpler form
=0, (50 1 ( 2 8 )2
R rlr2: = _=
0 vEBox 2 Q21 3! E(v)
which holds due to symmetry properties. This leads to
2
.1
X M—7de‘(s)de(s’)<W,E,B|§
Us p=0. (51 v(A)=v(a)=v lp -
. . . < {w;, w2 W,E,B). (58)
After taking the expectation value the terms contributing to -
orderl? in Eq. (41) read The above equation implies
3 213 (15\2Y 1
T=To+T1+To+O(lp) (52) R 2= - HePp|P Sle=——5"1"2 (59
0 217 Pa2lp 2 ’
2Q° 1 L 2Q
11 0 wne , which reproduces the zeroth-order magnetic contribution
To=— 207 aee (U2 pM13kM 1 (53)  (23) with the choice
=]
L 1+Y
m= r) (60)
T LT ey [M13kMoun+MascM iy ’
=—— ;€ € ,
! 2Q2 Iﬁ; 2LPE T 2N 2T IMN Now let us consider the correction arising fram, which
(54) leads to the following contribution in the effective Hamil-
tonian
1 1 1 (2 8 )2
To=— — 5 € " Uy p(M15Mjyn HE = —(— ) 13
2Q%13 1 680 v SBox 2Q2\3! E(v) P
+MakM Nt MaskMoyn) +UapM 15xM jyn]- 1 JKL MNPC1da b ..
(55 X > LT eetisisy sgsy(W.E,B|
v(A)=v(A")=v P
. I i i
Now we are ready to calculate the different contributions X{Wic \Wig}=Fap| 8'%S' $ =5 (Xiy + X0 F
to the magnetic sector of the Hamiltoni&®2), which we 0TI BB T N Mg M AN va
parametrize in terms of the tens&, , "' intro- 1
©fm 10t "o - B
duced in Eq(32. =SS MS'NS m gFuqFrt [[W.E,B). (61)
Recalling that we are only interested in the pieces which
are symmetric in the indices, r,, ... r,, the contribution In the above expression we have interchanged the summa-
Ty produces tions over A and A’ in order to rewrite w;.w;q as
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3{wic,Wiq}. We further separate the above contribution to 1 (2 8 \2 1
HZ, in two parts: (i) the first contains two powers in the — H5,= —2(5 E( )> 3 > -=
magnetic field and leads #®;, "+ and (i) the second one veVly) 2Q7 19 B v(@d)=v(a)=v lp

contains three powers in the magnetic field and leads to the % GJKLGMNP<W E §|U M 55M by W E |§>
completely symmetric tensaR;;'1"2"3. Since we have no o 2R AP 20K M = 2
symmetric tensor with three indices at our disposal, the latter (66)
contribution is zero. Thus we concentrate in the first one

1 (2 8 )2 1

DA L R

R A= >, L(E )2 vVl 2Q2 3V E()] T Svian=0 1§

N vEBx 2Q%) 3! E(v IKL_MNP/\W E B / z 2
X €He"N(W,E,B|U 41 pM 15kM 1yn| W, E, B).
2
6
X L EJKL MNPScslgdSES?S 9 (67)

o(A)=o(a")=v 61p
Let us start discussing 51| After some algebra we obtain

X S,Msriﬂlerlabe vq<W1E!§|{WiC ,Wid}|WE,§>-
2
(62) 5 1 ( 2 8 ) 5
veV(y) 2Q2 3! E(U)

Hz1=
KL MNP

> 1

P 7
v(d)=v(a)=v Ip

In this case the internal symmetry properties are hard to
make explicit. In order to determine whether or not the above
contribution is zero we contract E¢62) with the only three

’
SLSP SN SMq<W E B|W|aW|d

index tensor at our disposad®1''1. The result is X SKSJ4| (xJerJxKerK)Frt SKSySKSY
) 5 1 1
R agrr— _ 1 3 8 ,LL_ 4 3|(XJ+XK)FI‘t 4 3| I’t(XK+XJ)FUv
ealrrl 11 2\ 31 E 7
veBox 2 Q LE(v) v(A)=v(A")=v 61p

i
Lo .o I ot QU ol aWaZ
Xde(S)EMNP<W,E,E|{Wic,Wid}|WaE,E> ~SkSsSkSi5kSiz 3y 3| itFu ) xq|WEB> (68)

X(sp's' s Asam+ sps' ks hsqm)- (63
which naturally splits into the following pieces:

Inside the expectation value, upper spatial indices have been 1 /2 812 i
lowered by the flat metric. By symmetry requirements, the Hg - _(_ _) 3 2 _
second term in parentheses in E8@) yields zero. Neverthe- Y&y 2Q2\3NEW)) P Sy 1T
less, the first one gives the result ..

X e?KLeMNPgag ds Xs! AW, E, B|wj,Wiq

2 |3 [ -
R, 1M1= ~ |7|_P I_P e (64) X SrKSSE(Xg—FXJXK_'—Xﬁ)Frt)qulw’EvB>’
11 8Q2||73 P,Cz L y .
(69)
which produces a parity-violating term in the magnetic sec- 1 (2 P
tor of the effective Hamiltonian. HE = >, _(_ ) 13
The next contribution arises froff, and can be separated veV(y) 2Q?\3! E(v
into three pieces: _
[
% 2 _7eJKLEMNPS:ES'deS’r\‘xS,r\Aq
) v(d)=v(a")=0 Ip
HE — E 1 /(2 8 2 .
A, &y 202 31 E(v)] P X(W,E,B|w;aWig
L ki mnepy £ B X | sksysks) Tar Xt Xk FreFu,
x> — = LMW, E, B Uy p 4.3!
v(A)=v(A)=0 Ip - L
X (My3cMayn+MaM :’LMN)|WIE1§>1 (65) * 4. 3!E”(XK+XJ)E“” )qu|W,E,B>, (70
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2 where we have introduced the relation
1 /(2
Hgl?): E ——Slar |?E>
vev(y) 2Q?\ 3! E(v) - ey
_ €mbcS;SL = del(s) exy(S™ . (76)
X 2 I_7EJKLEMNP
v(d)=v(a")=v Ip obtained from Eq(57). The further properties

X s2spls\ sy <WE B|WlaWId LKJ
€ eykievkiexkaF 0=L=U=V=X,

i 5 >
SIS g e Fu W B)

X
ElKJflKJflKJflKJ: 2'51236123'51236123: -2, (77)
(72)
Next we calculate the correspondiRgensors. The first one allow us to rewrite the corresponding tensor in the simpler
is form
1/2 8 \?
R, 2182M1= _(_ _) 2
= 20 2|31 Ew) R -y (2

213 25833, v SBox 2Q2 31 E U)

X

defs’)def(s)
v(A)=v(A")=0 4'Q2|7 X > |7d9(5 )[deis)]®
v(A)=v(A")=v
X enka(s DM ts](2571s72+ 571572 @ (L) )
Xs3(s™ N5, (575, (57D,

X(W,E,B|wi,w,"|W,E,B), (72)
x(W,E,Blwiawia4|W,E,B). (79
Mz I IP o -
Ry 1%2M= —— E 2( [K65a1325”1 . . . -
Qlp L L This shows explicitly the symmetry in the indicas, a,, ajs
and leads to
+ k7( 8217 532 14 572" 52111 ],
that we have constructed using the most general tensor with ul ||3; o) 2Y
four indices, which is symmetrical in; anda,. The terms  Rjiy a.a.a - k4(8a 2 0a.a,+ Oa.a.0n.a
. . . a-b . 18838, Q2|7 £2£ 192 793% 193 " 92%
proportional tox contribute withB,9%3°By, to the effective
Hamiltonian. Keeping this term will be useful to construct 8y ) (79
the electric sector later. Notice that we have also introduced 81847828377

the inverse matrix§ %)M such that

1 4 1M where we have written the most general four-index tensor at
(s HmSg=05, su(s™Hy' =4, (73 our disposal, which is completely symmetric in three indices.
, _1 This implies the complete symmetry in the four indices. The
which elements scale 4g~. _ correction(79) leads to cubic non-linear terms in the equa-

Our next contribution, arising from E@70), is zero be-  ion of motion.
cause the objedno sum over andK) Now we continue with the correction arising from Eq.
(66), which reduces to

Sk 838K S Fuu (Xo+ Xk it (74)
which is symmetrical in) K, appears contracted with'<". . 1 (2 8 \2,
Now we consider H>,= —| = |
2 v§0x2Q2(3| E(v)) 3
B b c e 4
Ha15= 2 B°(X)B%(X)B(%)B (X)UEEOX Q2 5 IKLMNPgagrdi\y E E.B|

b(8)=o(a)=v (324

2 8 \2 4 sy
x(——) > __H 2 dets’) X WiaWig (S SIX3F uy) (SN SXuF rs)|WEB> (80)

3! E(v) v(A)=v(A") =0 4><3!|Z,
x[dets) €™ s (eyka(s M) (evks(s M) because the terms quadratichnare symmetric inJ,K and
C1x .. .- M,N respectively.
X (exka(s™ D W, E,B|wiawie| W,E,B), (79 From the above we read
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L

R,,2122M 1= 1+ 6, SB2+13(6,B%7,3,B"

2+2Y
-

1 (2 8 )2 e 1Jd3
_ [p— X
ueBox2Q2 3! E(U) QZ

2

2Y
4 - - L R
x — L dets)dets’) +03B2V?B,) + 0l pB- (VX B) + 04521%(,—) (B?)?
v(d)=v(a")=v (3)p P
X(= GYMNEPMNSEdS,(Aaz)(GXJKELJKSESjll) + ... (86)

X (s™H*(s™ l)Yr<Wan§|WiaWid|WaE,§>-

81) The numberg); are linear combinations of the corresponding

k;j appearing in the tensof The correspondences are

Here the internal symmetry properties are rather obscure.  «;,k15— 65, kg,k9— 03, K4— 04, Ki1— 07,
Nevertheless, the symmetry properties induced by the classi-
cal magnetic field factors imply that the above tensor must xg— 0. (87)

be proportional to the most general tensor with four indices

which is symmetric ira; a,. Then we have

w2 131\
Rpf1%2 1= 182 (—P) [ k9621828 14 ey o 5217 5721

As it is pointed out after Eq(22), the electric sector of the

effective Hamiltonian can be obtained by changﬁujpto E
in the quadratic contribution of the corresponding magnetic

W PE T sector. In this way the complete electromagnetic effective
P Hamiltonian becomes
+ 5% 5211 ], (82
1 | 2+2Y 1 . R
. o . , HEMz—f d3x{ | 1+ 6, —) —(B%+E?)
This contribution is of the same kind as the one given by Q? L 2 — —
R211a1a2rr 1,

Finally we are left with

- S B (RB(X) S — (2 ° )213
= X)B, (X — | =
z Box(X) =1 = v € Box(X) 2Q2 3! E(U) P
2
x e
v(A)=v(a")=v 41p

XGJKLEMNP u X rac’barc

v / d r z
SKSISN SM (SLSP Sp 'Sp") €4y L6y

X(W,E,B|{Wiq ,Wianc}|W,E,B), (83
which leads to

2

1 (2 8 )2
s(d)=vA)=0 1P

R I’rl: P
2 eBokw 22\ 3! E(v)
x deq(s’)del(s)(s™H)P(s'8s's'¢

X<W1E!§|{Wirl vWiabc}|W:Ea§>- (84)
Taking the symmetric part, we have

2

Ry T e (1o 4Y5” 85
1= _ _ — 1
23 K11Q2||7> Pra\L . (85)

Adding all previous contributions, we obtain the magnetic

sector of the effective Hamiltonian, up to ordér,

+ 031 5(BAV 2B, + EAVZE,) + 0, BE?9,0,E”

+ 0glp[B- (VX B)+E-(VXE)]
£\
+0452|",;( (BH2+ ...

lp

2
up to orderlp.

VI. MODIFIED MAXWELL EQUATIONS AND
DISPERSION RELATIONS IN VACUUM

Since no confusion arises in the sequel, we eliminate the
underline in all electromagnetic quantities. From the effec-
tive Hamiltonian(88) we obtain the equations of motion

>

10E _, ., . .
A(VXB)— = —=+21363V%(V X B) ~ 204l pV°B

£\ o
+494z:2(|—> 12V X (B?B) =0, (89
=]

. 1B _, R
A(VXE)+ ¢ a—t+2IP03V2(V>< E)
— 264l pV2E=0, (90)

where
| 2+2Y
| o

A=1+ 07(%
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The above equations are supplemented by the conditioand consider only the contribution of the non-linear term in

V-B=0, together with the constrai-E=0, appropriate the effective Hamiltonian. Namely, let us sé§= 6;= 0

for vacuum. =0. After linearizing inb, the field equations reduce to
Next we calculate the dispersion relations arising from the

modified Maxwell equationg89) and (90). Neglecting the . 10E _ L .o

non-linear part and introducing the plane wave ansatz VXb— s T40.L 22V X[Bib+2(By b)Bo]=0,

E= Eoei(ﬁ.i—wt), B= éoei(ﬁ.i—wt), k= |IZ| (92) Lo
R R R J
we get V-E=0, V-b=0, VXEJFEEIO’ (99

Eo k=0, Bo'k=0, (93 with 6,=(£/1p)?¥ 6,. Now we look for plane wave solutions

of EqQ. (99 with
(KX EQ)[A—2 05(1pk)%]— 2 65l pk2Eg— %é():o,

- E= Eoei(ﬁ.i— o) p= BOGi(lZ»Z— wt) (100
© obtaining the conditions
(KX Bg)[A—2 05(1pk)2]—2i 6l pk?By+ EEo=o,

> > N 5> > w

(95) Eo-k=0, bg-k=0, (kXEg)—bo=0, (101)
which imply the following dispersion relations:
2+2Y (1+4 6,L£215B3) (kX by)

w=ck 1+07 Z) -2 03(k|p)2i298(k|p):| o . - o o

(96) + B0t 80,L 212(bg- Bo) (kX Bg)=0. (102

The = signs correspond to the different polarizations of the L i - ,

photon. From the above we obtain the speed of the photonSUbStItlJtIng in Eq(102) the expression fob, obtained from
the third equation in Eq101) we are left with

v ldow

c cdk

2
ik (%—k2(1+4§452|§|§3) E,
=1*4 ag(klp)_603(k|p)2+ 07(k|p)2+2Y+ PP o
97 =—80,L%2[(KXEy)-Bol(kXBy). (103

The last expression givas expanded to leading order in SinceB, andk determine a plane, it is natural to study sepa-
Ip where we have estimatedl as 1k, which is its maximal  rately the propagation of waves with polarization parallel
value. Clearly Eq(97) is valid only for momenta satisfying and perpendicular to this plane. We will express the answer

(Ipk)<1. in terms of the refraction index
To first order in klp) we have only the helicity dependent
correction found already by Gambini and Pullfi. As far as Kc
theY dependent terms we have either a quadratie-Q) or n= o (109

a quartic Y =1) correction. The only possibility to have a
first order helicity independent correction amounts to settin

=—1/2 which corresponds to that of Ellist al. [10].
However, we do not have an interpretation for such a valu
of Y.

%rom Eqg. (103 we obtain the following refraction indices
éﬁ:1=c):

— 1 2R2
n = 1—294—2|PBO,
VIlI. EFFECT OF NONLINEAR TERMS w
(105

In this section we explore some implications of the non- 1
linear term in the Maxwell equations induced by the quan- n, = 1_254_@3(2)(%% sirf ),
tum gravity corrections to orddé. w?

Following Ref.[39] we study the propagation of waves in
the presence of a constant magnetic fiéld To do this, let for parallel and perpendicular photon polarization, respec-
us write tively. Here ¢ is the angle betweek andBy.

o These results can be compared with similar effects in

B=By+b (98)  quantum electrodynamid89]
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I"IH: 1+ 9”@(2) Sinz(]s, Oth=— —RO to—d t oV(t 111
= Vo)), Ry PV (o
n, =1+ 6, B sirf¢. 106
* 0 ¢ (106 In the flat FLRW universe we have
where
to 21
4 4 t=—"—=5 =35
. 2e ) 7e (107 (1+2)%? 3 Ho
T asm® Y oom? (112
B 1 R(t) 1
As expected, quantum gravity induced effects are much dt=- Ho (1+2)5"? 4 Ry, 1+z’
smaller than purely quantum electrodynamics effects, but the
former present different signatures. In particular, the indicesyvherez is the redshift. This leads to
arising from quantum gravity are frequency dependent and
alson| is independent ot. 1 le dz
Sto= 6V(2), 113
“CHoo (14272 (2) (113

VIIl. PHOTON TIME DELAY

Notice that our considerations assumed a coarse-grain
flat spacetime rather than a Friedmann-L&aneaRobertson-
Walker (FLRW) model. The latter would seem more appro-
priate for GRB traveling cosmological distances. In particu-
lar, it would be interesting to study the redshift effects in thetUm:
photon time delays induced by the energy dependent correc- R
tions to the velocity. We are able to estimate these effects as k(z)= _0
follows. R(z)

Using the flat FLRW metric let us calculate the present .
time delay of two photons emitted simultaneously with dif- we obtain
ferent momenta and hence different velocities. We rset R
=r,=L, t=t; as the emission coordinates and 0, t=t, oV(z)= 0—0(6k)OIP: 0(1+2z)(Sk)glp, (115
as the detection coordinates in the comoving cosmological R(2)

iystemt,r,e(t)=9. The definition of the velocityV(t) where (6k), is the present day observed momentum differ-
=R(t)(dr/d t), with d r/d t<O0, leads to ence between the two photons.

” V(1) Substitution of the above equation in EG13) yields
ri=1| dr= f ——dt. 108
=, o R (109

HereR(t) is the scale factor in the FLRW metric. Notice that

the above equation leads to the standard redshift result forhe above result differs from the corresponding one obtained
photons moving withV=c. On the other hand, quantum in the second and third papers of REfO].

gravity corrections predict

éf/&herezl is the redshift of the source antV(z) is the dif-
erence between the velocities of the two photons, arising
from the quantum gravity correctiongl09. Using the
zeroth-order relation for the redshift of the photon momen-

Ko, (114

St :(ﬁ)(ék) Ip[(1425)Y?—1] (116
0 HO o'p 1 .

IX. SUMMARY AND DISCUSSION

V
c 1+6(1pk) (109 In this paper we have considered the propagation of pho-

tons in a semiclassical background provided by loop quan-
to leading order. We are interested in discussing the situatiofdm gravity. An effective electromagnetic Hamiltonian, given

where two photons are emittedrtwith different velocities by EQ.(88), was identified with the expectation value of the
V, and V;+6V,, and arrive atr=0 at timest, andt, €lectromagnetic piece of the Hamiltonian constraint for the

+ 5]:0 respective'y. Then we have Einst-ein'MaXWe” theory W|th I’espect ta WOU|d-be Se-mi'
classical stateThe state used was assumed to approximate a
to dt classical flat metric, a classical flat gravitational connection
flzft WV(U, and a generic classical electromagnetic field, at scales larger
1

than the coarse-grained characteristic lengthwhere £

(110 >|p (the Planck length To leading nontrivial order itp,
to+dty d t .
— photons of wavelength, where£L<\, acquire Planck scale
. [V(t)+8V(D)]. ons of wavel _ . .
y  R() modified dispersion relations as compared to those in classi-

cal flat spacetime. This in turn yields the effective speed of
Subtracting the two expressions for the fixed coordimate light (97) which involves two types of corrections. One of
we obtain them is just that of Gambini and Pullif®] including the
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helicity of the photon, whereas the other depends on thé effective spacetimes might possibly emerge along these
scale £. Moreover, the latter type contains a paraméfer lines. Yet another avenue in the context of canonical quanti-
that encodes the scaling of the gravitational connection underation of gravity and gauge theories has recently emerged to
the semiclassical expectation value. understand the semiclassical regime. It is aimed at establish-
When estimating the coarse-grained characteristic lengtimg a relation between Fock space aHg,, [42,43.
by £=1/k, which is its maximal value, the following values  Further work remains to be done in the framework here
of Y are prominent(i) Y =0 can be understood as that the developed. For instance, in the case of inflationary cosmol-
connection cannot be probed below the coarse graining scategy as well as in the study of the Hawking effect, use is
L. The corresponding correction scales kkJ?. (i) Y=1  made of scalar fields with nonstandard near Planckian fre-
may be interpreted as the analog of the coherent states analydency dispersion relations to model the effect of short dis-
sis, where such states saturate the Heisenberg uncertairtgnce physics on the quantum fie[d€)]. Indeed a systematic
relation inside a box of volumel®: Aq~Ip/L, AA  study of the modifications induced by quantum gravity along
~1p/L£? and AQAA~ k%/ L3 [38]. Then the correction be- the lines we have developed could be performed to investi-
haves like klp)%. (iii) Interestingly, a valu& = — % leads to  gate whether the dispersion relations used4f] can be

a helicity independent first order correctifire. (klp)] simi-  accounted for.
lar to that of Elliset al. [10]. We do not have an interpreta-  Finally, we stress that the dispersion relations we have
tion of this case though. found, as well as those i9,10,20,21,4Dare Lorentz sym-

A prime candidate for testing the effects which are linearmetry violating. This is not necessarily an issue as it has been
in the energy would be the gamma ray bursts that travegxtensively discussed previoudW,5]. In fact they may al-
cosmological distances and which might be detected with viate some long standing astrophysical and cosmological
time resolution beyond I® s. This seems possible in fu- problems[44,45. Remarkably, there has been considerable
ture spatial experimen{s]. progress in setting bounds to Lorentz invariance violation

Moreover, new non-linear terms in the Maxwell equations[46—4§ and to the values of some coefficients in the effec-
appear. These terms are not present eith¢®jor [10]. We  tive Maxwell equationg49].
have explored the significance of this contribution to the
propagation of photons in a constant strong magnetic field. ACKNOWLEDGMENTS
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