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Within loop quantum gravity we construct a coarse-grained approximation for the Einstein-Maxwell theory
that yields effective Maxwell equations in flat spacetime comprising Planck scale corrections. The correspond-
ing Hamiltonian is defined as the expectation value of the electromagnetic term in the Einstein-Maxwell
Hamiltonian constraint, regularized in the manner of Thiemann, with respect to a would-be semiclassical state.
The resulting energy dispersion relations entail Planck scale corrections to those in flat spacetime. Both the
helicity dependent contribution of Gambini and Pullin and, for a value of a parameter of our approximation,
that of Ellis and co-workers are recovered. The electric-magnetic asymmetry in the regularization procedure
yields nonlinearities only in the magnetic sector which are briefly discussed. Observations of cosmological
gamma ray bursts might eventually lead to the needed accuracy to study some of these quantum gravity effects.
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I. INTRODUCTION

It has been recently suggested that quantum gravity
fects might be indeed observable@1–3#. Among the diverse
phenomena where these observations could take place
can distinguish~see e.g.@4,5#! ~i! strain noise induced in
gravitational wave detectors,~ii ! neutral kaon systems an
~iii ! the energy dependent time of arrival of photons or n
trinos from distant sources. Experimental sensitivities
each of the above situations can be argued to be at the
of what is required to reveal quantum gravity phenome
namely Planck length sensitivities. In this work we focus
the third possibility. The idea is to look for modified dispe
sion relations of photons with energyE and momentumkW , of
the form

c2kW25E2F11j
E

EQG
1OS E

EQG
D 2G , ~1!

wherej is a numerical factor of order one andEQG is an
energy scale of order<1019 GeV, which signals the need o
considering the quantum character of gravity. The above
pression leads to the following modification of the speed
light in vacuum:
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EQG
1OS E

EQG
D 2G , ~2!

which implies a retardation time

Dt'j
E

EQG

L

c
, ~3!

with respect to a signal propagating with speedc. When we
consider cosmological distancesL'1010 ly and an energy
scaleEQG'1019 GeV in Eq. ~3!, the corresponding value
are Dt'1023 s (E'20 MeV) and Dt'1025 s (E
'0.20 MeV). In order to detect such effects, an experim
tal time resolutiondt at least of orderDt is required. Thus,
short and intense bursts traveling large distances would
the best candidates. Recent observations pointing tow
the possibility of attaining such conditions are:~i! some
gamma ray bursts~GRB! originate at cosmological distance
(;1010 ly) @6# and~ii ! sensitivitiesdt up to submillisecond
scale have been achieved in GRB observations@7# and they
are expected to improve in future spatial experiments@8#.

It is thus timely to investigate whether candidate quant
gravity theories can account for Eq.~1!. Modifications to
Maxwell’s equations in vacuum, induced by quantum grav
effects, have been calculated by Gambini and Pullin@9#. By
considering a semiclassical regime in which the electrom
netic field is a classical object whereas space is describe
loop quantum gravity, they obtained the dispersion relatio

v6~k!5k~172j l Pk!, k5ukW u, ~4!
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where 6 labels the helicity of the photon andl P
'10233 cm is the Planck length. This modification, bein
helicity dependent, yields parity violation and birefringe
effects.

On the other hand, a string theory approach proposed
Ellis et al. @10# suggests that a D-brane recoil in th
quantum-gravitational foam induces a distortion in the s
rounding space, which modifies the photon propagat
properties. For a review of this approach see for exam
Ref. @11#. The dispersion relations obtained via this seco
procedure are

v~k!5kS 12j
k

MD
D , ~5!

with j.0. They arise from parity conserving corrections
Maxwell’s equations which lead to a first order~in 1/MD)
helicity independent effect in the dispersion relations tha
linear in the photon energy. No birefringent effects appea
this order. In this approach, the redshifted difference in
time arrival of two photons with present-day energiesE1 and
E2 has been calculated. For the BATSE data, when the
shifts z of the GRB are known, a small subset of coincide
photon pulses corresponding to channel 1~20–50 keV! and
channel 3~100–300 keV! are fitted andDt is calculated@10#.
No significant effect in the data available is found. On t
other hand, none of the pulses studied exhibited microbu
having a short time structure on scales<1022 s. Were this
the case, the sensitivity of the analysis would be greatly
proved. Alternative studies based upon effective perturba
quantum gravity @12#, open system techniques@13# and
quantum light cone fluctuations@14# have been performed.

The study of cosmological neutrinos could also prov
an excellent arena to probe quantum gravity induced pro
gation effects because space is practically transparen
them, even at very high energies. In fact, the fireball mod
which is one of the most popular models of GRB, predi
the generation of 101421019 eV neutrino bursts~NB!
@15,16#. The planned Neutrino Burster Experiment~NuBE!
will measure the flux of ultrahigh energy neutrinos~.10
TeV! over a;1 km2 effective area, in coincidence with sa
ellite measured GRB’s@17#. It is expected to detect'20
events per year, according to the fireball model. Other
evant experiment aimed at observing ultra high energy c
mic rays, including neutrinos, is the OWL-Airwatch proje
which expects to see;33103– 105 cosmic ray events with
energies.1020 eV @18,19#. Notably, this experiment is abl
to investigate time correlations among high energy neutri
and gamma-rays. Hence in the foreseeable future, it migh
possible to study quantum gravity effects on observed as
physical neutrinos and photons. At the least, such obse
tions could be used to restrict quantum gravity theories.

Motivated by these interesting possibilities, we have c
culated the quantum gravity induced modifications to n
trino propagation in@20#, within the loop quantum gravity
framework. We obtained corrections to the velocity of prop
gation which are proportional to (klP) together with helicity
dependent corrections of order (klP)2. The energy depen
10350
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dence in the first case coincides with that found later by E
et al. using string theory methods@21#.

In this work we extend our approach to the case of p
tons. The corrections obtained within our approximation co
tain those of@9# and, for a given value of a parameter in o
scheme, those of@10#. In addition, we briefly discuss highe
order nonlinearities arising in the magnetic sector of the
fective Maxwell Hamiltonian.

The organization of the paper is as follows. In Sec. II w
recall some basic aspects of loop quantum gravity which
necessary for our analysis. After reviewing Thiemann’s re
larization of the Hamiltonian constraint of the Einstei
Maxwell theory in Sec. III, we provide a general descripti
of our approximation in Sec. IV. The corrections arising fro
the electric and magnetic sectors are calculated in Sec
Once the effective Hamiltonian is obtained, we derive t
modified Maxwell equations together with the correspond
dispersion relations in Sec. VI. Section VII contains a br
analysis of the non-linear effects arising from the magne
sector. An outline of redshift effects on cosmological phot
time delays is given in Sec. VIII. Finally, Sec. IX contains
discussion of the results.

II. LOOP QUANTUM GRAVITY

In this section we summarize the main ingredients de
ing this approach and also denominated quantum geom
@22#. Among the main results along this approach one fin
~i! well defined geometric operators possessing a disc
spectrum, thus evidencing discreteness of space@22#, ~ii ! a
microscopic account for black hole entropy@23# and, more
recently, hints on quantum avoidance of a would-be class
cosmological singularity@24#. ~For a review on these topic
see for example Ref.@25#.!

To begin with it is assumed that the spacetime manifoldM
has topologyS3R, with S a Riemannian 3-manifold. Here
a co-triadea

i is defined, witha,b,c, . . . being spatial tenso
indices andi , j ,k, . . . beingsu(2) indices. Thus the corre
sponding three-metric is given byqab5ea

i eb
i . In addition, a

field Ka
i is defined byKab5sgn@det(ec

j )#Ka
i eb

i , which is re-
lated to the extrinsic curvatureKab of S. A canonical pair for
the gravitational phase space is (Ka

i ,Ej
b/k), where Ei

a

5 1
2 eabce i jkeb

j ec
k andk is Newton’s constant. It turns out tha

such a canonical pair yields a complicated form for t
Hamiltonian constraint of general relativity. A convenient c
nonical pair, making this constraint polynomial, was intr
duced by Ashtekar@26#. Nevertheless, two severe difficultie
to proceed with the quantization remained:~i! the implemen-
tation of a diffeomorphism covariant regularization for th
density-weight two Hamiltonian constraint hereby obtain
and ~ii ! the extension to non-compact groups of the diffe
morphism covariant techniques already developed for ga
theories with compact groups@27#. In fact, the Ashtekar vari-
ables (C” Aa

i 5Ga
i 2 iK a

i , iEi
a/k) @26#, with Ga

i being the tor-
sion free connection compatible withea

i , are complex val-
ued. Namely the gauge group isSL(2,C” ), which is
noncompact.

Some proposals to come to terms with difficulty~ii ! were:
9-2
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LOOP QUANTUM GRAVITY AND LIGHT PROPAGATION PHYSICAL REVIEW D65 103509
to consider real connection variables@28#, to implement a
Wick transform @29# and to define tractable reality con
straints @30#. All of these left open~i!. Thiemann subse
quently proposed to solve~i! and ~ii ! by incorporating real
connection variables while keeping the density weight o
character of the Hamiltonian constraint. He further provid
a quantum version of the theory in the pure gravity case
well as in those cases including the coupling of matter
gravity @31#. His approach is next reviewed, since we re
upon it for our analysis of the electromagnetic case.

Let us start with the following canonical pairs for th
Einstein-Maxwell system: (Aa

i 5Ga
i 1Ka

i ,Ei
a/k) for the grav-

ity sector and (Aa ,Ea/Q2) for the electromagnetic secto
The latter has gauge groupU(1) andQ is the electromag-
netic coupling constant, related to the dimensionless
structure constant byaEM5Q2\. The corresponding contri
butions to the Hamiltonian constraint are

HEinstein@N#5E
S
d3xN

1

kAdetq
tr~2@Ka ,Kb#2Fab!

3@Ea ,Eb#), ~6!

HMaxwell@N#5E
S
d3xN

qab

2Q2Adetq
@EaEb1BaBb#.

HereFab is the curvature ofAa andBb is the magnetic field
of theU(1) connectionA. The actual classical configuratio
space is the spaceA/G of ~both! connections modulo thei
gauge transformations. Indeed, this is what occurs in ga
theories where the fundamental field is a connection. T
completes the classical description of the phase space o
theory.

The quantum arena is given as follows@27#. As in any
quantum field theory, because of the infinite number of
grees of freedom, an enlargement of the classical config
tion space is required. This is far from trivial since the me
sures defining the scalar product, which are required
provide a Hilbert space, get concentrated on distributio
fields and hence lie outside the classical configuration sp
The key idea to build up such an enlargement is to m
Wilson loop variables~traces of parallel transport operator!
well defined. The resulting spaceA/G can be thought of as
the limit of configuration spaces of lattice gauge theories
all possiblefloating ~i.e. not necessarily rectangular! lattices.
Hence, geometric structures on lattice configuration sp
are used to implement a geometric structure onA/G. This
enables to define a background independent calculus o
which, in turn, leads to the construction of the relevant m
sures, the Hilbert space and the regulated operators.

In line with the Dirac procedure for constrained system
one first ignores the constraints and constructs an auxil
Hilbert spaceHaux, so that the set of elementary real fun
tions on the full phase space is represented by self-ad
operators inHaux. It turns out thatHaux is just L2(A/G,m0),
with m0 being a suitable measure that implements the s
adjointness property.
10350
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Diffeomorphism constraints are well defined operators
Haux yielding no anomalies. There exists a dense subspacF
of Haux so that its topological dualF8 includes a complete
set of solutions to the diffeomorphism constraint. They a
characterized by generalized knots~i.e. diffeomorphism in-
variant classes of graphs!. Besides, a diffeomorphism invari
ant Hilbert space is obtained for such states with an in
product that represents real observables by self-adjoint
erators.

Furthermore,Haux admits a basis in terms of the so calle
spin network states. A spin network is a triple (a,W,pW ) con-
sisting of a grapha, acoloringdefined by a set of irreducible
representations (1 , . . . ,n) of SU(2), with  i correspond-
ing to the edgeei of a and a set of contractors (p1 , . . . ,pm).
Here, a contractorpk is just an intertwining operator from th
tensor product of representations of the incoming edge
the vertexvk to the tensor product of representations of t
outgoing edges. Compactness ofSU(2) makes the vector
space of all possible contractorspk finite, for a givenW and
vertex vk . An additional non-degeneracy condition is in
cluded: j e is not trivial for any edgee anda is taken to be
minimal ~i.e. any othera8, occupying the same points inS
asa, can always be built by subdividing the edges ofa, but
not the other way around!.

A spin network state is aC` cylindrical function~a func-
tion that depends on the connection at the finite numbe
edges of a graph! on A/G, constructed from a spin network

Ta,W,cW@A#:5@ ^ i 51
n  i„hei

~A!…• ^ k51
m pk#, ~7!

for all APĀ, which includes distributional besides smoo
connections.hei

(A) is an element ofSU(2) associated with

the edgeei and ‘‘•’’ stands for contracting, at each vertexvk
of a, the upper indices of the matrices corresponding to
the incoming edges and the lower indices of the matri
assigned to the outgoing edges, with all the indices ofpk .

Given a paira,W the vector space generated byTa,W,pW , for
all possible contractors associated witha,W in the way stated

previously, is denoted byH aux
a,W . Then

Haux5 % a,W H aux
a,W , ~8!

wherea,W run over all the pairs consisting of minimal graph
and irreducible nontrivial representation labelings. The s

is orthogonal and the spacesH aux
a,W are finite dimensional. It

suffices to define an orthonormal basis within each of the
Note that the aforementioned construction ofHaux holds

actually for any diffeomorphism covariant theory of conne
tions with compact gauge group. The choice ofSU(2) cor-
responds to the case of gravity described in terms of
connection variables. So the generalization we are intere
in to include both gravity and the electromagnetic field
H5Haux

SU(2)
^ Haux

U(1) . The spin network states for the com
9-3
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ALFARO, MORALES-TÉCOTL, AND URRUTIA PHYSICAL REVIEW D 65 103509
pound system are denoted byTa,[W,pW ],[ cW ,qW ]@A,A#, with cW ,qW

labeling theU(1) coloring and contractors, respectively.
To extract physical information we will further need

state describing a flat continuous spaceS at scales much
larger than the Planck length, but not necessarily so at
tances comparable to Planck length itself. States of this k
were introduced under the name of weave@32# for pure grav-
ity. Flat weave statesuW&, having a characteristic lengthL,
were first constructed by considering collections of Plan
scale circles randomly oriented. If one probes distanced
@L the continuous flat classical geometry is regained, wh
for distancesd!L the quantum loop structure of space
manifest. In other words, one expects a behavior of the t

^Wuq̂abuW&5dab1O( l P /L). It was soon realized that suc
states could not yield a nontrivial volume due to the lack
self intersections@33#. Couples of circles, intersecting at
point, were also considered as specific models of weave
overcome this defect@34#. With the recent advances on th
kinematical Hilbert spaceHaux it became clear that all pro
posed weaves were afflicted by two undesirable featu
First, they are defined to be peaked at a specific~flat or
curved! metric, but not at a connection. This is in contra
with standard semiclassical states in terms of coherent st
for example. Second, the known weave states do not be
either toHaux or to a dense subspace of it@35#. It may be
possible to come to terms with such difficulties by defini
coherent states for diffeomorphism covariant gauge theo
@36# or by implementing a genuine statistical geometry@37#,
for instance. Both approaches have recently achieved
stantial progress.

Nonetheless, in order to extract physics, there is the a
native possibility of using just the main features that se
classical states should have, namely peakedness on bot
ometry and connection together with the property that th
yield well defined expectation values of physical operato
An advantage of this alternative is that one may elucid
some physical consequences before the full fledged semi
sical analysis is settled down. Indeed, such an alterna
may be considered as complementary, in the sense of hin
at possible features of semiclassical states which could
further elaborated. After its completion, a rigorous semicl
sical treatment should tell us whether the results arising fr
this alternative turn out to hold or not. The weakness of
treatment resides on its generality, since no detailed feat
of the would-be semiclassical states are used—as oppo
say, to the original weave states—and hence a set of num
cal coefficients cannot be calculated. Evaluating them will
the task of the rigorous semiclassical treatment.

On top of the purely gravitational semiclassical states
generalization is required to include matter fields. For o
analysis it will just suffice to exploit the same aspects
peakedness and well defined expectation values, extend
include the case of the electromagnetic field. The semic
sical states here considered will describe flat space an
smooth electromagnetic field living in it. Such a state is d
noted byuW,EW ,BW & and has a characteristic lengthL. Since no
detailed information is used on how the semiclassical sta
constructed in terms of, say, a graph, as opposed to we
10350
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states, the present approach yields results relying only on
following assumptions:~i! peakedness of the states,~ii ! well
defined expectation values and~iii ! existence of a coarse
grained expansion involving ratios of the relevant scales
the problem: the Planck lengthl P , the characteristic length
L and the electromagnetic wavelengthl. States fulfilling
such requirements are referred to aswould-be semiclassica
statesin the sequel.

III. THE REGULARIZATION

Thiemann has put forward a consistent regularization p
cedure to define the quantum Hamiltonian constraint of g
eral relativity onHaux, both for pure gravity and matter cou
plings @31#. The basis of his proposal is the incorporation
the volume operator as a convenient regulator, since its
tion upon spin network states is finite. We use his regulari
tion for the Einstein-Maxwell theory, which naturally allow
the semiclassical treatment here pursued.

Consider the electric part of Eq.~6!. The identity
1/k$Aa

i ,V%52 sgn(deteb
j )ea

i allows to rewrite it as

HE@N#5
1

2k2Q2
lim
e→0

1

e3ES
d3xN~x!

$Aa
i ~x!,V%

2~detq!1/4~x!
Ea~x!

3E
S
d3yxe~x,y!

$Ab
i ~y!,V%

2~detq!1/4~y!
Eb~y!,

5
1

2k2Q2
lim
e→0

E
S
d3xN~x!$Aa

i ~x!,AV~x,e!%Ea~x!

3E
S
d3yxe~x,y!$Ab

i ~y!,AV~y,e!%Eb~y!, ~9!

with xe(x,y)5Pa51
3 u(e/22uxa2yau) being the characteris

tic function of a cube with volumee3 centered atx and
V(x,e)ª*d3yxe(x,y)Adetq(y) being the volume of the
box as determined byqab . Remarkably alle dependence
resides here. This is possible due toHMaxwell having density
weight one and it is achieved at the price of explicitly brea
ing diffeomorphism covariance. This is harmless as far
diffeomorphism covariance is regained once the regulato
removed. This is the case indeed@31#. Next, letS be trian-
gulated into tetrahedraD. Hence, the integral overS in Eq.
~9! is just a sum over the contributions of each tetrahed
D.

The form of Eq.~9! suggests to focus upon the term insi
each integral. As we will see below, this indeed simplifies
analysis. Let
9-4
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Q i@ f #:5E d3x f~x!Ea~x!$Aa
i ~x!,AV~x,e!%5(

D
E

D
d3x f~x!Ea~x!$Aa

i ~x!,AV~x,e!%

5(
D

E
D

f ~x!e~x!`$Ai~x!,AV~x,e!% ,

Q i@ f #5:(
D

QD
i @ f #. ~10!

Also let us use the dual ofE: ebcª* Ebc5ebcdEd. For a two-surfaceS, *S e5 1
2 *S Edebcddxb`dxc5 1

2 *S ndEdẽbcdxb

`dxc5*S Edndẽ, ẽ being the volume two-form. HenceFE(S)ª*S e is the flux ofEa throughS. Recalling that

tr„t ihsL
$hsL

21,AV~x,e!%…5trS t itmE
0

1

dt ṡL
21a~ t !$Aa

m
„sL

21~ t !…,AV~x,e!% D 1•••

52
d im

2 E
0

1

dt ṡL
21a~ t !$Aa

m
„sL

21~ t !…,AV~x,e!%1•••

'2
1

2
sL

a~1!$Aa
i
„sL

21~0!…,AV~x,e!% ~11!

and that, for small tetrahedra,FE(FJK)' 1
2 eabcsJ

b(D)sK
c (D)Ea, it follows

f ~v !eJKLFE~FJK!tr~t ihsL(D)$hsL(D)
21 ,AV„v~D!,e…%!'2

1

4
f ~v !eJKLeabcsJ

b~D!sK
c ~D!EasL

d~D!$Ad
i
„sl

21~0!…,AV~x,e!%

52
3!

2
f ~v !vol~D!Ea$Aa

i
„sl

21~0!…,AV~x,e!%

52
3!

2 E
D

f e`$Ai~x!,AV~x,e!%. ~12!

We have then

QD
i @ f #52

2

3!
f ~v !eJKLFE~FJK!tr~t ihsL(D)$hsL(D)

21 ,AV„v~D!,e…%!, ~13!

where we are denoting bysJ(D),sK(D),sL(D) the edges of the tetrahedraD havingv as common vertex. As stated,FJK is a
surface parallel to the face determined bysJ(D),sK(D) which is transverse tosL(D).

Hence

HE@N#5
1

2k2Q2
lim
e→0

(
DD8

QD
i @N#Q8D8

i
@x#.

Next one replacesEa andV(x,e) by its quantum counterparts and adapts the triangulation to the graphg corresponding to
the state acted upon, in such a way that at each vertexv of g and triplet of edgese,e8,e9 a tetrahedron is defined with
basepoint at the vertexv(D)5v and segmentssI(D), I 51,2,3, corresponding tos(e),s(e8),s(e9), respectively@31#. Here it
is assumed thate IJKeabcsI

asJ
bsK

c >0. The arcs connecting the end points ofsI(D) andsJ(D) are denotedaIJ(D), so that a loop
a IJªsI+aIJ+sJ

21 can be formed. Besides, the face spanned by the segmentssI(D) andsJ(D) is calledFIJ .
The action of the regulated operator hereby obtained gets concentrated in the vertices of the graph, as expected

explicit appearance of the volume operator. In successive steps we replace
103509-5
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Q̂D
i @N#52

2

3!

1

i\
N„v~D!…eJKLF̂E~FJK!tr~t ihsL(D)@hsL(D)

21 ,AV̂„v~D!,e…# ! ~14!

Q̂D8
8 i

@x#52
2

3!

1

i\
xe„v~D!,v~D8!…eMNPF̂E~FMN8 !tr~t ihsP(D8)@hsP(D8)

21 ,AV̂„v~D8!,e…# ! ~15!

to obtain

HE@N#52
1

\22k2Q2 (
vPV(g)

N~v !S 2

3!

8

E~v ! D
2

(
v(D)5v(D8)5v

tr~t ihsL(D)@hsL(D)
21 ,AV̂„v~D!,e…# !eJKLF̂E~FJK!

3tr~t ihsP(D8)@hsP(D8)
21 ,AV̂„v~D8!,e…# !eMNPF̂E~FMN8 !. ~16!

The valencen(v) of the vertexv yields the contributionE(v)5n(v)@n(v)21#@n(v)22#/3! of the adapted triangulation a
each vertex ofg. Also, ase→0, v(D)5v(D8) are the only contributions left over. The final expression for the electric p
of the Hamiltonian constraint given in@31# is obtained by the explicit action of this operator on cylindrical functions.
refrain from doing that here because the form of the operator~16! is better suited for our approximation given below.

As for the magnetic part ofHMaxwell we proceed similarly. Since

hs5e2 i *0
1dtṡa(t)Aa„s(t)…5I2 i E

0

1

dtṡa~ t !Aa„s~ t !…1•••

~haJK
21!52 i E

0

1

dt ȧJK
a ~ t !Aa„s~ t !…1•••52 i E

FJK

BadSa1•••52 iFB~FJK!1•••'2 i
1

2
eabcsJ

b~1!sK
c ~1!Ba

„v~D!…

~17!

and

f ~v !eJKL~haJK
21!tr„t ihsL(D)$hsL(D)

21 ,AV~x,e!%…' i
1

4
eJKLeabcsJ

bsK
c sL

d f ~v !Ba~v !$Ad
i ~v !,AV~x,e!%

5 i
1

2
vol~sJ ,sK ,sL!da

df ~v !Ba~v !$Ad
i ~v !,AV~x,e!%

5 i
3!

2
vol~D! f ~v !Ba~v !$Aa

i ~v !,AV~x,e!%

5 i
3!

2 E
D

f ~x!BI~x!`$Ai~x!,AV~x,e!%, ~18!

we can write

HB@N#5
1

2k2Q2
lim
e→0

(
DD8

JD
i @N#JD8

8 i
@x#, ~19!

where

JD
i @ f #ª i

2

3!
f ~v !eJKL~haJK

21!tr„t ihsL(D)$hsL(D)
21 ,AV~x,e!%…. ~20!

ContrastingJ ID
i with Q ID

i we notice~i! different numerical factors:i (2/3!) for theformer while2 (2/3!) for thelatter and
~ii ! to leading order, the magnetic fluxeJKL(haJK

21) has as its counterpart the electric fluxeJKLFE(FJK).
The quantum version of the above operators is obtained using
103509-6
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ĴD
i @ f #:5 i

2

3!

1

i\
f ~v !eJKL~haJK(D)

21!tr„t ihsL(D)@hsL(D)
21 ,AV̂~x,e!#….

Finally, one gets the regularized magnetic piece of the Hamiltonian constraint as@31#

HB@N#51
1

\22k2Q2 (
vPV(g)

N~v !S 2

3!

8

E~v ! D
2

(
v(D)5v(D8)5v

eJKLtr~t ihsL(D)@hsL(D)
21 ,AV̂v# !~haJK(D)21!

3eMNPtr~t ihsP(D8)@hsP(D8)
21 ,AV̂v# !~haMN(D8)21!. ~21!

The electric and magnetic pieces ofHMaxwell can be treated in a unified manner in terms of fluxes. To see this recall tha
Abelian gauge fields

haJK(D)5e2 i *aJK(D) dtṡa(t)Â a„s(t)…5e2 i F̂B(FJK),

whereF̂B(FJK) is the flux of the magnetic field through the surfaceFJK .
Then the full electromagnetic Hamiltonian is

HMaxwell@N#51
1

\22k2Q2 (
vPV(g)

N~v !S 2

3!

8

E~v ! D
2

(
v(D)5v(D8)5v

tr~t ihsL(D)@hsL(D)
21 ,AV̂v# !tr~t ihsP(D8)@hsP(D8)

21 ,AV̂v# !

3eJKLeMNP@~e2 i F̂B(FJK)21!~e2 i F̂B(FMN8 )21!2F̂E~FJK!F̂E~FMN8 !#. ~22!
ize
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Let us emphasize the structure of the above regular
Hamiltonian. There is a common gravitational fact
included in the SU(2) trace. The basic entities tha
regularize the electromagnetic part are the correspon
fluxes: one is associated with the magnetic field, wh
enters through a product of exponential flux factors, wh
the other is related to the electric field, entering in a biline
product of fluxes. Thus, in the quadratic field approxim
tion the effective Hamiltonian preserves duality invarian
Nevertheless, the magnetic sector includes higher powe
the field expansion. Hence, nonlinearities in the field eq
tions, inducing duality violations, arise only via the magne
field.

Before proceeding let us recall that, according to T
emann’s conventions, in flat space we must have

HMaxwell5E d3x
1

2 Q2
~EaEa1BaBa!, ~23!

whereQ is the electromagnetic coupling constant. The el
tromagnetic potential is denoted byAa and the corresponding
electromagnetic tensor byFab . The units are such that th

gravitational connectionAa
i has dimensions of 1/L ~inverse

length! and the Newton’s constantk has dimensions ofL/M
~length over mass!. Also we have that@ uEW u/Q2#5M /L3. Tak-
ing the dimensions ofAa to be 1/L, according to the corre
10350
d

g
h
e
r
-
.
in
-

-

-

sponding normalization of the Wilson loop, we conclude th

@EW #5@BW #51/L2 and @Q2#51/(M L). In our case we also
have@\#5M L, which in fact leads toaEM5Q2\ to be the
dimensionless fine-structure constant, as defined by T
emann@31#.

IV. GENERAL STRUCTURE OF THE CALCULATION

The effective Maxwell Hamiltonian is defined by consi
ering the expectation value of theU(1) gauge sector of the

quantum Hamiltonian constraint with respect touW,EW ,BW &.
Inside this expectation value operators are expanded aro
all relevant vertices of the triangulation in powers of t
segmentssL

a(D), which have lengths of orderl P . In this way,
a systematic approximation is given involving the scalesl P

!L,l, wherel is the de Broglie wavelength of the photo
Our corrections to the Maxwell Hamiltonian arise from su
an approximation.

We do the full calculation of the magnetic sector, inclu
ing the non-linear contributions to orderl P

2 . Next, to obtain
the electric sector, it is enough to consider only the quadr
terms in the magnetic Hamiltonian and make the repla
mentB→E.

In the case of the magnetic sector, the general form of
expectation value is~recalling that 1/k25\2/ l P

4 )
9-7
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HB52
1

2 Q2

1

l P
4 (

vPV(g)
N~v !S 2

3!

8

E~v ! D
2

(
v(D)5v(D8)5v

^W,EW ,BW uF̂ p1q1
~v ! . . . F̂ pnqn

~v !

3„]a1 . . . ]amF̂ pq~v !…T̂a1 . . . am

pq p1q1 . . . pnqn
„v,s~D!,s~D8!…uW,EW ,BW &. ~24!

To proceed with the approximation we think of space as made up of boxes, each centered at a given pointxW and with
volume L 3'd3x. Each box contains a large number of vertices of the semiclassical state (L@ l P), but is considered as
infinitesimal in the scale where the space can be regarded as continuous. Also, we assume that the magnetic ope
slowly varying inside the box (l P!l), in such a way that for all the vertices inside the box one can write

^W,EW ,BW u . . . F̂ab~v ! . . . uW,EW ,BW &5meabcB
c~xW !. ~25!

HereFab5]aAb2]bAa , Ba(xW ) is the classical magnetic field at the center of the box andm is a dimensionless constant to b
determined in such a way that we recover the standard classical result~23! in the zeroth order approximation. In the ne
section we show that

m5S L
l P

D 11Y

, ~26!

with Y being a parameter defining the leading order contribution of the gravitational connection to the expectation
Applying to Eq.~24! the procedure just described leads to

HB5(
Box

N~xW !Fp1q1
~xW ! . . . F pnqn

~xW ! . . . „]a1 . . . ]amF p q~xW !… (
vPBox

l P
3 S 2

3!

8

E~v ! D
2

(
v(D)5v(D8)5v

S 2
1

2 Q2

mn11

l P
4 D

3^W,EW ,BW u
1

l P
3
T̂a1 . . . am

pqp1q1 . . . pnqn
„v,s~D!,s~D8!…uW,EW ,BW &

~27!

5(
Box

N~xW !F p1q1
~xW ! . . . Fpnqn

~xW !„]a1 . . . ]amF pq~xW !…d3x Ta1 . . . am

pqp1q1 . . . pnqn~xW !

HB5E d3x N~xW !F p1q1
~xW ! . . . F pnqn

~xW !„]a1 . . . ]amF pq~xW !…Ta1 . . . am

pqp1q1 . . . pnqn~xW !.

The box-averaged tensorTa1 . . . am

pqp1q1 . . . pn(xW ), defined by

Ta1 . . . am

pqp1q1 . . . pnqn~xW !5 (
vPBox

S 2

3!

8

E~v ! D
2

(
v(D)5v(D8)5v

S 2
1

2 Q2

mn11

l P
4 D

3^W,EW ,BW u
1

l P
3
T̂a1 . . . am

pqp1q1 . . . pnqn
„v,s~D!,s~D8!…uW,EW ,BW &, ~28!
th

e
a

by
ed
al
one

.

tu-

on-
is constructed from flat space tensors likedab , eabc . In this
way we are demanding covariance under rotations at
scaleL.

When averaging inside each box, the scaling of the exp
tation values of the gravitational operators is estimated
cording to

^W,EW ,BW u . . . Aia . . . uW,EW ,BW &' . . .
1

L S l P

L D Y

. . . ,

~29!

^W,EW ,BW u . . . AVv . . . uW,EW ,BW &' . . . l P
3/2 . . . , ~30!
10350
e

c-
c-

respectively. In our previous work@20# we have setY50 on
the basis that the coarse graining approximation, defined
the scaleL, does not allow for the connection to be prob
below 1/L. On the other hand, by adopting naive kinematic
coherent states for representing semiclassical states,
would setY51 for two reasons:~i! to guarantee that Eq
~29! yields just zero in the limit\→0, in agreement with a
flat connection and~ii ! because such an scaling would sa
rate the Heisenberg uncertainty relation@38#. Nonetheless,
physical semiclassical states may imply a leading order c
tribution withYÞ0,1, thus we choose to considerY as a free
parameter here.
9-8
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In order to make the transition to the electric sector it is convenient to express the effective Hamiltonian HB in terms of the
magnetic field, which amounts to a redefinition of the expression~27! in the form

HB5E d3x N~xW !Br 1
~xW ! . . . Br n

~xW !„]a1 . . . ]amBr~xW !…Ra1 . . . am

rr 1 . . . r n~xW !. ~31!

The relation between the box-averaged tensorsR andT is

Ta1 . . . am

pqp1q1 . . . pnqn~xW !5e r
pq e r 1

p1q1 . . . e r n

pnqn Ra1 . . . am

rr 1 . . . r n~xW !. ~32!
th

o

gh
s

or ts
By expanding Eq.~22! to different powers insI
a(D) one

can systematically determine all possible contributions to
effective electromagnetic Hamiltonian at a given order inl P .

V. THE CALCULATION

In this section we provide the details of the calculation
the Maxwell effective Hamiltonian up to orderl P

2 . Let us
start with the magnetic sector.

The two main ingredients in Eq.~22! which contribute to
the expansion in powers of the segmentssI(D) are ~i! the
trace factors involving the gravitational operators and~ii ! the
magnetic flux through each surfaceFIJ(D).

First we calculate the flux of the magnetic field throu
the surfaceFIJ . A convenient way to do this is via the Stoke
theorem

FB~FIJ!5E
FIJ

Banad2x5E
FIJ

~¹3AW !anad2x

5E
a IJ

dt ṡa~ t !Aa~ t !

5E
vW

vW 1sW I
Aadxa1E

vW 1sW I

vW 1sWJ
Aadxa

1E
vW 1sWJ

vW
Aadxa. ~33!

Here the notation issW I5$sI
a% and analogously forvW . We are

using straight line trajectories joining the vertices of the c
responding triangle.

The basic building block in Eq.~33! is

E
vW 1

vW 2
Aa~xW !dxa5E

0

1

Aa@vW 11t~vW 22vW 1!#~vW 22vW 1!adt

5E
0

1

Aa~vW 11t DW !Dadt

5S 11
1

2!
Db]b

1
1

3!
~Db]b!21 . . . DDaAa~v !, ~34!
10350
e

f

-

with Da5(vW 22vW 1)a. The infinite series in parentheses is

F~x!511
1

2!
x1

1

3!
x21

1

4!
x31 . . . 5

ex21

x
, ~35!

yielding

E
vW 1

vW 2
Aa~xW !dxa5F~Da]a!„DaAa~vW 1!…. ~36!

In the following we employ the notationDaVa5DW •VW . Using
the above result in the three integrals appearing in Eq.~33!
and after some algebra, we obtain

FB~FIJ!5F1~sW I•¹,sWJ•¹!sJ
asI

b@]aAb~vW !2]bAa~vW !#

5F1~sW I•¹,sWJ•¹!sJ
asI

beabcB
c~v !, ~37!

where the gradient acts upon the coordinates ofvW . The func-
tion F1 is

F1~x,y!5
y~ex21!2x~ey21!

x y~y2x!

52 (
n51

`
1

~n11!!

xn2yn

x2y
. ~38!

Let us emphasize thatF1(x,y) is just a power series in the
variablesx andy. Expanding to fourth order in the segmen
sI

a we obtain

FB~FIJ!5S 11
1

3
~sI

c1sJ
c!]c1

1

12
~sI

csI
d1sI

csJ
d

1sJ
csJ

d!]c]d1 . . . D1

2
sI

asJ
beabcB

c~v !. ~39!

Notice that the combination

1

2
sI

asJ
beabc5A nc ~40!

is just the oriented area of the triangle with vertexv and
9-9
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sidessI
c , sJ

c , joining at this vertex, having valueA and unit
normal vectornc .

In order to make the bookkeeping clear, let us denote bT
the combination arising from Eq.~22! whose expectation
value we are calculating

T52
1

2 Q2

1

l P
4
ŵi LDŵi PD8e

JKLeMNP

3~e2 i F̂B(FJK)21!~e2 i F̂B(FMN8 )21!. ~41!

Here

ŵi LD5tr~t ihsL(D)@hsL(D)
21 ,AV̂v# !. ~42!

Some remarks are in order before we proceed further.
final goal is to obtain a power expansion of Eq.~41! up to
order l P

2 . Since, as we will show in the sequel, the norm
ization factor converting magnetic operators inside the se
classical expectation value into classical fields outside
expectation value is proportional to (l P)21, we have to take
some care regarding the expansion of the given quantitie
powers ofsI

a . A detailed power counting analysis in the e

pression~41! shows that the termŵi L (D) in Eq. ~42! is to be
expanded up to orders3, while each magnetic facto

(e2 i F̂B(FJK)21) is required to have the following propertie
the terms proportional toF are to be expanded up to ord

s4, those proportional toF2 up to orders5 and finally those
proportional toF3 up to orders6. This will lead to the fol-
lowing contributions inT: the terms proportional toF2 in-
clude the expansion up to orders8, the terms proportional to
F3 include the expansion up to orders9 and the terms pro-
portional toF4 include the expansion up to orders10. The
final result is that the semiclassical expectation value of
magnetic contributionT will be proportional tol P

3 , which is
incorporated in the volume element, times corrections up
order l P

2 .
Let us now continue with the calculation of the contrib

tion to Eq. ~41! due to the magnetic flux by writing th
expansion

~e2 i F̂B
„FJK(D)…21!5 (

n51

`
~2 i !n

n!
„F̂B~FJK!…n

5M1JK(D)1M2JK(D)1M3JK(D)

1O~s7F3! ~43!

where
10350
ur

-
i-
e

in

e

to

M1JK(D)ªsK
a sJ

b i

2!
Fab ,

M2JK(D)ªsK
a sJ

b i

3!
~xJ1xK!Fab2sK

a sJ
bsK

c sJ
d 1

8
FabFcd ,

M3JK(D)ªsK
a sJ

b i

4!
~xJ

21xJxK1xK
2 !Fab2sK

a sJ
bsK

c sJ
d

3F 1

4•3!
~xJ1xK!FabFcd

1
1

4•3!
Fab~xK1xJ!FcdG

2sK
a sJ

bsK
c sJ

dsK
e sJ

f i

4•3!
FabFcdFe f , ~44!

according to the previous analysis. We are using the nota
xI5sW I•¹5sI

a]a . Let us remark that, contrary to the electr
case, the magnetic contribution will incorporate non-line
terms due to the expansion of the exponential in powers
BW . This implies that the exact duality symmetry of Maxwe
equations in vacuum will be lost due to quantum grav
corrections.

Next let us consider the gravitational contributions to E
~22!, arising from Eq.~42!, which we expand as

ŵi LD5sL
awia1sL

asL
bwiab1sL

asL
bsL

cwiabc1O~s4w!, ~45!

with

wia5
1

2
@Aia ,AV#, wiab5

1

8
e i jk@Aja ,@Akb ,AV̂##,

wiabc52
1

48
@Aja ,@Ajb ,@Aic ,AV̂###. ~46!

The scaling properties of the above gravitational opera
under the semiclassical expectation value are

^W, EW , BW u . . . wi a1 . . . an
. . . uW, EW , BW &→

l P
3/2

Ln S l P

L D nY

.

~47!

Let us emphasize that the result~47! is a consequence of th
scaling of the expectation value of the connection given
Eq. ~29!.

For the productŵi LDŵi PD8 we need only

ŵi LDŵi PD85U2LP1U3LP1U4LP1O~s5w2! ~48!

with

U2LP5sL
asP8

dwiawid ,

U3LP5sL
asP8

dsP8
ewiawide1sL

asL
bsP8

dwiabwid ,
9-10
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U4LP5sL
asP8

dsP8
esP8

fwiawide f

1sL
asL

bsP8
dsP8

ewiabwide

1sL
asL

bsL
csP8

dwiabcwid . ~49!

Here all thew’s are evaluated at a common vertexv.
At this level it is convenient to state the result~no sum

over L)

sL
asL

bwiab5
1

8
sL

asL
be i jk@Aja ,@Akb ,AV̂##

5
1

8
sL

asL
be i jk~AjaAkb

AV̂2Aja
AV̂Akb

2Akb
AV̂Aja1AV̂AkbAja!,

50, ~50!

which holds due to symmetry properties. This leads to

U3LP50. ~51!

After taking the expectation value the terms contributing
order l P

2 in Eq. ~41! read

T5T01T11T21O~ l P
3 ! ~52!

T052
1

2 Q2

1

l P
4

eJKLeMNP@U2LPM1JKM1MN8 #, ~53!

T152
1

2 Q2

1

l P
4

eJKLeMNPU2LP@M1JKM2MN8 1M2JKM1MN8 #,

~54!

T252
1

2 Q2

1

l P
4

eJKLeMNP@U2LP~M1JKM3MN8

1M3JKM1MN8 1M2JKM2MN8 !1U4LPM1JKM1MN8 #.

~55!

Now we are ready to calculate the different contributio
to the magnetic sector of the Hamiltonian~22!, which we
parametrize in terms of the tensorRa1 . . . am

rr 1 . . . r n intro-

duced in Eq.~32!.
Recalling that we are only interested in the pieces wh

are symmetric in the indicesr 1 , r 2 , . . . ,r n , the contribution
T0 produces
10350
s

h

R0
r 1r 25 (

vPBox

1

2Q2 S 2

3!

8

E~v ! D
2

3 (
v(D)5v(D8)5v

m2

4 l P
7

e ab
r 1 e uv

r 2 eJKLeMNP

3sK
a sJ

bsL
cs8M

v s8N
u s8P

d ^W, EW , BW uwicwiduW, EW , BW &.

~56!

In order to simplify the product of vectorssL
a (s8M

p ) appear-
ing in the sequel and also to exhibit the internal symme
properties of the quantities involved, it is convenient to ke
in mind the relations

eKJLsK
a sJ

bsL
c5det~s!eabc, det~s!5det~sK

a !,

eabpeabq52dq
p . ~57!

In this way, Eq.~56! can be rewriten in the simpler form

R0
r 1r 25 (

vPBox

1

2 Q2 S 2

3!

8

E~v ! D
2

3 (
v(D)5v(D8)5v

m2

l P
7

det~s!det~s8!^W,EW ,BW u
1

2

3$wi
r 1 ,wi

r 2%uW,EW ,BW &. ~58!

The above equation implies

R0
r 1r 25

1

2 Q2

m2

l P
7

l P
6

l P
3

L 2 S l P

L D 2Y

d r 1r 25
1

2 Q2
d r 1r 2, ~59!

which reproduces the zeroth-order magnetic contribut
~23! with the choice

m5S L
l P

D 11Y

. ~60!

Now let us consider the correction arising fromT1, which
leads to the following contribution in the effective Hami
tonian

H11
B 5 (

Box(xW )
(

vPBox

1

2Q2 S 2

3!

8

E~v ! D
2

l P
3

3 (
v(D)5v(D8)5v

2
1

l P
7

eJKLeMNPsL
csP8

dsK
a sJ

b^W,EW ,BW u

3$wic ,wid%
i

2
FabFs8N

v s8M
q i

3!
~xM8 1xN8 !Fvq

2s8N
v s8M

q s8N
r s8M

t 1

8
FvqFrt G uW,EW ,BW &. ~61!

In the above expression we have interchanged the sum
tions over D and D8 in order to rewrite wic wid as
9-11
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1
2 $wic ,wid%. We further separate the above contribution
H11

B in two parts: ~i! the first contains two powers in th
magnetic field and leads toR11a1

rr 1 and ~ii ! the second one
contains three powers in the magnetic field and leads to
completely symmetric tensorR11

r 1r 2r 3. Since we have no
symmetric tensor with three indices at our disposal, the la
contribution is zero. Thus we concentrate in the first one

R11
a1rr 15 (

vPBox

1

2 Q2 S 2

3!

8

E~v ! D
2

3 (
v(D)5v(D8)5v

m2

6 l P
7

eJKLeMNPsL
csP8

dsK
a sJ

bs8N
v

3s8M
q s8M

a1e ab
r 1 e vq

r ^W,EW ,BW u$wic ,wid%uW,EW ,BW &.

~62!

In this case the internal symmetry properties are hard
make explicit. In order to determine whether or not the abo
contribution is zero we contract Eq.~62! with the only three
index tensor at our disposal:ea1rr 1. The result is

ea1rr 1
R11

a1rr 152 (
vPBox

1

2 Q2 S 2

3!

8

E~v ! D
2

(
v(D)5v(D8)5v

m2

6 l P
7

3det~s!eMNP^W,EW ,BW u$wic ,wid%uW,EW ,BW &

3~sP8
ds8M

c s8N
q sqM8 1sP8

ds8N
c s8M

q sqM8 !. ~63!

Inside the expectation value, upper spatial indices have b
lowered by the flat metric. By symmetry requirements,
second term in parentheses in Eq.~63! yields zero. Neverthe-
less, the first one gives the result

R11
a1rr 15k8

m2

Q2l P
7

l P
7

l P
3

L 2 S l P

L D 2Y

ea1rr 1, ~64!

which produces a parity-violating term in the magnetic s
tor of the effective Hamiltonian.

The next contribution arises fromT2 and can be separate
into three pieces:

H21
B 5 (

vPV(g)

1

2 Q2 S 2

3!

8

E~v ! D
2

l P
3

3 (
v(D)5v(D8)5v

2
1

l P
7

eJKLeMNP^W,EW ,BW uU2LP

3~M1JKM3MN8 1M3JKM1MN8 !uW,EW ,BW &, ~65!
10350
e

er

to
e

en
e

-

H22
B 5 (

vPV(g)

1

2 Q2 S 2

3!

8

E~v ! D
2

l P
3 (

v(D)5v(D8)5v
2

1

l P
7

3eJKLeMNP^W,EW , BW uU2LPM2JKM2MN8 uW,EW , BW &,

~66!

H23
B 5 (

vPV(g)

1

2 Q2 S 2

3!

8

E~v ! D
2

l P
3 (

v(D)5v(D8)5v
2

1

l P
7

3eJKLeMNP^W,EW ,BW uU4LPM1JKM1MN8 uW,EW ,BW &.

~67!

Let us start discussing H21
B . After some algebra we obtain

H21
B 5 (

vPV(g)

1

2 Q2 S 2

3!

8

E~v ! D
2

l P
3 (

v(D)5v(D8)5v
2

i

l P
7

3eJKLeMNPsL
asP8

dsN8
xsM8

q^W,EW ,BW uwiawid

3S sK
r sJ

t i

4!
~xJ

21xJxK1xK
2 !Frt2sK

r sJ
t sK

u sJ
v

3F 1

4•3!
~xJ1xK!FrtFuv1

1

4•3!
Frt~xK1xJ!FuvG

2sK
r sJ

t sK
u sJ

vsK
wsJ

z i

4•3!
FrtFuvFwzDFxquW,EW ,BW &, ~68!

which naturally splits into the following pieces:

H211
B 5 (

vPV(g)

1

2 Q2 S 2

3!

8

E~v ! D
2

l P
3 (

v(D)5v(D8)5v
2

i

l P
7

3eJKLeMNPsL
asP8

dsN8
xsM8

q^W,EW ,BW uwiawid

3S sK
r sJ

t i

4!
~xJ

21xJxK1xK
2 !Frt DFxquW,EW ,BW &,

~69!

H212
B 5 (

vPV(g)

1

2 Q2 S 2

3!

8

E~v ! D
2

l P
3

3 (
v(D)5v(D8)5v

i

l P
7

eJKLeMNPsL
asP8

dsN8
xsM8

q

3^W,EW ,BW uwiawid

3S sK
r sJ

t sK
u sJ

vF 1

4•3!
~xJ1xK!FrtFuv

1
1

4•3!
Frt~xK1xJ!FuvG DFxquW,EW ,BW &, ~70!
9-12
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H213
B 5 (

vPV(g)

1

2 Q2 S 2

3!

8

E~v ! D
2

l P
3

3 (
v(D)5v(D8)5v

i

l P
7

eJKLeMNP

3sL
asP8

dsN8
xsM8

q^W,EW , BW uwiawid

3S sK
r sJ

t sK
u sJ

vsK
wsJ

z i

4•3!
FrtFuvFwzDFxquW,EW , BW &.

~71!

Next we calculate the correspondingR tensors. The first one
is

R211
a1a2rr 15 (

vPBox

1

2 S 2

3!

8

E~v ! D
2

3 (
v(D)5v(D8)5v

2 m2

4!Q2l P
7

det~s8!det~s!

3eNKJ~s21!rNeJKLsL
a~2sJ

a1sJ
a21sJ

a1sK
a2!

3^W,EW ,BW uwiawi
r 1uW,EW ,BW &, ~72!

R211
a1a2rr 15

m2

Q2l P
7

l P
8

l P
3

L 2 S l P

L D 2Y

@k6da1a2d rr 1

1k7~da1rda2r 11da2rda1r 1!#,

that we have constructed using the most general tensor
four indices, which is symmetrical ina1 anda2. The terms
proportional tok7 contribute withBa]a]bBb to the effective
Hamiltonian. Keeping this term will be useful to constru
the electric sector later. Notice that we have also introdu
the inverse matrix (s21)m

N such that

~s21!m
PsQ

m5dQ
P , sM

a ~s21!b
M5db

a , ~73!

which elements scale asl P
21 .

Our next contribution, arising from Eq.~70!, is zero be-
cause the object~no sum overJ andK)

sK
r sJ

t sK
u sJ

vFuv~xJ1xK!Frt , ~74!

which is symmetrical inJ K, appears contracted witheJKL.
Now we consider

H213
B 5 (

Box(xW )
Bb~xW !Bc~xW !Bf~xW !Be~xW ! (

vPBox

1

2 Q2

3S 2

3!

8

E~v ! D
2

l P
3 (

v(D)5v(D8)5v
2

m4

433! l P
7

2 det~s8!

3@det~s!#3eJKLsL
a
„eUKJ~s21!b

U
…„eVKJ~s21!c

V
…

3„eXKJ~s21! f
X
…^W,EW ,BW uwiawieuW,EW ,BW &, ~75!
10350
ith

d

where we have introduced the relation

embcsJ
bsL

c5det~s!eKJL~s21!m
K , ~76!

obtained from Eq.~57!. The further properties

eLKJeUKJeVKJeXKJÞ0⇒L5U5V5X,

e1KJe1KJe1KJe1KJ52e123e123e123e123522, ~77!

allow us to rewrite the corresponding tensor in the simp
form

R213a1a2a3a4
5 (

vPBox

1

2 Q2 S 2

3!

8

E~v ! D
2

3 (
v(D)5v(D8)5v

2
m4

3! l P
7
det~s8!@det~s!#3

3sL
a~s21!a1

L ~s21!a2

L ~s21!a3

L

3^W,EW ,BW uwiawia4
uW,EW ,BW &. ~78!

This shows explicitly the symmetry in the indicesa1 , a2 , a3
and leads to

R213a1a2a3a4
5

m4

Q2l P
7

l P
10

l P
3

L 2 S l P

L D 2Y

k4~da1a2
da3a4

1da1a3
da2a4

1da1a4
da2a3

!, ~79!

where we have written the most general four-index tenso
our disposal, which is completely symmetric in three indic
This implies the complete symmetry in the four indices. T
correction~79! leads to cubic non-linear terms in the equ
tion of motion.

Now we continue with the correction arising from E
~66!, which reduces to

H22
B 5 (

vPBox

1

2 Q2 S 2

3!

8

E~v ! D
2

l P
3

3 (
v(D)5v(D8)5v

4

~3! !2l P
7

eJKLeMNPsL
asP8

d^W,EW ,BW u

3wiawid~sK
u sJ

yxJFuy!~sN8
rsM8

sxM8 Frs!uW,EW ,BW &, ~80!

because the terms quadratic inF are symmetric inJ,K and
M ,N respectively.

From the above we read
9-13
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R22
a1a2rr 15 (

vPBox

1

2 Q2 S 2

3!

8

E~v ! D
2

3 (
v(D)5v(D8)5v

4 m2

~3! !2l P
7

det~s!det~s8!

3~2eY MNePMNsP8
dsM

8a2!~eXJKeLJKsL
asJ

a1!

3~s21!Xr1~s21!Yr^W,EW ,BW uwiawiduW,EW ,BW &.

~81!

Here the internal symmetry properties are rather obsc
Nevertheless, the symmetry properties induced by the cla
cal magnetic field factors imply that the above tensor m
be proportional to the most general tensor with four indic
which is symmetric ina1 a2. Then we have

R22
a1a2rr 15

m2

Q2l P
7

l P
8

l P
3

L 2 S l P

L D 2Y

@k9da1a2d rr 11k10~da1rda2r 1

1da2rda1r 1!#. ~82!

This contribution is of the same kind as the one given
R211

a1a2rr 1.
Finally we are left with

H23
B 5 (

Box(xW )
Br 1

~xW !Br~xW ! (
vPBox(xW )

1

2 Q2 S 2

3!

8

E~v ! D
2

l P
3

3 (
v(D)5v(D8)5v

m2

4 l P
7

3eJKLeMNPsK
u sJ

vsN8
xsM8

y~sL
dsP8

asP8
bsP8

c!euv
r 1exy

z

3^W,EW ,BW u$wid ,wiabc%uW,EW ,BW &, ~83!

which leads to

R23
rr 15 (

vPBox(xW )

1

2 Q2 S 2

3!

8

E~v ! D
2

(
v(D)5v(D8)5v

2
m2

l P
7

3det~s8!det~s!~s21!rP~s8P
as8P

bs8P
c !

3^W,EW ,BW u$wi
r 1 ,wiabc%uW,EW ,BW &. ~84!

Taking the symmetric part, we have

R23
rr 15k11

m2

Q2l P
7

l P
8

l P
3

L 4 S l P

L D 4Y

d r r 1. ~85!

Adding all previous contributions, we obtain the magne
sector of the effective Hamiltonian, up to orderl P

2 ,
10350
e.
si-
t
s

y

HB5
1

Q2E d3xH F11u7S l P

L D 212YG12BW 21 l P
2 ~u2Ba]a]bBb

1u3Ba¹2Ba!1u8l PBW •~¹3BW !1u4L 2l P
2 S L

l P
D 2Y

~BW 2!2

1 . . . J . ~86!

The numbersu i are linear combinations of the correspondi
k j appearing in the tensorsR. The correspondences are

k7 ,k10→u2 , k6 ,k9→u3 , k4→u4 , k11→u7 ,

k8→u8 . ~87!

As it is pointed out after Eq.~22!, the electric sector of the
effective Hamiltonian can be obtained by changingBW into EW
in the quadratic contribution of the corresponding magne
sector. In this way the complete electromagnetic effect
Hamiltonian becomes

HEM5
1

Q2E d3xH F11u7S l P

L D 212YG12 ~BW 21EW 2!

1u3l P
2 ~Ba¹2Ba1Ea¹2Ea!1u2l P

2Ea]a]bEb

1u8l P@BW •~¹3BW !1EW •~¹3EW !#

1u4L 2l P
2 S L

l P
D 2Y

~BW 2!21 . . . J , ~88!

up to orderl P
2 .

VI. MODIFIED MAXWELL EQUATIONS AND
DISPERSION RELATIONS IN VACUUM

Since no confusion arises in the sequel, we eliminate
underline in all electromagnetic quantities. From the effe
tive Hamiltonian~88! we obtain the equations of motion

A~¹3BW !2
1

c

]EW

]t
12l P

2u3¹2~¹3BW !22u8l P¹2BW

14u4L 2S L
l P

D 2Y

l P
2¹3~BW 2BW !50, ~89!

A~¹3EW !1
1

c

]BW

]t
12l P

2u3¹2~¹3EW !

22u8l P¹2EW 50, ~90!

where

A511u7S l P

L D 212Y

. ~91!
9-14
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LOOP QUANTUM GRAVITY AND LIGHT PROPAGATION PHYSICAL REVIEW D65 103509
The above equations are supplemented by the cond
¹•BW 50, together with the constraint¹•EW 50, appropriate
for vacuum.

Next we calculate the dispersion relations arising from
modified Maxwell equations~89! and ~90!. Neglecting the
non-linear part and introducing the plane wave ansatz

EW 5EW 0ei (kW•xW2vt), BW 5BW 0ei (kW•xW2vt), k5ukW u, ~92!

we get

EW 0•kW50, BW 0•kW50, ~93!

~kW3EW 0!@A22 u3~ l Pk!2#22 i u8l Pk2EW 02
v

c
BW 050,

~94!

~kW3BW 0!@A22 u3~ l Pk!2#22 i u8l Pk2BW 01
v

c
EW 050,

~95!

which imply the following dispersion relations:

v5ckF11u7S l P

L D 212Y

22 u3~klP!262u8~klP!G .
~96!

The 6 signs correspond to the different polarizations of t
photon. From the above we obtain the speed of the pho

v
c

5
1

c

dv

dk UL51/k

5164 u8~klP!26u3~klP!21u7~klP!212Y1 . . . .

~97!

The last expression givesv expanded to leading order i
l P where we have estimatedL as 1/k, which is its maximal
value. Clearly Eq.~97! is valid only for momenta satisfying
( l P k)!1.

To first order in (klP) we have only the helicity dependen
correction found already by Gambini and Pullin@9#. As far as
theY dependent terms we have either a quadratic (Y50) or
a quartic (Y51) correction. The only possibility to have
first order helicity independent correction amounts to sett
Y521/2 which corresponds to that of Elliset al. @10#.
However, we do not have an interpretation for such a va
of Y.

VII. EFFECT OF NONLINEAR TERMS

In this section we explore some implications of the no
linear term in the Maxwell equations induced by the qua
tum gravity corrections to orderl P

2 .
Following Ref.@39# we study the propagation of waves

the presence of a constant magnetic fieldBW 0. To do this, let
us write

BW 5BW 01bW ~98!
10350
n

e

n

g

e

-
-

and consider only the contribution of the non-linear term
the effective Hamiltonian. Namely, let us setu35u75u8

50. After linearizing inbW , the field equations reduce to

¹3bW 2
1

c

]EW

]t
14 ū4L 2l P

2¹3@BW 0
2bW 12~BW 0•bW !BW 0#50,

¹•EW 50, ¹•bW 50, ¹3EW 1
1

c

]bW

]t
50, ~99!

with ū45(L/ l P)2Yu4. Now we look for plane wave solution
of Eq. ~99! with

EW 5EW 0ei (kW•xW2vt), bW 5bW 0ei (kW•xW2vt), ~100!

obtaining the conditions

EW 0•kW50, bW 0•kW50, ~kW3EW 0!2
v

c
bW 050, ~101!

~114 ū4L 2l P
2BW 0

2!~kW3bW 0!

1
v

c
EW 018 ū4L 2l P

2 ~bW 0•BW 0!~kW3BW 0!50. ~102!

Substituting in Eq.~102! the expression forbW 0 obtained from
the third equation in Eq.~101! we are left with

S v2

c2
2k2~114 ū4L 2l P

2BW 0
2!D EW 0

528 ū4L 2l P
2 @~kW3EW 0!•BW 0#~kW3BW 0!. ~103!

SinceBW 0 andkW determine a plane, it is natural to study sep
rately the propagation of waves with polarization paral
and perpendicular to this plane. We will express the ans
in terms of the refraction index

n5
k c

v
. ~104!

From Eq. ~103! we obtain the following refraction indice
(\515c):

ni5122ū4

1

v2
l P
2BW 0

2 ,

~105!

n'5122ū4

1

v2
l P
2BW 0

2~112 sin2f!,

for parallel and perpendicular photon polarization, resp
tively. Heref is the angle betweenkW andBW 0.

These results can be compared with similar effects
quantum electrodynamics@39#
9-15
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ni511u iBW 0
2 sin2f,

n'511u'BW 0
2 sin2f. ~106!

where

u i5
2e4

45m4
, u'5

7e4

90m4
. ~107!

As expected, quantum gravity induced effects are m
smaller than purely quantum electrodynamics effects, but
former present different signatures. In particular, the indi
arising from quantum gravity are frequency dependent
alsoni is independent off.

VIII. PHOTON TIME DELAY

Notice that our considerations assumed a coarse-gra
flat spacetime rather than a Friedmann-Lamaıˆtre-Robertson-
Walker ~FLRW! model. The latter would seem more appr
priate for GRB traveling cosmological distances. In partic
lar, it would be interesting to study the redshift effects in t
photon time delays induced by the energy dependent cor
tions to the velocity. We are able to estimate these effect
follows.

Using the flat FLRW metric let us calculate the prese
time delay of two photons emitted simultaneously with d
ferent momenta and hence different velocities. We ser
5r 15L, t5t1 as the emission coordinates andr 50, t5t0
as the detection coordinates in the comoving cosmolog
system t,r ,u(t)50. The definition of the velocityV(t)
5R(t)(d r/d t), with d r/d t,0, leads to

r 15E
0

r 1
d r5E

t1

t0V~ t !

R~ t !
dt. ~108!

HereR(t) is the scale factor in the FLRW metric. Notice th
the above equation leads to the standard redshift resul
photons moving withV5c. On the other hand, quantum
gravity corrections predict

V

c
511u~ l Pk! ~109!

to leading order. We are interested in discussing the situa
where two photons are emitted atr 1 with different velocities
V1 and V11dV1, and arrive atr 50 at times t0 and t0
1dt0 respectively. Then we have

r 15E
t1

t0 d t

R~ t !
V~ t !,

~110!

r 15E
t1

t01d t0 d t

R~ t !
@V~ t !1d V~ t !#.

Subtracting the two expressions for the fixed coordinater 1,
we obtain
10350
h
e
s
d

ed

-

c-
as

t

al

or

n

d t052
R0

V~0!
E

t1

t0 d t

R~ t !
d V~ t !. ~111!

In the flat FLRW universe we have

t5
t0

~11z!3/2
, t05

2

3

1

H0
,

~112!

dt52
1

H0

1

~11z!5/2
d z,

R~ t !

R0
5

1

11z
,

wherez is the redshift. This leads to

d t05
1

c H0
E

0

z1 d z

~11z!3/2
d V~z!, ~113!

wherez1 is the redshift of the source andd V(z) is the dif-
ference between the velocities of the two photons, aris
from the quantum gravity corrections~109!. Using the
zeroth-order relation for the redshift of the photon mome
tum,

k~z!5
R0

R~z!
k0 , ~114!

we obtain

dV~z!5u
R0

R~z!
~dk!0l P5u~11z!~dk!0l P , ~115!

where (dk)0 is the present day observed momentum diff
ence between the two photons.

Substitution of the above equation in Eq.~113! yields

d t05S 2 u

H0
D ~dk!0l P@~11z1!1/221#. ~116!

The above result differs from the corresponding one obtai
in the second and third papers of Ref.@10#.

IX. SUMMARY AND DISCUSSION

In this paper we have considered the propagation of p
tons in a semiclassical background provided by loop qu
tum gravity. An effective electromagnetic Hamiltonian, give
by Eq. ~88!, was identified with the expectation value of th
electromagnetic piece of the Hamiltonian constraint for
Einstein-Maxwell theory with respect toa would-be semi-
classical state. The state used was assumed to approxima
classical flat metric, a classical flat gravitational connect
and a generic classical electromagnetic field, at scales la
than the coarse-grained characteristic lengthL, where L
@ l P ~the Planck length!. To leading nontrivial order inl P ,
photons of wavelengthl, whereL,l, acquire Planck scale
modified dispersion relations as compared to those in cla
cal flat spacetime. This in turn yields the effective speed
light ~97! which involves two types of corrections. One o
them is just that of Gambini and Pullin@9# including the
9-16
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LOOP QUANTUM GRAVITY AND LIGHT PROPAGATION PHYSICAL REVIEW D65 103509
helicity of the photon, whereas the other depends on
scaleL. Moreover, the latter type contains a parameterY
that encodes the scaling of the gravitational connection un
the semiclassical expectation value.

When estimating the coarse-grained characteristic len
by L51/k, which is its maximal value, the following value
of Y are prominent:~i! Y50 can be understood as that th
connection cannot be probed below the coarse graining s
L. The corresponding correction scales as (klP)2. ~ii ! Y51
may be interpreted as the analog of the coherent states a
sis, where such states saturate the Heisenberg uncert
relation inside a box of volumeL 3: Dq; l P /L, DA
; l P /L 2 and DqDA;k\/L 3 @38#. Then the correction be
haves like (klP)4. ~iii ! Interestingly, a valueY52 1

2 leads to
a helicity independent first order correction@i.e. (klP)# simi-
lar to that of Elliset al. @10#. We do not have an interpreta
tion of this case though.

A prime candidate for testing the effects which are line
in the energy would be the gamma ray bursts that tra
cosmological distances and which might be detected wit
time resolution beyond 1025 s. This seems possible in fu
ture spatial experiments@8#.

Moreover, new non-linear terms in the Maxwell equatio
appear. These terms are not present either in@9# or @10#. We
have explored the significance of this contribution to t
propagation of photons in a constant strong magnetic fi
The corrections obtained in the corresponding refraction
dices are much smaller than similar effects in quantum e
trodynamics. Nevertheless, quantum gravity corrections h
distinct signatures: a main difference is that the speed
photons with polarization parallel to the plane formed by
background magnetic field and the direction of the wave
isotropic.

Our results should be taken as first steps in the explora
of possible observable consequences of quantum gravity
have given evidence that dispersion relations of the form~1!
can have origin in the microstructure of spacetime. It is
pected that the recently proposed coherent states for qua
gravity and gauge theories in@36# and/or statistical geometr
@37#, will come to terms systematically with the unknow
numerical coefficients we have left undetermined in our c
culation~see also@41#!. Interestingly, a quantum field theor
o-
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in effective spacetimes might possibly emerge along th
lines. Yet another avenue in the context of canonical qua
zation of gravity and gauge theories has recently emerge
understand the semiclassical regime. It is aimed at estab
ing a relation between Fock space andHaux @42,43#.

Further work remains to be done in the framework he
developed. For instance, in the case of inflationary cosm
ogy as well as in the study of the Hawking effect, use
made of scalar fields with nonstandard near Planckian
quency dispersion relations to model the effect of short d
tance physics on the quantum fields@40#. Indeed a systematic
study of the modifications induced by quantum gravity alo
the lines we have developed could be performed to inve
gate whether the dispersion relations used in@40# can be
accounted for.

Finally, we stress that the dispersion relations we ha
found, as well as those in@9,10,20,21,40# are Lorentz sym-
metry violating. This is not necessarily an issue as it has b
extensively discussed previously@4,5#. In fact they may al-
leviate some long standing astrophysical and cosmolog
problems@44,45#. Remarkably, there has been considera
progress in setting bounds to Lorentz invariance violat
@46–48# and to the values of some coefficients in the effe
tive Maxwell equations@49#.
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