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History and overview of
Supergravity

60’ and 70’s. Yang Mills theories, Spontaneous symmetry breaking.
Standard model

Internal spontaneous Goldstone Goldstone particles

syinmetry | — | breakdown — | particles, s=0

group G — | localization | — | Y M gauge fields, Gauge fields
s=1 Higos effect

Supersymmetry

Yu. Gol'fand , E. Lichtman (1971)

J.L. Gervais and B. Sakita (1971)
A,Neveu, J. Schwarz, P.Ramond (1971)
D. Volkov, V. Akulov (1972)

J. Wess, B. Zumino (1974)



History and overview of
Supergravity

Yu. Gol'fand , E. Lichtman-->Parity violation in QFT, 4d

J.L. Gervais and B. Sakita & A,Neveu, J. Schwarz-> String theory-Dual
models. Worls sheet supersymmetry 2d

D. Volkov, V. Akulov--> Goldstone particles of spin %2? 4d
J. Wess, B. Zumino - Supersymmetric field theory in 4d

May the Goldstone fermion

with s = 1/2 exist 7

Supergroup, superalgebra

Super—Poincaré
group.,

Supergravity

A group

of which kind?




History and overview of
Supergravity
e Super Poincare

Translations P, Lorentz transformations

J vo|

Spinor supercharge @

Massless multiplets contains spins (s, s-1/2), for s=1/2, 1, 2,

R symmetry



History and overview of
Supergravity

Supergravity

Gauged supersymmetry was expected to be an extension of general
Relativity with a superpartner of the gravito call gravition

L

e, () Vua(T)  Multiplet (2,3/2)

S. Ferrara, D. Freedman, P. Van Nieuwenhuizen (1976)
S. Deser, B. Zumino (1976)
D. Volkov, V. Soroka (1973), massive gravitinos,..

Extensions with more supersymmetries and extension has been
considered, N=2 supergravity, special geometry. N=1 Supergravity in 11d



Motivation for Supergravity

Supergravity (SUGRA) Is an extension of
Einstein's general relativity to include
supersymmetry (SUSY). General relativity
demands extensions since it has
shortcomings including at least the
following:



Motivation for Supergravity

Space time singularities. The singularity theorems of Penrose,
Hawking and Geroch shows that general relativity is incomplete.

Failure to unify gravity with the strong and electro weak forces.

Einstein gravity is not power counting renormalizable. It is
renormalizable as an effective theory. It is not a fundamental theory

If we include supersymmetry in a theory of gravity. The simple
example of divergences: zero point energy of the vacuum, can
potentially be cancelled by super partners of ordinary particles



The current status of supergravity

A reliable approximation to M-theory.

An essential ingrediente for supersymmetric
phenomenology ( minimal supersymmetric
estandar model coupled to N=1 supergravity).

Applications in cosmology
An crucial part for the AdAS/CFT correspondence
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Scalar field and its symmetries

The Dirac Field

Clifford algebras ans spinors

The Maxwell and Yang-Mills Gauge fields
Free Rarita-Schwinger field

Differential geometry

First and second order formulation of gravity
N=1 Global Supersymmetry in D=4



Index

 N=1 pure supergravity in 4 dimensions
 D=11 supergravity



Scalar field

Metric (-,+,+,+...+)

our fields satisfy the Klein-Gordon equation

(o' (x) = m2 o' (x)

] =n""0,,0, 1s the Lorentz invariant d’Alembertian wave operator.

Symmetry transformations

o(x) — &' (z

A

map solutions into solutions

Noether symmetry leaves the action invariant

S[e'] = S[¢"].



General internal symmetry

We will be interested in an n-dimensional representation
of G in which the generators of its Lie algebra are a set of nxn matrices (f4)";, A =
- . . . . |4
1.2,.... dim . Their commutation relations are”

ta.tp] = fap“tc.

and the f4p% are structure constants of the Lie algebra. The representative of a
general element of the Lie algebra is a matrix © which is a superposition of the
generators with real parameters 84, i.e.

O = QAtA.
U(©) =e @ =e 4
o'(x) — ¢"(x) = U(O) ;¢ ().

Infinitesimal transformations
00 = —00,



General internal symmetry

Commutator of infinitesimal transformations

[51‘_ 52}(;":) = —[@)1, @2]@ — 53(;5 \
O3 = [01.09] = fap“6i6%t .



Spacetime symmetries

Lorentz group

AL I - e oA —1p v
L\_I{ 1/ £ OT x / e ;'X_ / 1/ £z .
Lorentz condition L..-U*p-;)ﬂ_w-\”g = Npo -
I m —1u
Poincaré group  /#* — AU (" —ad”) .

Relations among Lorentz transformations
_ A —1 A LL A —1 _
A,{w — (A )u,u. ) A’uu — (A )u K )

A A—1\ v.. . AV
tIf_E e (‘\_ )JH gI 7 -LIL; i\_ Iu' .

mfinitesimal transformation
I{L . "JEL- o I{L L )
APy, =0 +emty, + : My = Nupm”y, = =My, .
Vector representation

| Lo Sl v ., L _ L\po
Mpol" v = 0o — OgNpy = —MYgp" v . A =e2" "lal .



Spacetime symmetries

Lorentz algebra

1) Mpo]] = MpM o] — Mup™Mipe] — MueMup] T Npo M)

Let ()
denote a set of fields with 7 an index of the components of a general representation.
There is a corresponding Lie algebra representation with matrices my,; which act
on the indices and differential/matrix generators

pa
Tipa) = Lipo) T + Moo ;

- - T - —l/\f‘“’-m /

Uv(r) — V(x)=UMN)Y(z) =€ 2 lelip(Ax) .

Orbital part Lipo = 1,0, — 150,

Ty J LOJ]; = Mwpdipo) = MupJvol = Mo jup] + Mol -
[J[po']r P;u-- — Pp?)g#_ — P{-}-?)p#. )
P,.P) = 0.




Noether charges

A 4 r‘f’ Infinitesimal Noether symmetry
. A {)).6 . {’jﬁ A "y
0L =€ [ 5. (IHA,_“’? + FA;@ — ¢ "-),u-[‘*i
,{L
Noether current
E 0L
J'y = — A,.l(? —I—I
00,0

Noether trick. Consider ¢4 ()

0S5 = /{le:;t: { ,f)ﬂ(FAAAC)E)—l—WFAAAOL]

| 00 m 0% 0 O

_ . 0L
— /{le;r. EA() ffﬁl + (() Fé)(— A

00,0

= — /dD (Ou€ )]‘u



Noether charges

Q4 = / APz 7% 4 (2. 1)

For internal symmetries
Q, = - / {ilD_lif?TiAA-:;‘)i

Hamiltonian formalism

Asd'(z) = {Qa,d'(7)} = / AP T (A (7), ' ()}

{Qa. QB} = fap“Qc



Noether charges

At quantum level

A’{(I)L — _i [QA‘-‘ (I)i}qu
Q4. QBly, = 1faB“Qc.



The homomorphism of SL(2,C) — SO(3,1)

Spinor representations exist for all spacetime dimensions D.
D = 4 a general spinor representation is labeled (5, j")

The fundamental spinor representations

(% 0) and its complex conjugate (0. %)
o,=(—1,07) , o, =0c"=(1,0;)
Properties 00y +0u0, = 201,
tr(cha7,) = 20V,.
Hermitean matrix x = &,/ , = % tr(o'x)

: / + . )
The transformation  x . ' = Ax A" induces a Lorentz transformation



The homomorphism of SL(2,C) — SO(3,1)

Lie algebra so(3, 1) in the (5,0) and (0, %) representations

mll—

Opy = é(g,ugu O-ua',u,.)

-1 _
(Tlu_; — I(J‘MGU (TU(T,L!)
The finite Lorentz transformation

L) = 3o



The Dirac Field

Dirac postulated that the electron is described by a complex valued multi-
component field ¥(x) called a spinor field, which satisfies the first order wave equa-
t1iom

&li[j (ir') — f'};u (*—)P: lIf ( ir_) ——ir li[j (:I,‘-) .

Applying the Dirac operator
42 9
P = -?'n..zllh
Y+ 0,08 = mPU.

Clifford algebra

{,-}_.. [ 3 ﬁ}:_ ; ,} = ~ 7 ,,}_._ 1 _|_ ,.}__. 1 ~ [ 2 ?7,&.;; ﬂ :

! !




The Dirac Field

Explicit representation for D=4 in terms of 2 X 2 Weyl matrices

g (0 o
/ o 5,&& 0 '

Lorentz covariance property of the Dirac equation:

U () = LON) PO (AN )
LAYLA) " =77A(N)o" .

1 L1
Finite Lorentz transformations L()\) — e?’v 2w :

E,u.u — % ["‘“,-"u' "‘“,-'U] ‘.



The Dirac Field

We then define the Dirac adjoint, a row vector, by

(AB)' = Bt A U =U"3=0'in"

Dirac action
S[‘iﬁ_ U] = — / dP 2w "0, — m|¥(z)

Equation of motion for adjoint spinor

L [ﬁr-"*'gﬁa. +m| =0



Weyl spinors
even dimension D = 2m Weyl field v (z) with 20m~1 components.

U'(z) = LN (AN)z)

Undotted components
—1\ P .
\];'fa(;{:) = (L(}\) )a \];'Q(i\;ﬂ)
field y(x) that transforms in the conjugate representation

V(z) = ¥'(x) = L) T XA )

Dotted components



Weyl spinors

Write the Dirac field as

W(x)

|
N
<1
.,
e
S—————

Dirac Lagrangian

b=l [_Tﬁ 00+ X o0 X —mY i W+ m .-I;f':'i' 'X]



Energy momentum tensor

symmetric enerqgy-momentum tensor

('%')Iu_” — i‘i’ (ﬁ},{& f) 1 _|_ «--},-U f),{ul)‘lj —|— '}']Iu_u Lf'

where r o= %\Iﬁ;“‘ J,¥ — mU

A9,B = A(0,B) — (0,A)B



Clifford algebras and spinors

« Clifford algebras in general dimensions

A AV 1~ Vol — 2 ] v 1

Euclidean Clifford algebras
,. — 01w T1®...

Y = »elele...
V¥ o= o300 ®1®...

W
|
9
[
Y

o3 X

03 X 03X 0o1 X ...



Clifford algebras and spinors

These matrices are all hermitian with squares equal to 1. and they mutually an-
ticommute. Suppose that D = 2m is even. Then we need m factors in the con-
struction (3.2) to obtain v*, 1 < u < D = 2m. Thus we obtain a representation
of dimension 2P/2. For odd D = 2m + 1 we need one additional matrix, and we
take v*"+! from the list above, but we keep only the first m factors, i.e. deleting a
1. Thus there is no increase in the dimension of the representation in going from
D =2mto D = 2m+ 1., and we can say in general that the construction (3.2) gives
a representation of dimension 21P/2l, where [D/2] means the integer part of D /2.



