Clifford algebras and spinors

we need Lorentzian 4's ' all we need to do is pick

any single matrix from the Euclidean construction. multiply it by i and label it ~"
for the time-like direction. This matrix is anti-hermitian and satisfies (7?)2 = —1..
We then relabel the remaining D — 1 matrices to obtain the Lorentzian set ~*,

0 < pu <D —1. The hermiticity properties of the Lorentzian ~’s are summarized by
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Clifford algebras and spinors

The tull Clifford algebra consists of the identity 1. the D generating elements ~*,
plus all independent matrices formed from products of the generators. Since sym-
metric products reduce to a product containing fewer y-matrices by (3.1), the new
elements must be antisymmetric products. We thus define
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Non-vanishing tensor components
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The antysymmetrization indicated with [...] is always with total weight 1
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Clifford algebras and spinors

properties
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Levi-Civita tensor

So12(p—1) = 1, 2= = 1.
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Practical gamma matrix manipulation
Consider first products with index contractions such as

~HY o ( D — 1),.}___ o
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You can memorize this rule, but it is easier to recall the simple logic behind it: »
runs over all values except p, so there are (D — 1) terms in the sum. Similar logic

VP = (D = 29,

More generally
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Practical gamma matrix manipulation

Reverse ordering
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The sign factor (—)""=1/2 ig negative for » = 2,3 mod 4

No index contractions
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Useful to prove the susy invariance of the supergravity action
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Practical gamma matrix manipulation

e Other useful relations
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Basis of the algebra for even dimensions
The basis is denoted by the following list {I'*} of matrices
{rﬂ = 1, AH, P2 A HIRBS L A BLTED Y g < g < <y

T.D . E . ~ - i 1 = _
C.7 index choices at each rank r and a total of 2% matrices.

Other possible basis {I'y =1, Vies Vpopr s Yuapoprs s Yip, i }
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The highest rank Clifford algebra element

ve = (=) 071 .. 7D

Provides the link bewteen even and odd dimensions

72 = 1 in every even dimension and is hermitian
D = 2m, the matrix v, 1s frequently called vp, 1
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Explicit representations

Assume
(A B
(v, 7"} = 0 implies
p!.
S 0 o
ot and " are 2m—1 x om—1 Weyl matrices
O-:u'a-b’ + O-Ua-,u- — 2?1@;311

Tr(ot5,) = 2m=Ds,



Explicit representations
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the Dirac representation of so(D — 1.1) is reducible (for even D)



Weyl spinors

chiral projectors

PL=5(T+%%), Pr=51-)

(*U) P, (x) — PpU

P P, = Py, PpRPr = Pp and PLPr = 0

No explicity Weyl representation will be used in these lectures



Odd space dimension D=2m+1

The Clifford algebra for dimension D=2m+1 can be obtained by reorganazing
the matrices in the Clifford algebra for dimension D= 2m

we can define two sets of 2m + 1 generating elements
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Not all the matrices are independent

The rank r and rank D-r sectors are related by duality relations
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Odd space dimension D=2m+1

we already have enough matrices if we consider the matrices up to v, .. W(D—1)/2
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Symmetries of gamma matrices

the 2" x 2" matrices, tfor both D = 2m and D = 2m + 1

distinguish between symmetric and the antisymmetric

ex1sts a unitary matrix charge conjugation matrix, such that

impl (CTONT = —,cT0) ¢, = +1
implies

Explicit forms conjugation matrix

|
|_'..

C, = 01003R01R02R ... tot1 =
C_. = 09R01R09RKR01R... tot1 = —1
For odd dimension C is unique (up to phase factor)

The possible sign factors depend on the spacetime dimension D modulo 8
And on r modulo 4



Symmetries of gamma matrices

t, = +1

f, = —1

D (mod 8)
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Symmetries of gamma matrices

Since we use hermitian representations, the symmetry
properties of gamma matrices determines also its
complex conjugation

- —1 . '
V" = —tot1 By"'B B = itgCy"

B*B = —t,1



Adjoint spinor

 We have defined the Dirac adjoint, which involves the complex
conjugate. Here we define the conjugate of “any” spinor using the
transpose and the charge conjugation matrix

A=)\
Symmetry properties for bilinears

Mg ogin X = 6o X Vg i A Majorana flip

More in general
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Adjoint spinor
We have the rule
Xpg. by — A,"",ulm,u-?a)‘ — 'i’,u--l,,,,u-r — t[lt-r‘j\?;u,,,,u-r
x = D02 pie N — ¢ =ttt -t ADCP) . T2) ()

In even dimensions for chiral spinors

o (AP, forD=0,48,...,
=LA = X = { APr for D =2.6.10,....



