Questions-Comments |, I

In even dimensions there are two charge conjugation
conjugation matrices ¢ C_

Supersymmetry selects t1 = —1 Because the supersymmetry is in
D=4
O O. B 1 L o1 P
{Qa:Qs} = —5(WC7)49

the left hand side is symmetric in alpha, beta therefore the right should also
be symmetric, since

to=—1 rme-ty = -, rmce-t



Questions-Comments |, I

* Unique irreducible representation of the Clifford algebra
* Traces and the basis of the Clifford algebra



Friendly representations

Recursive construction of generating Clifford algebra for
D=2m

We start in DD = 2 and write

(0 Ty . (0 1\ _
0 — —1 0 — 102, 1T — 1 0 — 03

Which is really real, hermitian, and friendly representation 7+ — —7071 = 01

is also real. Adding it as gammaz2 gives a real representation in D=3.

=YL, p=0,....2m—=3,

V2m—2 = Vs O, Yom—1 = Y« & 03

~N, = «-:F X 09 which can be used as gamma 2m in D=2m+1



Friendly representations

This construction gives a real representation in 4
dimensions

o 0O 1Y\
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This construction will not give real

This one has an imaginary 7 _ R _ _
Representations in higher dimensions



Friendly representations

Fi = o111,
EQ = 03® TN
Fs = oo®@oy@o; 1,
Ey = o09®og®ogx 1,
Es = oo®or®1®oy,
Fg = o9@o3x2T1 oy,
EFr = o0o@MN®oy oy,
EFs = 0921 ®oy®og.
E. = FEi...E3=09% 09 X 09 X 09

Real representation for Euclidean gamma matrices in D=8



Friendly representations

Yo = Yu®Ey, pnw=0,...,D—1
YD—14i — T® E¢ . 1= l c ooy 3.

When the 7, are real, the gamma matrices in D + 8 are also real

real representations in D = 2, 3, 4 mod 8



Spinor indexes

The components of the basic spinor A are indicated as A,.
barred spinor are indicated with upper indices: A®

raising matrix ¢’

}\a — )\r_“.b: — C&'ﬁ)\ﬁ

C? are the components of the matrix C1  Note NW-SE line

3
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CCyp = 04, Cpal” " = 0q
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Cap are the components of 1



Spinor indexes

The gamma matrices have components (n ,u.)a-;'ﬁ

— X 3
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Flerz rearrangement

* In supergravity we will need changing the pairing of
spinors in products of bilinears, which is called Fierz
rearrangement

Basic Fierz identity from

M = Z m A A ‘_ my = % Tr(MTI'4)
A |

Expanding any A as
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Flerz rearrangement

. - B¢ 0 l . Y& nYs 3
Completeness relation Oa' {3¢r..} = om Z(r;—l)f_}:)(r)—l)"}-'l

A

Note that the ‘column indices” on the lett and right sides have been exchanged

Using
.ﬁ.r.-.'lj_ﬁ.r.-ﬁ{:]- ”‘I{L‘j — ’}/UI{L]- _ﬁ.r.-I{'LQ‘”Iu'j - f/iuluz _ﬁ.r.-I{L]-I{LB‘”I{Lj + .. + T L;JLIL]- +++ﬁﬂ-j
We get
1

N 3 ) . oAy 3
(") On)” = g Do vaCa)a” (T4)y

A
VA = (—)"’A(D _ 2'?”44) Where 71 4 Is the rank of ['4



Flerz rearrangement

Given any set of 4 anti-commuting spinor fields
N 3 1 Y AN YT
AtAoAgAg = —o0 > MTAAAT 4N
A
chiral Fierz identities for D = 4

PixAPL = —5Pp (APLx) + s Pey™ (M Prx)
Pix\Pr = _% Pt (5\?,“ P .X) |



Cyclic identities

Multiplying by four commuting spinors Ao A3AL A5

In d=4 dimensions
41y — 21, + 215 — 41, = 2° I,
(Cvu). (Cryp) are symmetric and (C), (Cy,,,) are anti-symmetric
lo=13=1,=0

Which implies the cyclic identity

(CY") (ap(CYu)~s) = 0, (aB~0) symmetric sum.
Analogously one can prove

(CY") (ap(Cypu )y = 0, (aB~0) symmetric sum

Cyclic identity useful to study the kappa invariance of M2 brane



Cyclic identities

 Notice the vector I_"“:‘ui* Is light-like

(V) (V) = 0



Charge conjugate spinor

Complex conjugation is necessary to verify that the lagrangian involving
spinor bilinears is hermitian.

In practice complex conjugation is replaced by charge conjugation

Charge conjugate of any spinor

N =B\ B=ityCy’

Barred charge conjugate spinor

AC = (—tgt1)irTA’

It coincides withe Dirac conjugate except for the numerical factor (_t[]tl)

* We use the convention that we interchange fermion fields in the process of complex conjugation,



Reality properties

For a matrix M charge conjugate is ﬂjc — B_ljﬁB

C _ np—1_x*
()" =B v, B = (—tot1)

(XMN)* = (YMN)C = (—tot1)xEMENC



Majorana spinors

 Majorana fields are Dirac fields that satisfy and addtional
“reality” condition, whic reduces the number degrees of
freedom by two. More fundamental like Wey! fields

Particles described by a Majorana field are such that particles and
antiparticles are identical

Majorana field

=% =By, ie. = B
We have ¢y — B* B 1) which implies B*B =1
Recall
B*B = —t11

which implies  #{ = —1



Majorana spinors

Two cases t; = 41

to = +1 holds for spacetime dimension D = 2, 3, 4. mod &

In this case we have Majorana spinors. We have that the barred conjugated
spinor and Dirac adjoint spinor coincide

In the Majorana case we can have real representations for the gamma
Matrices . For D=4

o 0 1Y\
o= ( 1 0 ) 109 @ 1
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Majorana spinors

Note that the ~; are symmetric, while vy 1s antisymmetric

We have B=1, then |mplies W* = U also (= i,.}___[}

Properties

v VY E = N\C o C Iy . oy Al
(. M:’;,{':'l+++,{£-T:I-'";'})hr — ( ﬁ:'l{.gllu?,t-‘) — ( .'r.ﬁi'1+++ﬁ'5'rp) E-_ — X .'r.ﬁ'!-']_i‘i‘oﬁl!-'r E'_



Pseudo-Majorana spinors

e I[Incase t = -1 t; =—1

We have pseudo-Majorana spinors, no real reprsentations of gamma
matrices

(*“*,-'*“' ) £ A

!

Mostly relevant for D=8 or 9



Weyl-Majorana spinors
Consider (pseudo) Majorana spinors for D=0,2,4 mod 8

D =2 mod 8 we have (v,0)Y = ~,¢

The two constraints

Majorana: VY =, Weyl: Pr rto =1

are compatible since

(Ppy)” = P, (Pr)© = Py

We have Majorana-Weyl spinor

They have 2~ independent ‘real’ components in dimension

D=2 mod 8. Supergravity and string theory in D=10 are based in Majorana-Weyl
spinors



Incompatibilty of Majorana and Weyl condition

For D = 4 mod 4 dimensions we have (v,1)% = —~,1
which implies
(PrL "3.-—-'{’)(/ = Prv, (P R’*.-—-'"f’)(" = Prv.

The “left” and “right” components of a Majorana spinor are related by charge
by charge conjugation



Symplectic-Majorana spinors

When t; = 1 we cannot define Majorana spinors
We can define sympletic Majorana spinors

X' =B Y i =1.... .2k

o\ % 0i i hich impli _
(XI) :—BE“X}’ wnicn implies ZLl 1

For dimensions D=6 mod 8 we can show that the sympletic
Majorana constraint is compatible with chirality



Dimensions of minimal spinors

Dim | Spinor | min # components | antisymmetric
2 MW 1 1
3 M 2 1.2
4 M 4 1.2
5 S 8 2.3
6 SW 8 3
7 S 16 0,3
8 M 16 0,1
9 M 16 0,1
10 MW 16 1
11 M 32 1.2




Majorana spinors in physical theories

we consider a prototype action for a Majorana spinor field

for D=2,3, 4 mod 8 . Majorana and Dirac fields transform in the same way under
Lorentz transformations, but half degrees of freedom

~y . J_ i D . T A__IU,- i . e
S| = —5/{_1 U0, —m|¥(r)
For commuting spinors [y Z'¢"\y  vanishes
gl C,.}__.;a. i:)ﬂ_ s a total derivative, we need anticommuting Majorana
spinors
0S|V] = — / APz 56U [0, — m]¥(x)

The Majorana field satisfies the conventional Dirac equation



Majorana spinors in physical theories

Majorna action in terms of “Weyl” fields, D=4

Sl = —% / d*z {'ifﬁr-ﬁ'ﬁ")ﬂ_ — -?'n.} (Pr, + Pr)W¥

= — / d*z ['ifﬁs“ﬁ")ﬂ_PL U — %-}"nﬁ! Pry — %-?'n..'ilpg‘lf}
equations of motion

APV = mPpV | PPrVU = mP; U



D=4 Majorana spinors in terms of Weyl spinors

P=a g eyl representation

The Majorana condition ¥ = B~1U* = AU~y 1~3 @+



U(1) symmetries of a Majorana field

. o > _ _ -
(17%)" = 174 implies U — U = e 10y

preserves the Majorana condition
0S| = i f Az Ty, [4H 0, — m|U
= 10 / diz [%@M(III YY) — By, U]

e The conventional vector U(1) symmetry is incompatible with the Majorana
condition.

e The axial transformation above 1s compatible and 1s a symmetry of the action
for a massless Majorana field only.



U(n) symmetry of Majorana fields

The Lagrangian

=1

1
[L— _Tc I
ZX

2,

.,

for n Majorana spinors (I = 1,2,...,n) has an obvious O(n) symmetry

there is a larger U(n) chiral symmetry

6-{ _ (HIJ n SIJ?__E) : J

where o/’ = —a’! and 5!’ = s/ are n? real parameters

The symmetry is manifest if we use the chiral projections
/ —ilH _ N iH*
X+ = X+ =€ x4, N— = x= = xo
n,1 (-1) 7 1

H, = 4 iql?



U(n) symmetry of Majorana fields

1 - - . -
Liin = —g'i v-OxT = —'ii“}-‘ - Oy_! + total derivative

This is manifestly U(n) invariant



