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Abstract

In this thesis, we will present the thermodynamic study of a model that considers
the black hole as a condensation of gravitons (55) (56). We will obtain a correction to
the Hawking temperature and a negative pressure for a black hole of mass M . In this
way, the graviton condensate, which is assumed to be at the critical point defined by
the condition µch=0, will have well-defined thermodynamic quantities P , V , Th, S, and
U as any other Bose-Einstein condensate. We will also discuss the Kiselev black hole,
which has the capacity to parametrize the most well-known spherically symmetric black
holes. We will show that this is true, even at the thermodynamic level. Finally, we will
present a new metric, which we will call the BEC-Kiselev black hole, that will allow us
to extend the graviton condensate to the case of solutions with different types of the
energy-momentum tensor.
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Chapter 1

Introduction

Nowadays, we are living a new golden age for gravitational physics, both in
theoretical and experimental physics. In 1998, the accelerated expansion of the universe
was discovered from supernovae measurements. This discovery requires an unknown
form of energy called dark energy, which has the property of a repulsion action with a
negative pressure distributed homogeneously in the universe. We also have the dark
matter paradigm. Many astrophysical observations lead to the idea that there is more
matter than we can see. The dark matter does not interact with the Standard Model
fields, so we cannot see it in a conventional sense. However, we know about the
existence of dark matter through its gravitational effects. An example of this evidence
is the galaxy rotation curve. The extreme of the spiral galaxies’ arms rotates faster than
the Newtonian gravity predicts. To explain this problem with gravity, we require more
matter, the dark matter. There are as many theoretical models of dark matter as there
is experimental evidence of their existence.

More recently, in 2016, the discovery of gravitational waves has opened many
possibilities both in theoretical and experimental physics to search for new physics out
there in our universe. Before 2016, all observations in astronomy, and cosmology were
made only by exploring the electromagnetic spectrum. This fact is astonishing by itself.
Only studying the light, humankind has been able to discover incredible physical
phenomena from the scale of our neighborhood, the milk galaxy, until cosmic scale with
the discovery of the CMB spectrum in 1965 by Penzias and Wilson. Nowadays, we have
a new eyeglass to detect physical phenomena never seen before. Some signals of
gravitational waves are explained by the merge of monster black holes in some distant
region of our universe. The gravitational waves’ discovery supports the existence of one
of the most extreme objects that we can imagine, the black holes.

Quantum Gravity: The holy grail of all sciences. After more than 100 years that we
have the general theory of relativity, we still have not been able to obtain its definitive
quantum version. For the moment, black holes are our best option to discover a new
fundamental principle that allows us to achieve the long-awaited theory of quantum
gravitation. Thanks to the physical intuition of Jacob Bekenstein, we know that black
holes have entropy. Nevertheless, this would not be entirely true if it were not for
Hawking’s calculation of a black hole’s thermal spectrum. Hawking radiation is the only
quantum gravity computation that we have, but this leads to the information paradox.
According to quantum mechanics, the information must be conserved in order to
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respect the unitary evolution of any quantum system. However, the event horizon of a
black hole encloses a spacetime region that is causally disconnected from the outside.
This fact leads to the possibility that when a black hole finishes evaporating, the
information ceases to exist, implying a violation of the conservation of information.
This paradox and related ones have made black hole physics a hot topic of research
today. Thanks to the holographic principle, there have been enormous advances in the
direction of solving this historical paradox. Nevertheless, there is still much to unravel
in this minefield of contradictions and paradoxes.

One possibility to solve the paradox mentioned above and other related problems
is that black holes are actually Bose-Einstein condensates. This thesis will explore the
possibility of describing black hole thermodynamics in terms of a graviton condensate.
This thesis is organized as follows. In Chapter 2, we will present the background of
black holes physics. We will discuss the nature of the event horizon and how Hawking
temperature establishes the black holes’ thermal character. Chapter 3 will introduce
the pressure and volume term for a black hole in two different approaches. In the first
one, the negative cosmological constant plays the role of a pressure term. In the second
one, we will discuss a local program to the black hole thermodynamics called the Horizon
thermodynamics approach. Chapter 4 will begin with the Black Hole N-portrait proposal
discussion, where one considers that the Hawking radiation is due to the leakage of
particles from a graviton condensate. Then, we will discuss a model, which gives a
geometrical interpretation of the N-portrait proposal. After this, we will obtain the
thermodynamic behavior of this geometrical model. Chapter 5, we will introduce the
Kiselev black hole, which can parameterize the most well-known spherically symmetric
black holes. We will obtain its thermodynamic behavior, and we will discuss its possible
interpretation as a graviton condensate. Finally, we will add a series of appendices with
two purposes in mind: to avoid excessive lengthening the central part of this thesis, and
to be self-contained to serve as an introductory reference to people outside the field of
black holes.
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Chapter 2

Black Holes Thermodynamics

This chapter has been written with two purposes in mind. The first one is to establish
the basis of black hole physics that we will use throughout this thesis. The second purpose
is that this work to be self-contained to serve as an introductory reference for people
outside the field of the black hole [BH]. To avoid overstretching this chapter, we have left
long calculations and technical details in appendices A, B, C, and D so that we will refer
only to the final results.

2.1 Notation and Conventions

This section aims to establish the notation and conventions for the more relevant
tensors in General Relativity [GR], which will use throughout the whole thesis. Our
signature is (−,+,+,+), and we will limit ourselves to work in 4 dimensions. Besides,
Greek indices α, β, ..., etc. will run over 0,1,2,3, and Latin indices a, b, ..., etc. will run
over 1,2,3. Also, we will use natural units [G = c = kb = ~ = 1], except on some special
occasions where we will explicitly state the unit system used. With that said, we start
with the Einstein-Hilbert action coupled with matter fields

S =

∫ [
1

8π
R + LM

]√
−gd4x (2.1)

LM represents the "matter" Lagrangian density for any non-gravitational field present,
and R is the Ricci scalar defined as

R = gµνRµν (2.2)

The Ricci tensor Rµν comes from the contraction of the metric and the Riemann
tensor in the following way

Rµν = gαβRµανβ (2.3)

The Riemann tensor in terms of the metric connection is given by

Rµ
ναβ = ∂αΓµνβ − ∂βΓµνα + ΓλνβΓµλα − ΓλναΓµλβ (2.4)

Finally, the metric connection is defined as follows

Γµαβ =
1

2
gµλ (−∂λgαβ + ∂αgλβ + ∂βgαλ) (2.5)
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In honor of the brevity, we will skip the explicit variation of the action, which can
be found in any intermediate-level textbook of GR. The Einstein equation from the
variational principle (2.1) is given by

Gµν = 8πT µν (2.6)

The Einstein tensor involved the metric and its first and second derivatives through
the Ricci tensor and Ricci scalar in the following way

Gµν = Rµν − 1

2
gµνR (2.7)

The energy-momentum tensor can be obtained from the "matter" Lagrangian density
using the following expression

Tµν = − 2√
−g

∂(
√
−gLM)

∂gµν
(2.8)

One can write the Einstein equation in an alternative way if one notes that R = −T .
Using this relation one obtains the alternative expression for the Einstein equation

Rµν = 8π(T µν − 1

2
gµνT ) (2.9)

In the Einstein-Hilbert action, we intentionally omitted the Gibbons-Hawking-York
boundary term, which allows us to have a well-defined variational principle. We did this
for simplicity, and because this term does not play any role throughout this thesis. To see
the detail of this boundary term, we recommend a brilliant textbook called Gravitation,
Foundations, and Frontiers (1). To see the details of the variation of (2.1) clearly and
pedagogically, we recommend the introductory textbook called General Relativity, an
introduction for physicists (2). In this section, we have written the definitions of the more
used tensors of GR to establish a unique notation and conventions for all of them. To see
the properties of these tensors, the same textbooks mentioned above are recommended.

2.2 Continuity of the Metric at the Event Horizon

In 1916 Karl Schwarzschild found the Einstein equation’s first exact solution for a
static spherical symmetry, just a few months after that Einstein got the final form of
his equations. This solution represents the outside of a spherical mass M such a non-
rotating star. Einstein’s equations are so difficult to solve that it was almost 50 years
before Roy Kerr was able to find the solution with stationary axial symmetry, representing
the exterior of a rotating star in 1963. Apart from the technical difficulty of finding these
solutions, it also was a conceptual challenge to understand them. If the system’s radius R
were smaller than a certain radius rh, the system would undergo a gravitational collapse
from which even light could not escape. The radius rh mark the no return zone, and we
call it the event horizon radius.

In the more natural coordinate system for spherically symmetric black holes, the
metric is singular at rh. Incredibly, for more than 40 years, the nature of the singularity at
rh was a total mystery. Solely after the works of Finkelstein, Kruskal, and Szekeres around
1960, the physicists understood that the event horizon radius was not a real singularity.
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It can be removed doing coordinate transformations. Still more important, nowadays,
we understand the metric is smoothly continuous at rh as a natural consequence of the
equivalence principle. The golden age of black holes physics started after the revelation
of the metric’s well-behavior at the event horizon. The goal of this section is to study
the behavior of the metric around the event horizon.

A static spherically symmetric metric can be written as

ds2 = −f(r)dt2 +
1

h(r)
dr2 + r2dΩ (2.10)

Here dΩ ≡ dθ2 + sin2(θ)dφ2 is the unit 2-sphere. We will call f(r) the lapse function
throughout this work. The components of the metric connection and the Einstein tensor
are given in Appendix A. We will focus, for now, on the Schwarzschild solution where
f = h. The lapse function is

f(r) = 1− 2M

r
(2.11)

We can see two places where the metric is singular, one is rs = 0, and the other is
rh = 2M where grr diverges. First, rs is a real singularity of the BH; we cannot avoid
it with the current understanding of BH physics. Second, rh is a coordinate singularity
that appears due to the wrong choice of coordinates. To remove the singularity at rh, we
use the following coordinate transformation

u = t+ r + 2M ln
∣∣∣ r
2M
− 1
∣∣∣ (2.12)

⇒ du = dt+
(

1− r

2M

)−1

dr

Therefore, the metric takes the simple form

ds2 = −
(

1− 2M

r

)
du2 + 2dudr + r2dΩ2 (2.13)

This line element is the Schwarzschild solution in the so-called Advanced Eddington-
Finkelstein coordinates. Taking the range of the radial coordinate as 0 < r <∞, we see
now the metric is regular at r = rh.

A more useful coordinate system is Kruskal-Szekeres coordinates, which has the
following transformations

κX = eκr
∗

cosh(κt), κT = eκr
∗

sinh(κt) (2.14)

Where the intermediate coordinate r∗, called the tortoise coordinate, is defined as

r∗ =

∫
dl

f(l)
(2.15)

In the Schwarzschild case, the tortoise coordinate is given by

⇒ r∗ = r + 2M ln
∣∣∣ r
2M
− 1
∣∣∣
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While the constant κ is defined as

κ ≡ 1

2
f ′(rh) (2.16)

⇒ κ =
1

4M
Later, this constant called the surface gravity will play a fundamental role in black

hole thermodynamics. In the meantime, using these coordinate transformations, the line
element takes the form

ds2 =
4r3

h

r
e−r/rh

(
−dT 2 + dX2

)
+ r2dΩ2 (2.17)

Where r is an implicit function of X and T determined by the relation(
r

rh
− 1

)
er/rh = X2 − T 2 (2.18)

The line element (2.17) is diagonal, also it is regular at r = rh. In the Kruskal-Szekeres
coordinates, the radial light rays [dΩ2 = 0, ds2 = 0] make 45 degree lines in X − T sector
of the metric just like in the Minkowski flat spacetime. We can see this in the following
diagram

Figure 2.1: Spacetime diagram of the extended Schwarzschild geometry in Kruskal-
Szekeres coordinates. Here µ ≡ 2MG

c2
. The region I is our universe. The region II is the

interior of the black hole. We can see how a light-cone is radially infalling. The broken-
line arrows show escaping signals. The region I ′ is another asymptotic flat spacetime
connected through a wormhole to I, and the region II ′ is the white hole. Our discussion
does not consider the regions I ′ and II [Image extracted from (2)]
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2.2.1 The Near-horizon Metric

In this subsection, we will use results from Appendix B, where the Rindler frame for
the Minkowski flat spacetime has been described. We expand an arbitrary lapse function
near rh as

f(r) ≈ f(rh) + f ′(rh)(r − rh)⇒ f(r) = 2κl (2.19)

Where we use the definition (2.16) of κ and we define l ≡ r−rh. Using this expansion
the line element becomes

ds2 ≈ −2κldt2 +
1

2κl
dl2 + dL2 (2.20)

Here dL2 denotes the metric on t =constant, r =constant. The horizon is now located
at l = 0. The sector t− l is exactly the Rindler frame described by (B.5), where κ plays
the role of acceleration. The metric is still singular at l = 0, but we know that geometry
does not have any singularity here because the near-horizon metric is the Minkowski flat
spacetime. This result is an amazing one; it is the equivalence principle in action [To see
the details of how one arrives explicitly at the Minkowski line element go to Appendix B].
Moreover, the equation (2.19) is for any arbitrary lapse function with the only condition
of not having null first derivative at r = rh [l = 0]. This result applies to a wide range of
metrics. From this point of view, there is nothing special at the event horizon. However,
the horizon still marks the zone of no return for any object or photon falling into the BH.
The interior of the BH is causally disconnected from the exterior just as an observer who
accelerates uniformly is from some patches of Minkowski flat spacetime.

At the classical level, the event horizon is well-understood. It is a null surface which
divides the spacetime into zones causally disconnected. In some sense, it is a perfect
sample of the marriage between the relativity principle with the equivalence principle.
However, at the quantum level, different observers doing quantum physics around the
event horizon may have inconsistent results. For instance, a free-falling observer called
Alice feels nothing special at the horizon [a super-massive BH can eliminate all tidal
forces because these forces fall as ∼ r3, so at the horizon, fall as ∼M3]. On the contrary,
the external observer called Bob will observe how Alice is falling into a hellish region of
extreme temperature, being thermalized, and eventually re-emitted as Hawking radiation
(3).

2.3 Black Hole Mechanics

The objective of this section is to establish the first law of black hole mechanics (11).
For this, we will define the Komar integral (12) and the Smarr relation (13) based on
the references (1) and (5). We will require the use of the killing vector and the concept
of surface gravity, whose definitions and properties we will adjunct in Appendix C. We
will calculate the Komar integral and the Smarr relation in their general form for a static
spherical solution. The first law of black hole mechanics is similar to the first law of
thermodynamics. However, at the classical level, this similarity is still a mathematical
peculiarity because, classically, BH does not radiate thermally.
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2.3.1 The Komar Integral

Let ξα be a Killing vector, then we defined the following current vector

Qα ≡ ξβR
αβ (2.21)

This vector has a zero divergence, and it allows us to define integral expressions for
conserved quantities. First, we verified its zero divergence

∇γQ
α = ξβ∇γR

αβ +Rαβ∇γξβ

From Einstein equation we know ∇αG
αβ = 0, so ∇αR

αβ = 1
2
gγβ∂γR. Besides, due to

ξα is a killing vector the quantity ∇αξβ is antisymmetric (C.1). Therefore

⇒ ∇αQ
α =

1

2
ξβ∂βR⇒ ∇αQ

α = 0

In the last step, we use the fact that any geometrical scalars field has zero directional
derivatives when ξβ is a killing vector. Now, we define the following integral

I ≡ − 1

4π

∫
Σ

d3ΣαQ
α (2.22)

Here Σ is the hypersurface of integration. Using the definition of the current vector
(2.21) and the alternative form of the Einstein equation (2.9), we can express this integral
I in terms of quantities of the energy-momentum tensor

I = −2

∫
Σ

d3Σβξ
α(T βα −

1

2
δβαT ) (2.23)

This integral is a global conserved quantity when Σ is a spacelike hypersurface. So,
the integrating measure d3Σβ is spacelike. The physical meaning of this quantity depends
on the nature of the killing vector used.

Now, we are going to show another form of this integral I. First, we have from the
equation (C.3) a relation between the Killing vector and Ricci tensor

∇α∇αξβ = −Rβ
µξ

µ

The demonstration of this relation is in Appendix C. We replace this equation in the
definition of I (2.22)

I =
1

4π

∫
Σ

∇β∇βξαd3Σα

Now, using the divergence theorem in this expression, we obtain

I =
1

8π

∫
S

∇βξαd2Σαβ (2.24)

Here S is the boundary of the spacelike hypersurface Σ. When ξµ(t) is a timelike killing
vector the only non-null term of ∇βξα is ∇rξt(t) = grrΓttr [See Appendix A for non-null
components of the connection]. Besides, the two-dimensional measure is

d2Σαβ =
1

2!

√
hεαβγλdx

γ ∧ dxλ ⇒ d2Σαβ = εαβθφR
2sin(θ)dθdφ
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Where θ and φ are not indices, they are the spherical coordinates related to 2-sphere
and h the induced metric. In this case, we have h =

√
gθθgφφ = R2sin(θ) from (A.1).

We use R instead of r to indicate a fixed radius of the spherical surface outside the event
horizon. Finally, we define the integral I ≡ Ek when we use a time Killing vector ξµ(t).
Thus we obtain

Ek =
1

4π

∫
S

∇rξt(t)R
2sin(θ)dθdφ

Here we have ∇rξt(t) = grrΓttr, and using equation (A.2), one obtains ∇rξt = 1
2
f ′(r).

Then, the Komar mass in static spherical solution is given by

Ek =
R2

2
f ′(R) (2.25)

The Komar mass Ek is a global conserved quantity of the spacetime. This equation
should be valid for all lapse functions in static spherical solution. We are going to apply
this result for two well-famous solutions. First, the lapse function for Schwarzschild
solution is f(r) = 1− 2M

r
, then its first derivative is f ′(r) = 2M

r2 . Therefore, we obtain

Ek =
R2

2

2M

R2
⇒ Ek = M

This result is independent of the value of R and it is a well-known result for the
energy of the Schwarzschild solution. The lapse function for Reissner-Nordstrom solution
is f(r) = 1− 2M

r
+ Q2

r2 , so its derivative is f ′(r) = 2
r2

(
M − Q2

r

)
. Hence, we obtain

Ek(R) = M − Q2

R
⇒ Ek = M

The result depends on R, but taking the limit R → ∞, the Komar mass does not
depend anymore on R. The Komar mass depends on the asymptotic behavior of the lapse
function. This feature will be relevant for the cases of not asymptotically flat spacetime,
such as spacetime with cosmological constant or the Kiselev black hole [This BH will be
the topic of a chapter 5].

2.3.2 The Smarr Relation

In the presence of a BH, the hypersurface Σ must be taken between the outermost
horizon and infinity. The interior of BH is not considered for computing global integral.
In these cases, we denote equation (2.23) as I ≡ Ibh

Ibh = −2

∫
Ω

∫ R

r+

d3Σt(T
t
t −

1

2
T )

Here r+ denotes the outermost horizon and Ω the two-dimensional surface of the 2-
sphere. We have already considered the spacelike measure d3Σt and the Killing vector
ξµ(t). Using the divergence theorem at infinity, we have the Komar mass Ek given by
(2.25), and using the same theorem on the horizon one has the following expression

MH = − 1

8π

∫
H

∇βξαd2Σαβ (2.26)
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This equation is the same that (2.24), where the negative sign appears because we
took the radial infinity as a positive direction, so toward the horizon, the normal to
the null surface is negative-directed. The boundary surface H is the event horizon. To
distinguish this integral from the Komar mass, we call it MH . Summarizing, we have for
the Komar mass Ek, the surface integral over the event horizon MH , and the "matter"
integral Ibh the following mathematical identity

Ek −MH = −2

∫
Ω

∫ R

r+

d3Σt(T
t
t −

1

2
T ) (2.27)

We can relate the surface integral MH with the horizon area A in a direct way. To do
this, we remind the definition of the surface gravity from equation (C.5), which is

ξµ∇µξ
α ≡ κξα

Using this equation, and the fact that d2Σαβ is a two-dimensional null measure, one
gets for the expression inside of the surface integral (2.26)

∇βξαd2Σαβ = ∇βξα(lαξβ − lβξα)dA⇒ ∇βξαd2Σαβ = 2κξαlαdA

Where lα is an auxiliary null vector [lalα=0]. We remind from equation (C.4) that
on the horizon the killing vector ξα(t) vanishes [ξa(t)ξα(t) = 0], so one chooses the auxiliary
null vector such that lαξα(t) = −1 to expand the two-dimensional null surface in these
null vectors. To recall the integral expressions over null surfaces see, section 5.5 of (1).
Therefore, one gets for MH that

MH = − 1

8π

∫
H

2κξαlαdA⇒MH =
1

4π
κA

Finally, replacing this result in equation (2.27) we obtain a mathematical identity
called the Smarr relation

Ek =
1

4π
κA− 2

∫
Ω

∫ R

rh

d3Σt(T
t
t −

1

2
T ) (2.28)

This result holds in a static spherical solution of the Einstein equation.

For instance, in the case of the Reissner-Nordstrom BH one has T tt = −Q2

8πr4 and T = 0
[See, for instance, (2)] . Applying the equation (2.28), we obtain

M =
1

4π
κA− 2

∫
Ω

∫ R

rh

(−Q2)

8πr4
r2 sin(θ)drdθdφ⇒M =

1

4π
κA− Q2

R
+
Q2

rh

Recognizing the electrical potential evaluated at the horizon as φQ = Q
rh
, and taking

the limit R→∞ one arrives at the Smarr relation for the Reissner-Nordstrom BH

M =
1

4π
κA+ φQQ (2.29)

If one takes the mass parameter M as a function of the area A and the charge Q, i.e.,
M = M(A,Q), one can obtain a first-order differentials relation as follows

dM =
∂M

∂A
dA+

∂M

∂Q
dQ (2.30)
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For the Reissner-Nordstrom BH, the outermost horizon is located at r+ = M +√
M2 −Q2. From this, it is pretty easy to verify the equation (2.30) and to find the

values for ∂M
∂A

and ∂M
∂Q

. However, for BH with a more complicated lapse function solving
f(r+) = 0 analytically can be intractable. Luckily, we have generalized Euler theorem.
Let W a function such W (x, y, .., z)→ W (αpx, αqy, .., , αtz) = αsW (x, y, ..., z), the Euler
theorem implies

sW (x, y, ..., z) = p

(
∂W

∂x

)
x+ q

(
∂W

∂y

)
y + ...+ t

(
∂W

∂z

)
z (2.31)

Using r+ as enlargement factor, we recognize the following scaling relations M ∼ r+,
S ∼ r2

+ and Q ∼ r+, and applying the Euler theorem for Reissner-Nordstrom BH, we
obtain

M = 2
∂M

∂A
A+

∂M

∂Q
Q (2.32)

Comparing equation (2.29) with (2.32), one obtains for the partial derivatives that

∂M

∂A
=

κ

8π
,

∂M

∂Q
= φQ (2.33)

Therefore, we obtain the following first-order differentials relation among parameters
of the black hole

dM =
1

8π
κdA+ φQdQ (2.34)

This relation is the first law of the Black Hole Mechanics exemplified for the case of
Reissner-Nordstrom BH. Combining the Smarr relation with generalized Euler relation is
a powerful tool to explicitly avoid finding the lapse function’s roots. Having the Smarr
relation is equivalent to have the first law of the Black Hole Mechanics. It is crucial
noticing that all the results of this section are obtained at the classical level. There are
no reasons yet to believe that black holes are thermal systems, even though the equation
(2.34) looks the same as the first law of thermodynamics, where the factor φQdQ has the
same structure as the electrical work used in thermodynamics.

2.4 Black Hole As Thermal Quantum System

The idea to assign entropy to a black hole can be traced to 1970 when John
Archibald Wheeler and his graduate student Jacob Bekenstein joked about the perfect
crime. Imagine someone who let drop a cup of tea into the black hole; if nothing can
escape from the inside of a black hole, the universe would lose the entropy of the cup of
tea violating the second law of thermodynamics. This anecdote inspired Bekenstein to
actually assigning entropy to black holes to avoid such criminal acts [See (14), (15) for
the original works and (29) for a historical review of entropy since Carnot to
Bekenstein]. Bekenstein connected the entropy with the area of the black hole
encouraged by the Hawking area theorem, which states that the black hole area can
never decrease, behavior similar to the second law of thermodynamics. However, at that
time, there were no physical reasons to associate a temperature to a black hole. At the
classical level, the black holes do not emit thermal radiation.
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In 1975, in a seminal work, Stephen Hawking revealed the black holes’ thermal nature.
He computed thermal radiation of the BH using a test scalar field on curved spacetime.
Quantum effects are the key to allow a black hole radiates and evaporate losing mass.
Some quantum modes fall inside the horizon. Other quantum modes reach infinity, which
constitutes the Hawking radiation (16). All of this is possible because the null energy
condition is violated at the quantum level [To see the energy conditions go to Appendix
D]. This condition is one of the Hawking area theorem’s hypotheses. In this way, the first
law of the black hole mechanics become precisely in the first law of thermodynamics. The
BH area is decreasing during the evaporation, so its entropy is decreasing too. However,
the sum of the entropy of the Hawking radiation and the entropy of the black hole
itself can never decrease. This idea is the generalized second law (GLS) of black holes
thermodynamics (17).

In Appendix G, we will compute the Hawking temperature of an eternal black hole
using QFT on curved spacetimes. In this section, in honor of brevity, we will use the
Euclidean trick to obtain the Hawking temperature and establish the Hawking-Bekenstein
relation for the black hole entropy. To start, we will use another form for the near-horizon
metric from equation (B.6). Thus, we have near horizon that

ds2 = −(κr)2dt2 + dr2 + dL2

Using the Euclidean time t = itE and ignoring the sector dL2, one has

ds2 = (κr)2dt2E + dr2

⇒ ds2 = dr2 + r2d(κtE)2

This 2-dimensional line element is simply the polar coordinate system with κtE acting
as the angular coordinate. So, demanding periodicity to avoid a conical singularity, one
has tE → tE + 2π

κ
. We also notice that the Euclidean black holes do not have an interior

(30). We exemplify this in the following figure for the Euclidean Schwarzschild black hole

Figure 2.2: The Euclidean Schwarzschild black hole. The Euclidean time and the radial
direction have the geometry of a cigar, which is smooth at the tip r = rrh . At each point
we also have a sphere of radius r. [Image and caption extracted from (30)]
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The quantum system’s temperature is the inverse of the period [see (7) for a
pedagogical discussion of the Euclidean trick]. From this, we obtain the Hawking
relation

Th =
κ

2π
(2.35)

Given the Hawking temperature, one can fix the proportional constant between the
area A and the entropy S of BH, so one arrives at the Bekenstein-Hawking relation

Sbh =
A

4
(2.36)

In 1993, Robert Wald proved that the black hole entropy is the Noether charge arising
from a diffeomorphism invariant Lagrangian. See details in (18).

Using these results in the case of the Reissner-Nordstrom BH, one obtains the Smarr
relation and the first law of BH thermodynamics as follows

M = 2ThS + φQQ (2.37)

dM = ThdS + φQdQ (2.38)

The Smarr relation acts as the Euler relation for the standard thermodynamic
systems. We must notice that the BH entropy is proportional to area, not to the volume
of BH. This feature is distinctive of the BH thermodynamics. Another point is that the
Hawking temperature is measured by someone static at infinity. Using a quasi-local
analysis (19), one can see that the Hawking temperature, in spherically symmetric
configuration, satisfies the Tolman Law (20)

Tproper(r) =
Th√
−gtt

, (r > r+) (2.39)

Thus, for an static observer at infinity in asymptotic flat spacetime both temperatures
become equal Tproper = Th [r → ∞ implies

√
−gtt → 1]. From this, we can see that a

static observer just outside of the horizon would measure an unusually high temperature
because of here, the red-shift factor 1/

√
−gtt becomes infinity. A static observer just

outside the horizon would require a powerfully infinite engine to keep static. This fact is
the conceptual reason for such unusual high temperatures.

So far, we have not explicitly given the Hawking temperature for the
Reissner-Nordstrom BH. Doing this is quite simple, thanks to our general construction.
Using the general result under spherical symmetry of surface gravity from equation
(C.7) plus the Hawking relation (2.35), one obtains that

Th =
f ′(r+)

4π
(2.40)

Thanks to this equation, it is pretty easy to obtain the Hawking temperature and the
proper temperature for any spherical BH. For the Reissner-Nordstrom BH, one has

Th =

√
M2 −Q2

2π(M +
√
M2 −Q2)2

(2.41)
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Tproper =

√
M2 −Q2

2π(M +
√
M2 −Q2)2

1√
1− 2M

r
+ Q2

r2

(2.42)

The extreme Reissner-Nordstrom solution is defined when M = Q, so one has Th =
Tproper = 0. It is a cold black hole [its entropy does not vanish]. The Schwarzschild
solution is recovered by taking Q = 0, so the temperatures become

Th =
1

8πM

Tproper =
1

8πM

1√
1− 2M

r

The heat capacity for the Schwarzschild case is given by

C = −8πM2 ⇔ C = −2S

Where we used the Hawking-Bekenstein entropy S = 4πM2 and the definition of the
heat capacity C ≡ T ∂S

∂T
. The Schwarzschild BH is thermodynamically unstable due to its

negative heat capacity. Self-gravitational systems with negative heat capacity are known
in astrophysics since 1967 (21).

2.4.1 Thermodynamics from Textbook

Black holes thermodynamics have some peculiarities which we must highlight. First,
they are highly non-extensive thermodynamic systems. To see this, we remind the first
law of the textbook thermodynamics

dU = TdS − PdV + µdN (2.43)

Only in this subsection T will denote the system’s temperature, no trace of the energy-
momentum tensor. The internal energy U is a function of the extensive variables S, V ,
and N . An extensive variable is proportional to the "size" of the system. For instance,
in the case of internal energy we have

U(αS, αV, αN) = αU(S, V,N)

On the other hand, the intensive variables T , P , and µ do not change with the
enlargement factor α. All extensive variables are homogeneous functions of the
first-order. On the contrary, all intensive variables are homogeneous functions of the
zero-order. Based on this scaling relation for extensive and intensive variables, one can
use the generalized Euler theorem (2.31) and arrive at the Euler formula for textbook
thermodynamics

U = TS − PV + µN (2.44)

Taking differential to this equation, one arrives at

⇒ dU = SdT + TdS − PdV − V dP + µdN +Ndµ
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This result does not coincide with the first law of TD (2.43). We need to impose the
following constraint called the Gibbs-Duhem relation

0 = SdT − V dP +Ndµ (2.45)

This equation must always be fulfilled for textbook thermodynamics and expresses
that the intensive variables are not independent among them. Equation (2.44) and
equation (2.45) are no longer true for BH thermodynamics. The enlargement factor for
BH is the horizon radius r+, which implies a lack of a clear limitation between extensive
and intensive variables. For instance, for the Schwarzschild BH, the entropy scales as
Sbh ∼ r2

+, and the Hawking temperature scales as Th ∼ r−1
+ . The notion of extensive and

intensive variables is lost. The Smarr relation replaces the Euler formula for textbook
thermodynamics. However, the Gibbs-Duhem relation is lost for BH thermodynamics
(22). The moral is that in undergraduate thermodynamics [TD], it assumes other
hypotheses apart from TD’s four basic laws. One must be careful about these auxiliary
hypotheses because they cannot be true in particular quantum systems such as BH. The
lack of extensivity in thermodynamic systems is a hot topic of research; it is not a
feature that belongs exclusively to BH. Modern textbook about this topic are (26), (27),
(28). In these references, one can find several systems with peculiar behavior due to
their lack of extensivity.

Due to the peculiarities of the black holes thermodynamics, many authors do not
believe in it. To see an interesting discussion on this debate, look at the works of
Wallace (31), (32), and (33). In these papers, he discusses BH thermodynamics, BH
Statistical mechanics, and the information paradox. On the other hand, for many
theoretical physicists, the Hawking relation (2.35) and Bekenstein-Hawking relation
(2.36) are almost experimental facts. Quantum black hole physics is not a complete
theory; it has inconsistencies and paradoxes that, to this day, are not resolved. In order
to resolve these paradoxes, practically all fields of research in physics have been used.
Today, black hole physics encompasses gravity theory, quantum theory, information
theory, and condensed matter theory. The physics of quantum black holes has become a
fascinating research area of constant exchange of ideas between different areas of
physics. We are in exciting times to be a relativist.
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Chapter 3

The Pressure and Volume for BH
Thermodynamics

In chapter 2, we focused on the origin of the black hole thermodynamics, and we
stated the Hawking relation between the temperature Th and surface gravity κ and the
Bekenstein-Hawking relation between the entropy Sbh and the BH area A. Now, we will
introduce the pressure and volume term for a black hole in two different approaches. In
the context of black holes, which are asymptotically AdS, the negative cosmological
constant is a natural candidate to be the thermodynamic pressure term (38). In the
second approach called Horizon Thermodynamics [HZ] proposed by Padmanabhan in
2002, the Einstein equation is considered like a thermodynamic identity, and any
content of matter contribute to the pressure term (44). Incredibly, in both approaches,
the thermodynamic volume coincides with the so-called naive geometrical volume, i.e.,
consider the black holes as a sphere of radius rh. This result is not expected because the
differential volume for spherical symmetry in GR is given by dV =

√
grrgθθgφφdrdθdφ,

where in general grr 6= 1. Then, dV 6= r2 sin(θ)drdθdφ.

3.1 AdS Black Holes Thermodynamics

To exemplify the AdS Black Holes Thermodynamics, we will use the AdS Reissner-
Nordstrom BH, which has the following lapse function

f(r) = 1− 2M

r
+
Q2

r2
− Λ

3
r2 (3.1)

Where the cosmological constant is negative Λ < 0. This solution is not asymptotically
flat. So, when one computes the Komar integral, this diverges. To see this, we use the
equation (2.25)

Ek =
R2

2
f ′(R)⇒ Ek(R) = M − Q2

R
− ΛR3

3
(3.2)

⇒ Ek(∞) =∞, (R→∞)

The divergence of the Komar integral is one of the reasons why the physicists delayed
many years to develop the AdS Black Holes Thermodynamics. Another reason that
blocked to consider the cosmological constant as a thermodynamic variable is that Λ is
a constant. Many physicists could ask themselves: Why does a constant would be a
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thermodynamic quantity? After all, no one would believe that the speed of light c or the
Newtonian constant G could be taken as a thermodynamic quantity. In the later ’80s,
Teitelboim and York proposed that Λ might be itself a dynamical variable (34), (35), then
in 1995 Mann and Creighton incorporated the corresponding thermodynamic variable for
Λ, though without given any interpretation to its conjugate variable (36).

3.1.1 Smarr Relation for AdS Reissner-Nordstrom BH

In 2009, Kastor and coworkers found the Smarr Relation for AdS BH using the
Hamiltonian formalism for GR (37). In this way, they were able to interpret that Λ
was proportional to positive pressure and obtained the thermodynamic volume, which is
V =

4πr3
+

3
. This volume coincides with naive geometrical volume that one could expect

for a spherical object. Also, in the presence of Λ, the mass M is no longer the internal
energy, M becomes the Enthalpy of the system.

We are going to obtain the results aforementioned using the equation (2.28) with
Hawking relation (2.35) and Bekenstein-Hawking relation (2.36) already included.
Consequently, we have for static spherical symmetry that

Ek = 2ThS − 2

∫
ΣBH

d3Σt(T
t
t −

1

2
T ) (3.3)

We remind that ΣBH is just the volume between the outermost horizon and the infinity.
Th is the Hawking temperature and T the trace of the energy-momentum tensor. Also,
we are going to use the variable R for the asymptotic zone, and just at the end of the
calculation, we will take the limit R→∞. Additionally, we recall the useful components
of the energy-momentum tensor for our computation (2), which are

T νµ(Λ) =
−Λ

8π
δνµ, T(Λ) =

−4Λ

8π

T tt(EM) = − Q2

8πr4
, T(EM) = 0

Then, the integral of interest is

Ibh ≡ −2

∫
ΣBH

d3Σt(T
t
t −

1

2
T )

⇒ Ibh = −8π

∫ R

rh

dr · r2(T tt(Λ) + T tt(EM) −
1

2
T(Λ))

⇒ Ibh = −8π

∫ R

rh

dr

(
Q2

8πr2
− Λr2

8π

)

⇒ Ibh = −Q
2

R
+
Q2

rh
− ΛR3

3
+

Λr3
h

3

Using this result on RHS of equation (3.3) with the result for the Komar mass (3.2)
on the LHS, one arrives at
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⇒M − Q2

R
− ΛR3

3
= 2ThS −

Q2

R
+
Q2

rh
− ΛR3

3
+

Λr3
h

3

⇒M = 2ThS +
Q2

rh
+

Λr3
h

3
(3.4)

The last expression is independent of R, so taking R→∞ is harmless even when we
are not in asymptotically flat spacetime. This result is gratifying; we are using the same
equation of the ’80s to compute a new result from 2009. Indeed, when one already knows
the answer, it is not difficult to find other ways to perform the same calculation.

In the equation (3.4) one can recognize the electrostatic potential Q2

rr
= φQQ. Also,

one knows that the pressure associated to the cosmological constant is PΛ = −Λ
8π

because
it is a perfect fluid with equation of state εΛ = −PΛ. This pressure is positive due to
Λ < 0. So, using these results in (3.4), one obtains

⇒M = 2ThS + φQQ−
8πr3

h

3
PΛ

We are going to apply the generalized Euler theorem from the subsection 2.3.2. We
need the scaling relation of the thermodynamic quantities and the system’s natural size,
given by r+. We can see this scaling relation directly from the lapse function, and they
are M ∼ r+, Q ∼ r+, S ∼ r2

+, and Λ ∼ r−2
+ . Then, applying the generalized Euler

theorem (2.31), one arrives at

⇒M = 2
∂M

∂S
S +

∂M

∂Q
Q− 2

∂M

∂PΛ

PΛ

Comparing the last two equations, one finds that

∂M

∂S
= Th,

∂M

∂Q
= φQ,

∂M

∂PΛ

=
4πr3

+

3
(3.5)

The conjugate variable for the pressure is the volume, and satisfactorily, our volume is
V =

4πr3
+

3
. This volume is defined in a thermodynamic way, not in a geometrical way. This

distinction is really important, the geometrical measure for spherical symmetry in GR
is given by dV =

√
grrgθθgφφdrdθdφ, where grr = 1/f(r), from this it follows that there

is not a natural geometrical definition for the volume of a black hole because grr → ∞
when r → r+ [Here I considered the line element given by (A.1)]. This concept of the
thermodynamic volume will be pretty useful for later chapters. Finally, the Smarr relation
for AdS Reissner-Nordstrom BH is given by

M = 2ThS + φQQ− 2V PΛ (3.6)

Taking M = M(S,Q, P ) is easy to obtain the first law of the AdS Black Hole
Thermodynamics

dM = ThdS + φQdQ+ V dPΛ (3.7)

The Hawking temperature can be calculated using equation (2.40) and is given by

Th =
1

2πr2
+

(
M − Q2

r+

− Λ

3
r3

+

)
(3.8)
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In this way, we have given the expressions for all thermodynamic quantities. We
notice that in equation (3.7), one has the term V dPΛ, not PΛdV . Doing the following
Legendre transformation M = E + PΛV to Smarr relation and the first law, we obtain
the following expressions

E = 2ThS − 3PΛV + φQQ, E ≡M − PΛV (3.9)

dE = ThdS − PΛdV + φQdQ (3.10)

With these expressions, we conclude that the mass of the BH is the Enthalpy of the
system M = H(S,Q, PΛ), not the internal energy. Using the equation of state εΛ = −PΛ

for a cosmological fluid, one arrives at

E = M + EΛ, EΛ ≡ εΛV (3.11)

The total internal energy E can be interpreted as the sum of the black hole mass
M and the energy associated with the cosmological constant EΛ. This quantity is the
total vacuum energy, and it is negative because of Λ < 0 [PΛ > 0]. For this reason,
M is no longer the internal energy (38). At this point, one can wonder why we cannot
do the same for the electric charge Q? Well, the term φQQ is not strange for textbook
thermodynamics. Hence, from this perspective, it is unnecessary to pursue this purpose.
However, we will discuss this point in section 3.2, under the context of the Horizon
Thermodynamics approach.

3.1.2 Heat Capacities and the Volume Term

In the particular case where Q = 0, we can compute the heat capacity at constant
pressure. To do this, we remind its definition

CP ≡
T

∂T
∂s
|P

(3.12)

The Hawking temperature is a function of M , r+, and PΛ, and is given by

Th =
1

2πr2
+

(
M − Λ

3
r3

+

)
(3.13)

We must eliminate the parameter M in this expression to calculate the heat capacity.
From the lapse function evaluated at r+, we have

1− 2M

r+

−
Λr2

+

2
= 0⇒M =

r+

2
−

Λr3
+

6
(3.14)

By combining the last two results, we have the temperature only as a function of Λ,
which is the same as a function of the pressure PΛ

Th =
1

2πr+

(
1− Λr2

+

)
(3.15)

Using the definition of CP (3.12), straightforwardly, one obtains

CP = −2S
(1− Λr2

+)

(1 + Λr2
+)

(3.16)
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Finally, expressing the result in terms of the pressure PΛ = −Λ
8π

, one arrives at the
desired result

CP = 2S
(8PΛS + 1)

(8PΛS − 1)
(3.17)

If PΛ = 0, we recover C = −2S for the Schwarzschild case, which implies a
thermodynamic instability. However, here if 8PΛS > 1, the heat capacity is positive.
The inequality in terms of the cosmological constant is −Λr2

+ > 1, which is well-defined
thanks to Λ < 0. The result that black holes can be thermodynamically stable in
Anti-de Sitter spacetime is a well-known one (23). The heat capacity CP diverges when
−Λr2

+ = 1, or when r
(min)
+ =

√
1
|Λ| . At this point, the minimum Hawking temperature

for which the BH is stable is given by

Tmin =

√
2P

π
(3.18)

Where we evaluated equation (3.15) at the critical radius r(min)
+ =

√
1
|Λ| . Below this

minimum temperature the black hole is unstable. However, from equation (3.14) we can
establish the transition between AdS Schwarzschild and pure AdS spacetime

M =
r+

2
−

Λr3
+

6
, M = 0⇒ rHP+ =

√
3

|Λ|

Evaluating equation (3.15) at rHP+ , we obtain the so-called Hawking-Page
temperature THP (23). This temperature is the critical point where the transition
between AdS Schwarzschild and pure AdS spacetime happens, and it is given by

THP =

√
8P

3π
(3.19)

Nevertheless, we have THP > Tmin, so we cannot reach the minimum temperature
before entering the transition from AdS Schwarzschild to pure AdS spacetime. This
result is satisfying for thermodynamic stability.

We can play the same game with heat capacity at constant volume

CV ≡
T

∂T
∂s
|P
⇐⇒ CV ≡ T

∂S

∂T

∣∣∣∣
V

(3.20)

However, we must notice that both volume V =
4πr3

+

3
and entropy S = πr2

+ are
function of r+ only. Therefore, if we demand constant volume, we will have constant
entropy. Accordingly, the heat capacity at constant volume is zero. Moreover, we can
write S = S(V ) and V = V (S), which implies that they cannot be considered
independent thermodynamic quantities. However, this is the result of being in spherical
symmetry. In the stationary axisymmetric solutions, these thermodynamic variables
become independent (39). For instance, this happens in the case of the AdS
Kerr-Newman BH. To sum up, the coincidence between the thermodynamic volume and
the naive geometrical volume is a mathematical artifact due to the spherical symmetry.
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We must also notice that because we have a pressure and volume term in the AdS Black
hole thermodynamics, we can compute the Carnot cycle and study its efficiency, which
was made in (40)(41). Besides, one can consider the consequences of this extension of BH
thermodynamics in AdS/CFT correspondence and discuss the meaning of the variable Λ.
In honor of brevity, we are not going to deal with those remarkable results here. A recent
and complete review for AdS Black Hole Thermodynamics and its consequences is (42).

3.2 Horizon Thermodynamics (HT)

So far, we have been working on the standard approach of black hole
thermodynamics. Our calculations are based on integral quantities involved in the
Smarr relation (3.3). Notably, we used the global conserved Komar mass (2.25) for
black holes asymptotically flat. In the cases of black holes that are asymptotically
Anti-de Sitter, the Komar mass diverges; however, we still use the Smarr relation, which
implies a global notion of spacetime because we are doing an integral between the
outermost horizon to infinity. Horizon Thermodynamics (HT) proposed by
Padmanabhan in 2002 is based on local physics in opposition to the standard approach.

The key idea of the HT approach is that all horizons must be treated on equal
footing because all of them imply a causal disconnection between different patches of
the spacetime. Each observer has the right to do physics in her patch, and associate
temperature with her notion of horizon (43). The Rindler spacetime has a temperature
TR = a

2π
, where a is the acceleration (24), and AdS/Flat black holes have a temperature

TR = κ
2π

with κ the gravity surface. Even more, the de Sitter spacetime also has a
temperature due to its cosmological horizon (25). For the last case, the lapse function is

f(r) = 1− r2

l2
(3.21)

Using the Euclidean trick described in section 2.4 is pretty easy to obtain the
corresponding temperature, which is

TdS =
l

2π
(3.22)

The key point of all this discussion is that we likely live in a de Sitter universe. A
black hole in our universe would have the temperature associated with its event horizon
besides the cosmological temperature TdS at infinity. Multiple horizons put in a struggle
the standard approach of black hole thermodynamics. A local description becomes one
desired feature to do BH thermodynamics. We will describe the HT approach only for
spherical symmetry without using all its theoretical power. The HT approach is applied
to standard general relativity and more general theories, such as Lanczos-Lovelock gravity
theories. To see a complete review about this approach see (44)(45). Somehow, the HT
approach takes the Einstein equation as a thermodynamic identity. It is not the first time
that someone considers the Einstein equation in this way. In 1995, Ted Jacobson "re-
derived" the Einstein equation as a thermodynamic equation from the Clausius relation
(46).
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In the particular case of spherical symmetry, the approach of HT is quite simple.
Under this symmetry, the most important result is that we can identify the
thermodynamic pressure of black hole as P ≡ T rr|rh , where rh represents each horizon
or roots of the lapse function. Spherical symmetry allows us to obtain the first law of
the HT in a simple way that we are going to replicate from the original references
(47)(48) [See also chapter 16 of (1)]. For our purpose, it is enough to consider the
outermost radius r+ and to ignore the other interior horizons. First, from equation
(A.7) we have the radial mixed component of the Einstein equation for the case f = h
which is

Gr
r = 8πT rr ⇒

f(r)− 1 + rf ′(r)

r2
= 8πT rr

Evaluating this equation at r = r+ where f(r+) = 0 and taking T rr|r+ ≡ P . Then,
multiplying the whole equation with dr+ we obtain

0− 1 + r+f
′(r+)

r2
+

dr+ = 8πPdr+ ⇒ f ′(r+)r+dr+ − dr+ = 8πPr2
+dr+

Reorganizing the differential in a suggestive way

⇒ f ′(r+)

4π
d(πr2

+)− d(r+/2) = Pd

(
4

3
πr3

+

)
Immediately, we recognize from equation (2.40) that Th = f ′(r+)

4π
as result of being

working with static spherical solutions. Besides, from the Bekenstein-Hawking relation
(2.36), one has that S = A

4
= πr2

+. The HZ approach assumes the validity of the Euclidean
trick (44) as a hypothesis. For this reason, the entropy and temperature do not change
with respect to the standard thermodynamics approach. Finally, recognizing the volume
as V = 4

3
πr3

+, one obtains

⇒ d(r+/2) = ThdS − PdV

This equation tells us that the internal energy must be U = r+
2
. We can interpret this

result as the Misner-Sharp mass (49) evaluated at r+, which is defined as follows

f(r) ≡
(

1− 2U(r)

r

)
(3.23)

Thus, when we evaluate this definition at r+, so that f(r+) = 0, we obtain U(r+) =
r+
2
≡ U . This result justified the previous connection between the internal energy and

the Misner-Sharp mass. Therefore, the first law of HT can be summarized as

dU = ThdS − PdV (3.24)

Th ≡
κ

2π
, S ≡ A

4
(3.25)

V ≡
4πr3

+

3
, P ≡ T rr|r+ , U ≡ r+

2
(3.26)

One more time, one has that the thermodynamic volume coincides with the naive
geometrical volume. The Misner-Sharp mass is a quasi-local definition of energy that,
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in spherical symmetry, is well-established and has useful properties (50). In a vacuum
solution, that is to say, for the Schwarzschild BH, the standard BH thermodynamics
approach coincides with the HT approach. The pressure vanishes, and the internal energy
is U = M = Ek.

3.2.1 AdS Reissner-Nordstrom BH in HT approach

We will illustrate the HT approach in the case of AdS Reissner-Nordstrom BH. We
recall its lapse function, which is

f(r) =

(
1− 2M

r
+
Q2

r2
− Λr2

3

)
The radial mixed component of the energy-momentum tensor is the simple sum of

electric field component and the cosmological perfect fluid component T rr = − 1
8π

Q2

r4 − Λ
8π
.

From this expression, we can obtain the total pressure

⇒ P = − 1

8π

Q2

r4
+

− Λ

8π

P = PΛ + Pem, PΛ ≡ −
Λ

8π
, Pem ≡ −

1

8π

Q2

r4
+

(3.27)

The pressure term PΛ is the same as the standard thermodynamics approach in AdS
BH. The unusual term is the negative electrical pressure Pem. Using the definition of the
Misner-Sharp mass (3.23), one obtains

U = M − Q2

2r+

+
Λr3

+

6
(3.28)

Which of course is equivalent to U = r+
2
. It is enough to use the lapse function

evaluated at the horizon to see that. For completeness, we recall the Hawking temperature

Th =
1

2πr2
+

(
M − Q2

r+

− Λ

3
r3

+

)
These thermodynamic quantities satisfy the first law dU = TdS − PdV with entropy

S = πr2
+ and volume V ≡ 4πr3

+

3
.

In the standard approach, E = M + εΛV is the internal energy for AdS Reissner-
Nordstrom BH (3.11), but in this approach, U is the internal energy, and they are not
equal. A reasonable question is what is the origin of this difference. The physical insight
tells us that U should include electric field energy plus cosmological energy εΛV . We can
write (3.28) for the total internal energy as follows

U = M + Eem + EΛ (3.29)

Eem ≡ −
Q2

2r+

, EΛ = εΛV = −PΛV (3.30)
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The electrostatic energy Eem and electrical pressure Pem are negative quantities. We
also notice from the electrical pressure (3.27) that we can establish the following relation

PemV =
1

3

(
− Q2

2r+

)
⇒ Pem =

1

3

Eem
V

(3.31)

This equation is a well-known result of electromagnetic radiation. The pressure is
one-third of energy density Eem

V
(51). We notice that this is the "thermodynamic" energy

density that is different from the local energy density ρem = −T tt = Q2

8πr4 [See equation
(D.12) and last part of Appendix A for quantities in the Local’s frame].

We can try to trace the origin of electrostatic energy using the following definition for
the electrical energy E∗em

E∗em =
1

2

∫
Ω

∫ ∞
r+

| ~E|2dV

This equation is the standard energy for a electrostatic field in natural units. Also,
we propose taking dV = r2 sin(θ)drdφ as the differential volume inspired by the
thermodynamic volume. This proposal could fail easily because grr 6= 1. However, we
will obtain almost the right result. We recall that T t(em)

t = −1
2
| ~E|2 (2)

⇒ E∗em = 4π

∫ ∞
r+

1

2
| ~E|2r2dr ⇒ E∗em = −4π

∫ ∞
r+

T
t(em)
t r2dr

⇒ E∗em =
Q2

2

∫ ∞
r+

1

r2
dr ⇒ E∗em =

Q2

2r+

This result has two disturbing things. First, we have made an integral from outermost
horizon to infinity that is more related to a global than a local vision of black hole
thermodynamics. Second, we have obtained the opposite sign of the electrostatic energy
that appears in equation (3.30). If we did the integral from infinity to the event horizon,
we would get the correct sign, but it does not seem quite natural to do this discussion.

3.2.2 Equivalence Between both Approaches

Conceptually, the standard approach is different from the HT approach. However,
mathematically they are equivalent. We are going to show this in the particular case of
AdS Reissner-Nordstrom BH. Taking the differential of U from (3.28)

dU = dM − Q

r+

dQ+
Q2

2r2
+

dr+ +
r3

+

6
dΛ +

Λr2
+

2
dr+

⇒ dU = dM − φQdQ− V dPΛ +

(
Q2

2r2
+

+
Λr2

+

2

)
dr+ (3.32)

Where we have recognized the electrical potential φQ = Q
r+
. Besides, we have obtained

the term V dPΛ from the following consideration

r3
+

6
dΛ =

−8πr2
+

6
d

(
−Λ

8π

)
⇒

r3
+

6
dΛ = −V dPΛ
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Now we reorganize the term PdV from the fist law of HT (3.24), and taking accounts
the total pressure P ≡ Pem + PΛ from equation (3.27), we obtain that

−PdV =

(
Λ

8π
+
Q2

r4
+

)
(4πr2

+dr+)⇒ −PdV =

(
Λr2

+

2
+
Q2

2r2
+

)
dr+

Using this result in the LHS of the first law of HT (3.24), one has

⇒ ThdS − PdV = ThdS +

(
Λr2

+

2
+
Q2

2r2
+

)
dr+ (3.33)

Equating equations (3.32) with (3.33), we recover the standard form of the first law
of BH thermodynamics (3.7)

dM = ThdS + φQdQ+ V dPΛ

Both approaches are mathematically equivalent, but conceptually they are different.
This difference brings consequences when doing thermodynamic processes. In the
standard approach, the term φQdQ will change when the black hole interacts with a
charged test particle, whereas it will not change for a neutral particle. The HT
approach does not make this difference by having the PdV term instead of φQdQ for a
charged black hole.

3.2.3 The Euler-Smarr Relation for HT

One natural question at this point is, is there a similar relation to Smarr relation for
the HT approach? The Smarr relation plays the role of the Euler formula of textbook
thermodynamics. Therefore, any consistent proposal of black holes thermodynamics must
have some replacement for the Euler formula. Combining the generalized Euler theorem
(2.31) with the experiences obtained in the previous sections, we propose the following
relation that we will call the "Euler-Smarr relation" for HT approach

U = 2ThS + 3V (−P ) (3.34)

We have used the following scaling relation, S ∼ r2
+ and V ∼ r3

+ to propose this
relation. The idea behind this proposal is that if we use the Euler theorem, we obtain

U = 2
∂U

∂S
S + 3

∂U

∂V
V

Comparing the last two equations, we obtain the expected thermodynamic relation

∂U

∂S
= Th,

∂U

∂V
= −P

Then, taking the internal energy as U = U(T, P ), we obtain

dU =
∂U

∂S
dS +

∂U

∂V
dV

Therefore, we recover the first law of the HT approach (3.24). In the case of AdS
Reissner-Nordstrom BH, it is pretty quickly verified that the Euler-Smarr relation (3.34)
is satisfied. Even more, we can prove its equivalence with standard Smarr relation. For
this, we use (3.29) on the RHS of equation (3.34)
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U = 2ThS − 3V P ⇒M + Eem + EΛ = 2ThS − 3(Pem + PΛ)V

Where on the LHS, we have used equation (3.30) to replace U . Now, we use the result
for each pressure (3.27) on the RHS, so we obtain

⇒M + Eem + EΛ = 2ThS + 3εΛV − 3V
Eem
3V

Using that EΛ = εΛV , and simplifying terms, we arrive at

⇒M = 2ThS + 2εΛV − 2Eem

Finally, we recover the standard Smarr relation (3.6) after using the definition of each
component of the energy given by (3.30)

⇒M = 2ThS − 2PΛV + φQQ

Thus we concluded the proof. The Euler-Smarr relation (3.34) plays the role of Euler
formula for textbook thermodynamics in the HT approach. This result is quite useful
because we can immediately obtain the first law of the HT approach from (3.34). As
far as we know, no other authors have explored the "Smarr relation" in the case of HT.
Thus, the Euler-Smarr relation (3.34) would be a contribution of this thesis to the HT
approach.



27

Chapter 4

Thermodynamics of the Graviton
Condensate

The purpose of this chapter is to establish the Schwarzschild black hole’s
thermodynamics, considering it as a Bose-Einstein condensate [BEC] made of gravitons.
We will call this proposal the geometrical BEC-BH model. In the first section, we will
discuss the motivations and features of the geometrical BEC-BH model. In the second
section, the thermodynamics of this model will be presented. As the main results, we
obtain a small correction to the Hawking temperature and a negative pressure term
associated with graviton condensate. We will also prove how the line element for the
geometrical BEC-BH model is formally equivalent to that of the Letelier spacetime,
which has an energy-momentum tensor based on a cloud of string surrounding the black
hole (67).

4.1 Black Hole as Condensate of Gravitons

In this section, we will discuss the Dvali and Gomez’s proposal that black hole physics
can be understood as the physics of graviton condensate (52). Then, we will present the
Alfaro and coworkers’ geometrical model for a BEC of gravitons on the Schwarzschild
BH background (55). Finally, we will introduce some improvements to the geometrical
BEC-BH model in order to have a more consistent proposal with the black hole physics
described in chapter 2. These improvements will allow us to extract the thermodynamics
of this model.

4.1.1 Black Hole N-Portrait Proposal

In a series of engaging papers, Dvali and Gomez have proposed that black holes
perhaps could be understood as a graviton condensate at the critical point of a quantum
phase transition. Somehow, black holes are self-tuned and always stay at the critical
point, a distinctive feature of these systems from other quantum systems (54). In this
proposal, the Hawking radiation would be explained due to the quantum depletion of the
gravitons from condensate. The key idea is that the whole black holes physics can be
explained in terms of just one number N , the number of "off-shell" gravitons contained
in the BEC (52), (53).
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We start with the strength of graviton-graviton interaction which is measured by a
dimensionless coupling α as follows

α ∼ L2
P

λ2
(4.1)

Where λ is the characteristic wavelength of the graviton. The Planck length is given
by L2

P = ~G [c ≡ 1]. From this equation, we can see that if gravitons’ wavelength is large,
the interaction among gravitons is extremely weak. Consequently, gravitons behave as
free for practical purposes. According to this proposal, the number of gravitons is given
by

N ∼ Mrg
~

(4.2)

Where rg is the gravitational radius. For maximal N the wavelength is such that
rg = λ, then one has that Nα ∼ 1. Black holes must always satisfy this critical condition.
They cannot enter into the strong coupling regime [Nα >> 1]. Using equation (4.2) for
the Schwarzschild BH one has N ∼

√
M . Then, we can write

dM

dt
≈ 1√

N

dN

dt

√
~

8G

The rate of variation of N can be estimated as follows: The surface 4πr2
g times the

density of mode n times the velocity c = 1. Now, we assume that for a given of rg, only
one mode can get out [n ∼ V −1] (55). Then, we arrive at the following expression

⇒ dM

dt
≈ − 1

2
√
N
· (4πr2

g) · 1 ·
3

4πr3
g

Using that rg = 2MG and equation (4.2), we obtain

⇒ dM

dt
≈ −3

8

M2
P

GM2
≈ − M3

P

LPM2

In the last approximation, we have omitted unimportant numerical factors and used
the Planck mass M2

P = ~
G
. The Hawking’s radiation power formula (8) is

dM

dt
= − ΓGF

15360πM2
⇒ dM

dt
∼ −T 2

h

Where ΓGF is the gray factor, which is described in Appendix G in conjunction with
the demonstration of this formula. Comparing the last two results, we recover the
Hawking temperature

⇒ Th ≈
1

M

With this argument, Dvali and Gomez’s argues that the Hawking radiation can be
understood as the quantum depletion of the BEC (52). Finally, expressing the Hawking
temperature and the BH entropy in terms of the number of gravitons N , we obtain

Th ∼
1√
N
, Sbh ∼ N (4.3)
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Using condensed matter arguments, the authors of this proposal have achieved
computing the black hole’s entropy like the quasi-degenerate nature of the BEC state
(54).

The black hole N-Portrait proposal is quite intriguing, but it is not geometrical at
all. Also, it is based on a more qualitative analysis than a quantitative one. In the next
subsection, we will discuss a more geometrical model inspired by this proposal.

4.1.2 The Geometrical BEC-BH Model

Alfaro and coworkers have proposed a more geometrical model to understand the
graviton condensate better (55), (56). In this model, the background spacetime is given,
and over it, there is a Bose-Einstein graviton condensate. To achieve this, the metric
is split as follows: gµν = g̃µν + hµν . Where g̃µν is the background metric and hµν the
quantum fluctuation that will describe the graviton condensate. Throughout this chapter,
the background metric will be the Schwarzschild black hole. From now on, we will call
this proposal the geometrical BEC-BH model. The number of gravitons is proposed to
be built from the quantum fluctuation hµν as follows

N =

∫ rh

0

ηdV, η ≡ 1

2rh
hαβh

αβ (4.4)

Where η is the number density of gravitons, and the differential volume is taken
as dV = r2 sin(θ)drdθdφ. This construction of the total number of gravitons N is not
covariant. However, from the discussion of chapter 3, the volume taken is reasonable
because dV could be understood as the differential of the thermodynamic volume. In
order to respect the underlying symmetry of GR, the simplest form to introduce a term
related to the BEC, at the level of action, is

SBEC = −1

8

∫
d4x
√
−g̃µ(x)hαβh

αβ (4.5)

Where the scalar field µ(x) would represent the chemical potential of the BEC. The
idea behind this construction is that the Gross–Pitaevskii equation, which describes a
BEC under certain conditions (57), is a nonlinear equation such as the Einstein equation.
Thus, both equations could be considered as analogous to describe a graviton condensate.
Then, it is proposed the following variational principle

S =

∫
d4x
√
−g 1

8π
R− 1

8

∫
d4x
√
−g̃µ(x)hαβh

αβ (4.6)

The resulting equation of motion from this action is given by

Gαβ(g̃ + h) = Σ · µ(x)(hαβ − hασhσβ), Σ ≡

√
−g̃
−g

(4.7)

The computation of this variation is given in Appendix E, where we state a more
general version of the action (4.5) with future purposes in mind. We must remark that
indices of all tensor are raised and lowered with full metric gµν , not with background
metric g̃µν . Besides, the hµν part of the metric is not a priori a small quantity. We
will let the self-consistent computation of the metric to establishes its magnitude. The
factor Σ can be absorbed in the definition of µ(x), so it does not play any role in this
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model. We also notice that the RHS of equation (4.7) is built from the metric fluctuation,
which implies a quite restrictive form for the effective energy-momentum. Hence, the only
mathematically consistent solution for the equation (4.7) might be hνµ = 0. However, it
was found the following line element

ds2
BEC = − 1

(1−B)

(
1− 2M

r

)
dt2 +

1

(1−B)
(
1− 2M

r

)dr2 + r2dΩ2 (4.8)

Here B is a constant only defined inside of the BH. The magnitude of B is between
0 to 1, otherwise, it could change the sign between gtt and grr. We will call this line
element, the BEC-Schwarzschild solution, which describes the graviton condensate of the
geometrical BEC-BH model. The metric also can be written as follows

gαβ = diag

(
1

(1−B)
g̃tt,

1

(1−B)
g̃rr, g̃φφ, g̃θθ

)
(4.9)

This mathematical structure will be useful to extend this kind of solution to different
black holes later. We highlight that only the temporal and radial part of the metric has
changed. The fluctuation part of the metric has a simple mathematical structure

ht t = hrr = B (4.10)

Therefore, the nonzero mixed components of hµν are constant. Thanks to this, we
can see from equation (4.4) that the number density of gravitons η is a constant. This
result is quite striking and will be useful to extend this construction later. We provide
the result for the factor Σ and the scalar field µ(x), which are

Σ = (1−B), µ = − 1

(1−B)2r2
(4.11)

The nonzero mixed components of the Einstein tensor are

Gt
t = Gr

r = −B
r2

(4.12)

Therefore, the nonzero mixed components of the effective energy-momentum tensor
are given by

T tt = T rr = − B

8πr2
(4.13)

In principle, this solution is valid only inside the event horizon, which is still located
at rh = 2M . The outside of the black hole is the standard Schwarzschild solution. Thus,
the constant B is zero outside of the event horizon. This setting was chosen because if B
is different from zero outside of the horizon, the metric would not be asymptotically flat.

Finally, using equation (4.4) we can compute the number of gravitons contained in
the BEC

N =
4π

3
4M2B2 ⇒M ∼

√
N (4.14)

The constant B allows us to explicitly connect the number of gravitons with the mass
M of the black hole. Even more remarkable, we can write the Hawking Temperature and
the entropy of the black hole in terms of the number of gravitons as follows
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Th ∼
1√
N
, Sbh ∼ N

As we mentioned before, the horizon radius rh has not changed, so formally, the
entropy of the black hole has not changed either. Therefore, the proportional relation
between the number of gravitons N and the entropy S is a robust result. On the contrary,
it is assumed by hand that Hawking temperature does not change. The lapse function of
the metric has changed with respect to the Schwarzschild metric, and with the knowledge
built in chapters 2, and 3 of this thesis, it is expected that the Hawking temperature has
some correction. Later we will return to this point. We have arrived at the same result of
(4.3) with a more geometrical construction than the black hole N-Portrait proposal. The
Hawking temperature Th, the BH entropy Sbh, and the BH energy M can be expressed
in terms of only one number, the number of gravitons N .

Finally, in the original interpretation of (55), (56), the scalar field µ given by equation
(4.11) plays the role of the chemical potential of the condensate. In this way, µ would
be a general feature for any black hole and would only be defined in its interior. This
interpretation is difficult to sustain when one analyzes it in more detail. We will discuss
this point and other possible problems with this model in the next subsection.

4.1.3 The Enhanced Geometrical BEC-BH Model

Expressing the BEC-Schwarzschild solution in the Advanced Eddington-Finkelstein
coordinates [EFC], one has

ds2
BEC = − 1

1−B

(
1− 2M

r

)
du2 +

2

1−B
dudr + r2dΩ2 (4.15)

Where the coordinate transformations from equation (2.12) has been used. We
notice that we can use the same transformation because the factor 1

1−B is shared by
gBECtt and gBECrr in the line element (4.8). According to the setting described in the
previous subsection, B is different from zero in the interior of the black hole only. The
standard Schwarzschild solution still describes the outside metric. This setting
introduces a discontinuity in the metric precisely at the horizon. From the exterior
solution described in the EFC by equation (2.13) we have goutrr = 2 at the horizon, but
from the interior solution in EFC given by (4.15), one has gBECrr = 2

1−B , then
grr(rh)

out 6= grr(rh)
BEC . This result is not acceptable, according to what we have stated

in section 2.2. To avoid this problem, we will accept that B 6= 0 for the whole
spacetime. Therefore, the BEC-Schwarzschild solution is not asymptotically flat. In the
context of Loop Quantum Gravity, a quantum correction of the Schwarzschild BH has
been proposed (58). This proposal has a similar problem with asymptotically flat
behavior (59). Apparently, quantum corrections cannot live just inside the black hole.

Taking r >>> 2M in the BEC-Schwarzschild line element (4.8), one arrives at

⇒ ds2
BEC = − 1

(1−B)
dt2 +

1

(1−B)
dr2 + r2dΩ2

Defining T = t√
1−B and R = r√

1−B , one has that
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⇒ ds2
BEC = −dT 2 + dR2 + (1−B)R2dΩ2

We could argue that if we ignore the Ω sector, this line element can be considered
asymptotically flat [ds2

BEC = −dT 2 + dR2]. In any case, with the Horizon
Thermodynamics approach, we will still be able to compute the thermal behavior for
the present model. Later, we will discuss that the constant B has an extremely small
value so that it would be naturally suppressed in the real universe. Finally, we notice
from equation (4.8) that the radial geodesic and the circular geodesic are not affected
by B. The constant B plays a role only in geodesics that mix a circular and radial
motion, providing a negligible correction.

Accepting that B is defined in the whole spacetime, a natural question is, does the
effective energy-momentum tensor used by the geometrical BEC-BH Model satisfy the
energy conditions? At the quantum level, the classical energy conditions can be violated,
so we will study these conditions here to see what happens in the geometrical BEC-BH
model.

Using equation (D.12) from Appendix D combined with equation (4.13), we obtain
the local energy density and local pressure for the graviton condensate

ρ =
B

8πr2
, Pr = − B

8πr2
(4.16)

From the beginning, we assume B ≥ 0, so the local energy density is positive.
Additionally, we have the following relation between the energy density and the radial
pressure Pr = −ρ. Also, the tangential pressures are null, and the radial pressure is
negative.

Concerning the energy conditions described in Appendix D, the effective
energy-momentum tensor satisfies the null, the strong, and the dominant energy
conditions. More explicitly, we have the following conditions

ρ ≥ 0, ρ+ P1 = 0, ρ− |P1| = 0 (4.17)

Therefore, we saturate the null and strong energy condition [go to Appendix D to see
the details]. From a classical perspective, the BEC-Schwarzschild BH is well-behaved with
regards to its effective energy-momentum tensor. The graviton condensate has a quantum
origin, it could perfectly have happened that some energy condition was violated, but it
was not the case.

In the original interpretation for the geometrical BEC-BH model, the scalar field µ(r)
given by equation (4.11) plays the role of the chemical potential. However, µ(r) does not
have units of energy as any chemical potential. Besides, from equation (4.14), we know
that number of particles satisfies N ∼ M2. Nevertheless, according to chapters 2 and 3,
if there was a chemical potential, this should contribute to the Smarr relation as 2µchN .
This relation implies that the chemical potential, if any, should scale as µch ∼M−1. This
result can be seen from 2µchN ∼ M , where we are using M as the natural size of the
system because we are in the BEC-Schwarzschild BH [rh = 2M ]. In conclusion, the scalar
field µ(r) of equation (4.11) is not the black hole’s chemical potential.
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This last conclusion seems daunting. However, a fundamental idea of the Dvali and
Gomez proposal is that the black hole is at the critical point of the quantum phase
transition. Furthermore, according to equation (4.1), gravitons act as if they were free
quasi-particles. Consequently, we can consider the graviton condensate as if they were
an ideal quantum gas where the critical point for a quantum phase transition is defined
when µcriticalch = 0 for a BEC [See the textbook about BEC (57) to remind this condition].
Therefore, we do not need a chemical potential for the BEC; what we need is a pressure
term associated with the graviton condensate. Thus, we would have a BEC with well-
defined P, V, S, Th, E, and N at the critical point of the quantum phase transition.

4.2 Thermodynamics of the Geometrical BEC-BH
model

In this section, we will obtain the thermodynamics of the geometrical BEC-BH model
using the HT approach. We will obtain a small correction to the Hawking temperature
and negative pressure for the graviton condensate.

We have for our model the following line element

ds2
BEC = − 1

(1−B)

(
1− 2M

r

)
dt2 +

1

(1−B)
(
1− 2M

r

)dr2 + r2dΩ2

We are in the case where f 6= h for the line element given by (A.1). So, we must
modify the mathematical construction for the first law of HT made in section 3.2. Using
the radial component of the Einstein equation, we arrive at

Gr
r = 8πT rr ⇒

f(h− 1) + rhf ′

r2f
= 8πT rr

Where we have used equation (A.7) for Gr
r. Reorganizing the terms of this expression,

we obtain

⇒ h− 1 +
h

f
rf ′ = 8πT rrr

2

We must notice that h(r)
f(r)

= (1−B)2. So, it is well-defined to evaluate this fraction at
r = r+. Taking T rr|r+ ≡ P , and recalling that f(r+) = h(r+) = 0, we arrive at

⇒ (1−B)2

2
r+f

′(r+)− 1

2
= 4πPr2

+

Finally, multiplying the whole equation with dr+, and reorganizing the differential in
a suggesting way, we have the following expression

⇒ (1−B)2f
′(r+)

4π
d(πr2

+)− d(r+/2) = Pd

(
4

3
πr3

+

)
In this way, we recover the first law of HT, which is given by

dU = ThdS − PdV, S ≡ π
A

4
, V ≡

4πr3
+

3
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Where the internal energy and the Hawking temperature are given by

U ≡ r+

2
⇒ U = M (4.18)

Th ≡
(1−B)2f ′(r+)

2π
⇒ Th =

(1−B)

8πM
(4.19)

We use the equation (4.13) to evaluate the pressure as the HT approach stated to do,
which is given by

P ≡ T rr|r+ ⇒ P = − B

32πM2
(4.20)

We also notice the following interesting relation

P = −B
3

M

V
(4.21)

This equation looks like the relation between pressure and energy density in the case
of electromagnetic radiation (3.31). Finally, using equation (4.14) we can express each
thermodynamic quantity in terms of N

S ∼ N, M ∼
√
N Th ∼

1√
N

(4.22)

V ∼ N3/2, P ∼ 1

N
(4.23)

In these expressions, we have ignored the proportional constants because they are
irrelevant to the discussion. These relations are entirely satisfactory from the point
of view of the N-Portrait proposal. Therefore, the black hole thermodynamics can be
parameterized by just one number: the number of gravitons of the BEC given by N . We
have successfully associated a volume and a pressure with the graviton condensate. We
can see that P given by equation (4.20) is negative. Then, we could consider this negative
pressure as a tension instead of pressure. Perhaps, this negative pressure does not allow
the matter to fall inside of the BH. We remind that the BEC-Schwarzschild black hole is
a vacuum solution that considers a quantum fluctuation given by hµν ; it does not contain
any type of matter inside of it.

4.3 Graviton Condensate Interpretation

In this section, we will discuss the thermodynamic interpretation for the graviton
condensate. We will focus on its pressure given by equation (4.20), its Hawking
temperature (4.19), and its internal energy (4.18). In the pertinent literature, we have
found some support for our results.

4.3.1 The Pressure of Graviton Condensate

It may be impressive to associate a negative pressure with a black hole without matter
content. However, several authors have reached similar conclusions in alternative models
to traditional black holes. In 2000, Chaplin and Colleagues argued that a black hole
would be a quantum phase transition of the vacuum spacetime. According to them, the
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black holes would have a negative pressure similar to Bose fluid at the critical point (60).
They explain, "A balloon with surface tension T filled with gas at pressure P will acquire
a radius r satisfying T = rP

2
. Similarly the black hole with local pressure P = −3c8

324M2 in
proper coordinates inside must have surface tension T = −3c2

322M
. This tension is generated

by the spacetime itself as it undergoes the transition between its two phases and thus
need not be constrained by the properties of any familiar kinds of matter" (60). The
pressure term obtained by them is proportional to our negative pressure, but not equal.
To introduce a pressure term, they appropriately redefined the cosmological constant,
which is only defined inside the black hole in its model.

Another proposal that requires a negative radial pressure is the "gravastars" model
developed by Mazur and Mottola (61). The motivation of this idea is to eliminate the
central singularity changing the interior black hole solution by another solution similar
to de Sitter spacetime. It is not precisely the dS spacetime because the gravastars need
an anisotropic pressure to be stable (62). In a recent paper, Brustein and colleagues have
argued that in order to avoid the gravitational collapse, a considerable radial negative
pressure is necessary (63). In the same article, they proposed a black hole model made
of closed interacting strings with state equation ρ = −Pr. They called this model the
"collapse polymer model" because, according to them, some polymers can have negative
pressures, when they are under attractive interactions (64). There are also other recent
proposals with negative pressure associated with black holes, such as (65) and (66).

We can conclude that a common characteristic for many alternative models of black
holes is the presence of a negative pressure term. Most of them require negative pressure
to avoid the central singularity. Other models relate to the negative pressure with some
quantum phase transition. However, the BEC-Schwarzschild solution, which describes
the graviton condensate, does not avoid the central singularity. Its original motivation
never was to solve this problem. After researching the relevant literature, it does not
seem so strange to associate negative pressure with the black hole.

4.3.2 The Hawking Temperature of Graviton Condensate

Professor Ashtekar and coworkers have obtained a quantum correction for the
Schwarzschild black hole in the context of Loop Quantum Gravity, which affects both
its interior and exterior (58), (59). The line element associated with this quantum
correction is quite complicated; we will not state it here. The more significant point for
our purpose is that they have achieved a quantum correction to the Hawking
temperature, which is given by

Th =
1

8πM

1

1 + eM
, eM =

1

256

(
γ∆1/2

√
2πM

)8/3

(4.24)

Where ∆ ≈ 5, 17L2
p is the quantum area gap that comes from LQG, and γ ≈ 0.2375

is the Barbero-Immirzi parameter of LQG. Therefore, eM is only defined in terms of the
mass M . From the previous expression, we can make the following Taylor expansion

Th =
1

8πM

1

1 + eM
⇒ Th ≈

(1− em)

8πM
(4.25)
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This expansion is possible because eM is an extremely small value. For a solar mass
black hole, eM ≈ 10−106 (59). On the other hand, our correction to the Hawking
temperature is

T
(BEC)
h ≈ (1−B)

8πM

Both corrections of the Hawking temperature have the same mathematical structure.
However, they are obtained in a very different way. Even so, we can estimate the possible
value of B assuming that B ≈ eM . Therefore, for a solar mass black hole, B would be of
order B ≈ 10−106. From this estimation, we can conclude that the parameter B related to
the graviton condensate would be naturally suppressed in our universe. Then, B would
affect in a negligible way any classical test of GR.

4.3.3 The Internal Energy of Graviton Condensate

In the discussion of section 3.2, we stated that the Misner-Sharp mass is equal to
the Komar mass only for the case of Schwarzschild black hole. However, for the BEC-
Schwarzschild black hole, we obtained UBEC = M . From the point of view of HT, this
result looks like a peculiar one. To clarify this point, we will compute the Komar mass
for our geometrical BEC-BH model.

We start making the following coordinate transformation t = T√
1−B in the line element

of BEC-Schwarzschild black hole (4.8). Then, we obtain

ds2
BEC = −(1−B)

(
1− 2M

r

)
dT 2 +

1

(1−B)
(
1− 2M

r

)dr2 + r2dΩ2 (4.26)

With this form of the metric, we can use our previous construction in section 2.3 to
obtain the Komar mass. The lapse function is

f(r) = (1−B)

(
1− 2M

r

)
(4.27)

Using the Komar mass formula (2.25), we obtain that

Ek =
R

2
f ′(R)⇒ Ek = M(1−B) (4.28)

We have obtained a finite result, even though our metric is not asymptotically flat.
The Komar mass for the graviton condensate is different from the Misner-Sharp mass
U = M , such as we stated in section 3.2. Both energies satisfy the following relation

U = Ek +BM (4.29)

Therefore, the internal energy contains the Komar mass plus the additional term aM .
This result is quite intriguing in the HT approach. What does the extra factor aM mean
in equation (4.29)? Inspired by the discussion of the internal energy U in the case of AdS
Reissner-Nordstrom BH made in chapter 3, we propose to compute the following integral

E∗ ≡
∫ rh

0

ρlocaldV, ρlocal =
B

8πr2
(4.30)
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Where ρlocal is the local energy density of equation (4.16), and we use the differential
"thermodynamic" volume dV = r2sin(θ)drdθdφ. We propose to compute only the
interior of the black hole. Thus, we obtain

E∗ =
a

2
rh ⇒ E∗ = BM (4.31)

We obtain the right factor for the energy BM , which appears in equation (4.29).
Although we are using an effective energy-momentum tensor, we still obtained that the
internal energy is given by M . However, U can be split as U = Ek + BM where Ek is
the Komar mass and the term BM that could be interpreted as energy associated with
the quantum fluctuation hνµ.

4.4 The Formal Equivalence with Letelier Spacetime

The Letelier spacetime is described in Appendix F in conjunction with a study
of their thermodynamic behavior. We will refer here only to its final results that in
Appendix F are worked in detail. This solution describes a cloud of string surrounding
the Schwarzschild black hole (67). The line element is given by equation (F.3), which is

ds2 = −
(

1− a− 2m

R

)
dT 2 +

1(
1− a− 2m

R

)dR2 +R2dΩ2 (4.32)

Here a is an adimensional parameter related to the energy density of the cloud of
string, hence, a > 0. From equation (F.2), we have the local energy density

ρ = −T tt =
a

r2
(4.33)

Where the negative sign comes from the coordinate transformations to the local frame
described in the second part of Appendix A. Supposedly, m represents the mass of the
black hole. To arrive at this conclusion, one takes a = 0 and demands to recover the
Schwarzschild solution. This conclusion cannot be obtained using the asymptotically flat
limit, because a does not disappear in this limit. Therefore, the Letelier spacetime is not
asymptotically flat, which introduces an ambiguity to define m as the mass of the BH.
Then, we have the right to define m = M(1− a) and obtain that

ds2 = −
(

1− a− 2M(1− a)

R

)
dT 2 +

1(
1− a− 2M(1−a)

R

)dR2 +R2dΩ2

In this expression, we can still recover the Schwarzschild solution demanding that
a = 0, where obviously m = M . Factorizing the term (1 − a) in this line element, and
introducing the following coordinate transformations R = r and T = t√

1−a , we obtain

ds2 = − 1

(1− a)

(
1− 2M

r

)
dt2 +

1

(1− a)
(
1− 2M

r

)dr2 + r2dΩ2

This line element is formally the same as that of the BEC-Schwarzschild BH [See
equation (4.8) with a = B]. Is this a mere coincidence? In the Letelier spacetime, the
energy-momentum tensor is an effective one due to a cloud of string with their respective
worksheet. In the graviton condensate, the energy-momentum tensor is built from the
quantum fluctuation of the background metric given by hµν . Besides, the Letelier solution
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comes from of a Nambu-Goto action (F.1). In the graviton condensate, we use the action
given by (4.5). They are different actions, even more important: they are entirely different
at a conceptual level. Could it be possible that quantum fluctuations of metric are due
to a cloud of string? We will leave this possibility for later works.

From Appendix F, we know the thermodynamic quantities for this black hole. The
Hawking temperature and BH entropy are given by equation (F.2) and (F.5), respectively.
Then, we have

S =
4πm2

(1− a)2
, Th =

(1− a)2

8πm
(4.34)

From the HT approach, we also have the volume and pressure (F.11) for the Letelier
black hole, which are

V =
32πm3

3(1− a)3
, P =

−a(1− a)2

32πm2
(4.35)

Finally, the Komar mass from equation (F.7) and the Misner-Mass sharp from
equation (F.10) are

Ek = m, U =
m

(1− a)
(4.36)

We notice that in the standard approach to BH thermodynamics, we can write S =
S(Ek), where Ek is the Komar mass, because dEk = ThdS. Therefore

∂S

∂Ek
≡ 1

Th
(4.37)

⇒ ∂S

∂Ek
=

8πm

(1− a)2
⇒ Th =

(1− a)2

8πm

We have recovered, in the usual thermodynamic way, the temperature of the Letelier
BH. However, in the HT approach, we must be more careful with this procedure. In this
approach, we have dU = ThdS − PdV , then, we need to write the entropy in terms of
U and V , i.e., S = S(U, V ), and then, take the partial derivative with respect to U to
obtain the temperature. The most recommended way is to use the Euler-Smarr relation
of the HT approach, which is given by

U = 2ThS − 3PV

Then, we use the generalized Euler theorem (2.31), and thus we get the partial
derivatives correctly, just as we have done in Appendix F.

Finally, redefining as before m = M(1− a) and a = B we recover the thermodynamic
quantities for the graviton condensate of our geometrical BEC-BH model, which are

S = 4πM2, Th =
1−B
8πM

U = M, P = − B

32πM2
, V =

32πM3

3
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We also recover the Komar mass for our model, which is given by

Ek = M(1−B)

These quantities are the same that we have obtained in section 4.2 and subsection
4.3.3. These results are expected because the Letelier black hole and the
BEC-Schwarzschild black hole have formally the same line element. However, these
solutions are quite different at a conceptual level. In our model, there is no ambiguity in
the definition of the mass of the black hole because the background metric is, by
definition, the Schwarzschild black hole. We cannot redefine the mass as we want for
the graviton condensate. In future works, we will exploit this formal equivalence more
between these black holes to extend our geometrical BEC-BH model. Perhaps, it could
be possible to explain the quantum fluctuation hµν related to the graviton condensate in
terms of a quantized cloud of strings in the spacetime. More intriguing yet, it could be
possible to obtain the black hole entropy with a quantum computation instead of a
thermodynamic way assumed in the Bekenstein-Hawking relation (2.36).
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Chapter 5

Thermodynamics of the Kiselev Black
Hole

In this chapter, we will study a black hole that can parameterize several well-known
spherically symmetric BHs such as dS/AdS/flat Schwarzschild BH, dS/AdS/flat Reissner-
Nordstrom BH, and the dS/AdS/flat Letelier BH. This solution is called the Kiselev black
hole. Besides, we will study its thermodynamics from the standard perspective described
in chapter 2. Finally, we will show a new solution called the BEC-Kiselev BH, extending
the analysis carried out in sections 4.2, 4.3 so that the graviton condensate now includes
different matter contents.

5.1 Kiselev Black Hole

The multi-components Kiselev BH has the following lapse function

f(r) = 1− 2M

r
−
∑
i

Ci
r3ωi+1

(5.1)

The energy-momentum tensor which generates this solution is given by

T tt = T rr =
∑
i

ρi, T θθ = T φφ = −1

2

∑
i

ρi(3ωi + 1), ρi ≡
3Ciωi

8πr3(ωi+1)
(5.2)

Kiselev obtained this solution in 2002 (70). We will call the parameter ωi the state
parameter, and Ci the Kiselev charge. According to Kiselev, when the only nonzero
state parameter is taken as ω1 = −2/3, this solution represents the Schwarzschild black
hole surrounded by the quintessence. For this case, the associated lapse function and
energy-momentum tensor are

⇒ f(r) = 1− 2M

2
− C(quint)r

⇒ T tt = T rr = 2T φφ = 2T θθ = −
2C(quint)

8πr

The Kiselev BH is a very famous toy model with more than 250 cites. Virtually all
publication on this model has preserved the original interpretation given by Kiselev. In
2019 Matt Visser pointed out that this interpretation is inadequate (71). The
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quintessence is a scalar field that has associated a perfect fluid type energy-momentum
tensor (9). However, we can see from equation (5.2) that T rr 6= T θθ which implies
anisotropic pressure. Nevertheless, we know that a perfect fluid has isotropic pressure.
Therefore, for a conservative perspective, the Kiselev BH cannot be related to a
quintessence fluid.

If we take ω1 = −1
3
, ω2 = 1

3
and ω3 = −1 as nonzero state parameters in equation

(5.1), we obtain the following lapse function

⇒ f(r) = 1− 2M

r
− C[−1/3] −

C[1/3]

r2
− C[−1]r

2

We can define C[−1/3] ≡ a, C[1/3] ≡ −Q2, and C[−1] ≡ Λ
3
. Then, we obtain

⇒ f(r) = 1− a− 2M

r
+
Q2

r2
− Λ

3
r2

This result is the lapse function for the dS/AdS Letelier-Reissner-Nordstrom BH.
Marvelous, the Kiselev BH can parameterize the most famous black holes with static
spherical symmetry. Of course, this idea works with the energy-momentum tensor too.
Using the aforementioned values for ωi and definitions for Ci in equation (5.2), we obtain
the following expressions

⇒ T t
[Let]
t = T r [Let]

r = − a

8πr2
, T θ

[Let]
θ = T φ

[Let]
φ = 0

⇒ T t
[RN ]
t = T r [RN ]

r = −T θ [RN ]
θ = −T φ[RN ]

φ =
Q2

8πr4

⇒ T t
[Λ]
t = T r [Λ]

r = T θ
[Λ]
θ = T φ

[Λ]
φ = − Λ

8π

Where we have written each component of the energy-momentum separately. Taking
into account the sum of equation (5.2), we have actually that

⇒ T tt = T rr = − a

8πr2
+

Q2

8πr4
− Λ

8π

⇒ T tt = T rr = − Q2

8πr4
− Λ

8π

We are not going to debate whether or not the Kiselev metric can describe the
quintessence. However, we are going to exploit the ability of this metric to parameterize
other black holes. In any case, the Kiselev’s original interpretation has limited the
physical insight in some publications. Several authors have obtained the Kiselev black
hole’s thermodynamics, but only under the original interpretation given by Kiselev.
These authors use only the state parameter ω = −2

3
because, for this parameter, the

lapse function has roots that can be computed analytically. A sample of these
publications are (72), (73), (74). Other authors have obtained the Kiselev
thermodynamics for one arbitrary state parameter ω (75). However, they did not
connect the fact that the Kiselev BH can parameterize other BHs. In section 5.2, we
will show how to obtain several black holes thermodynamics from the Kiselev BH
thermodynamics in one go.
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5.1.1 Null Energy Condition for the Kiselev BH

We will study the null energy condition [NEC] only for the single-component Kiselev
BH for simplicity. When the state parameter is taken as ω ∈ (−1/3,∞), the Kiselev
black hole is asymptotically flat. On the contrary, when we take ω outside the range
mentioned above, we expected that the Komar mass is infinity just as the case of AdS
Reissner-Nordstrom described in section 3.1. We will use the NEC to limit the range of
ω. We only use this condition because this is an essential hypothesis of the Hawking area
theorem.

Using equation (D.12) from Appendix D combined with equation (5.2), we obtain the
local energy density and local pressures

ε = −Pr = − 3Cω

8πr3(ω+1)
, Pφ = Pθ = −3Cω(3ω + 1)

16πr3(ω+1)
(5.3)

The null energy condition (D.7) requires that

ε+ Pi ≥ 0

We notice that ε+Pr = 0, so this expression does not give us any condition. Therefore,
we have only one equation from ε+ Pφ ≥ 0, which is

⇒ − 3Cω

8πr3(ω+1)
− 3Cω(3ω + 1)

16πr3(ω+1)
≥ 0

⇒ Cω(ω + 1) ≤ 0 (5.4)

For instance, for ω = 1/3, the constant C must be negative to satisfy the inequality
(5.4). However, for ω = 1/3, we recover the Reissner-Nordstrom BH with the constant
C = −Q2, so this BH satisfies the null energy condition. In the same way, for the Letelier
BH, we have ω = −1/3 and C = a, which satisfies the null energy condition too. Finally,
the AdS/dS saturates this inequality because its state parameter is ω = −1. This analysis
illustrates how useful the Kiselev BH is to study different BH solutions in a unified way.
More generally, if C > 0, the state parameter must belong to ω ∈ [−1, 0] to satisfy the
NEC. In the case of C < 0, we need ω ∈ (∞−1,−1]∪[0,∞) to satisfy the NEC condition.

5.2 Thermodynamics of the Kiselev BH

We start recalling the Komar mass Ek from equation (2.25), which is

Ek =
R2

2
f ′(R)

Using the lapse function (5.1) for the Kiselev BH without taking the limit R → ∞
immediately, we obtain

Ek = M +
∑
i

Ci
2

(3ωi + 1)R−3ωi (5.5)

We also recall the general version of the Smarr relation (3.3) used in chapter 3, which
is given by
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Ek = 2ThS − 2

∫
ΣBH

d3Σt(T
t
t −

1

2
T )

Where we must integrate between the outermost horizon r+ and infinity. We again
perform the calculation without taking the limit R→∞ immediately. Then, we have

⇒ Ek = 2ThS − 8π

∫ R

r+

d3Σt(T
t
t −

1

2
T )

From the energy-momentum tensor (5.2), we compute its trace, which is

⇒ T = 3
∑
i

ρi(1 + ωi)

Therefore, the expression inside of the integral is given by

⇒ T tt −
1

2
T = −1

2

∑
i

ρi(1 + 3ωi)

This last expression vanishes for ω∗i = −1
3
. Then, computing the integral, we obtain

⇒ Ek = 2ThS +
∑
i

Ci
2

(3ωi + 1)
(
R−3ωi − r−3ωi

+

)
In this expression, we replace the Komar mass given by equation (5.5). Then, we

obtain the following equality

⇒M +
∑
i

Ci
2

(3ωi + 1)R−3ωi = 2ThS +
∑
i

Ci
2

(3ωi + 1)
(
R−3ωi − r−3ωi

+

)
Finally, the Smarr relation for the Kiselev black hole is

M = 2ThS −
∑
i

Ci
2

(3ωi + 1)r−3ωi
+ (5.6)

This result does not depend on R and is finite regardless of the state parameter ωi.
In the summatory, the term associated with ω∗i = −1

3
vanishes. Therefore, this result

includes the cases for ωi when Kiselev black hole is not asymptotically flat. We can
compute the Hawking temperature using equation (2.40), which results

Th =
f ′(r+)

4π
⇒ Th =

1

4π

(
2M

r2
+

+
∑
i

(3ωi + 1)Ci

r3ωi+2
+

)
(5.7)

We know that entropy scales with the outermost horizon radius as S ∼ r2
+. From the

lapse function (5.1) we read the scaling relation between Ci and r+ that is Ci ∼ r3ωi+1
+ .

Then, using the generalized Euler theorem (2.31), one has that

M = 2
∂M

∂S
S +

∑
i

(3ωi + 1)
∂M

∂Ci
Ci (5.8)

Comparing equations (5.6) and (5.8), we obtain the partial derivatives

∂M

∂S
= Th,

∂M

∂Ci
= −1

2
r−3ωi

+ (5.9)
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The first equality is the expected result, and the second one is the interesting part
related to the matter content. We must remark the second equation of (5.9) is not valid
for ω∗i = −1

3
because the second part of equation (5.8) is zero for ω∗i . Then, the first law

of black holes thermodynamics is

dM = ThdS +
∑
i

(
−1

2
r−3ωi

+

)
dCi

Let be Ci = Ci(λi), i.e, C is function on some arbitrary parameter λi. Then, from
the chain rule we have dCi = ∂Ci

∂λi
dλi. Finally, the first law of thermodynamics for multi-

components Kiselev BH is

dM = ThdS +
∑
i

θidλi, θi ≡ −
1

2
r−3ωi

+

∂Ci
∂λi

(5.10)

From this equation, we can recover the first law of thermodynamics of several
well-known black holes. Even more importantly, we have made a general mathematical
construction where each parameter that appears in the lapse function for a black hole
can be considered a thermodynamic variable. In fact, we can demand some physical
behavior to some fixed parameters (ωi, Ci), and then rederive a lapse function using
equation (5.1). That is to say, reverting the mathematical construction. This result is
quite striking in itself.

As we have mentioned before, this solution is even valid for values of ωi that are
not asymptotically flat. Then, we could use some values of ωi to have a "boundary"
at infinity just as the AdS black holes. Besides, we know that AdS BHs are used like
"boundaries" in the AdS/CFT correspondence (3). Therefore, it could be possible to
explore the Kiselev/CFT correspondence using this section’s results. The first attempt
to establish this correspond is made in (76). We will leave these speculations about this
possible correspondence for future work.

In order to illustrate our result, we take ω1 = 1
3
and ω2 = −1 as nonzero state

parameters. Then, we define as before C[1/3] ≡ −Q2 and C[−1] ≡ Λ
3
. Thus, using the

definition of θi given by equation (5.10) we obtain that

θ[1/3] = −1

2
r−1

+

∂Ci
∂λi
⇒ θ[1/3] = −1

2
r−1

+ (−2Q)⇒ θ[1/3] =
Q

r+

θ[−1] = −1

2
r3

+

∂Ci
∂λi
⇒ θ[1/3] = −1

2
r3

+

(
1

3

)
⇒ θ[1/3] = −

r3
+

6

Here we have taken for C[1/3] that λ[1/3] = Q, and for C[−1] that λ[−1] = Λ in order to
take the partial derivatives. Inserting these results in equation (5.10), we arrive at

⇒ dM = ThdS +
Q

r+

dQ−
r3

+

6
dΛ

⇒ dM = ThdS +
Q

r+

dQ+
4πr3

+

3
d

(
−Λ

8π

)
⇒ dM = ThdS + φQdQ+ PΛdV
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Where we have recognized the electrical potential φQ = Q
r+
, and the pressure related

to the cosmological constant PΛ = −Λ
8π

. This equation is the first law of AdS Black Hole
Thermodynamics described in section 3.1 [equation (3.7)]. Finally, we can compute the
Hawking temperature using (5.7) in order to complete the illustration. So, we have

⇒ Th =
1

4π

(
2M

r2
+

− 2Q2

r3
+

− 2Λ

3
r+

)
⇒ Th =

1

2πr2
+

(
M − Q2

r+

− Λ

3
r3

+

)
This result is precisely the Hawking temperature obtained in equation (3.8). As we

promised, the Kiselev thermodynamics includes the other black holes’ thermodynamics.
It is even more. We can have a more general law of black hole thermodynamics as follows

dM = ThdS + φQdQ+ PΛdV + θdλ (5.11)
Here the function θ and the parameter λ are defined by equation (5.10). Besides, the

Hawking temperature for the Kiselev-AdS-Reissner-Nordstrom black hole can be obtained
using equation (5.7). In this way, we have extended the usual thermodynamics of black
holes. In future works, we will compute cycles from this extended thermodynamics and
extract more consequences.

5.3 BEC-Kiselev Black Hole

In this last section, we will generalize the discussion made in chapter 4. This time,
the graviton condensate will include matter. To do this, we extend the action given in
(4.5) as follows

SBEC = −1

8

∫
d4x
√
−g̃(ν(x)h2 + µ(x)hαβh

αβ) (5.12)

In this action, we have considered the additional term ν(x)h2, which allows us to
have BEC-solution with matter content. As in subsection 4.1.2 the metric is split gµν =
g̃µν + hµν . The indices of all tensor are raised and lowered with the full metric gµν . From
this action principle, we obtain the following equation of motion

Gαβ(g̃ + h) = Σ

(
1

2
ν(x)hσσg̃αβ + µ(x)(hαβ − hασhσβ)

)
+ Tmatterαβ (5.13)

Where we have defined Σ ≡
√

g̃
g
with

√
− g̃ the determinant of background metric

and
√
−g the determinant of the full metric. The details of the variation of the action are

given in Appendix E. The term associated with ν(x) allows us to have a closed algebraic
system to solve the Einstein equation.

Using as "matter" energy-momentum tensor Tmatterαβ the equation (5.2), we have found
the following line element

ds2
BEC = − 1

(1−B)

(
1− 2M

r
− C

r3ω+1

)
dt2 +

1

(1−B)
(
1− 2M

r
− C

r3ω+1

)dr2 + r2dΩ2

(5.14)
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An expression that can be written as

gαβ = diag

(
1

(1−B)
g̃tt,

1

(1−B)
g̃rr, g̃φφ, g̃θθ

)
(5.15)

This equation has the same mathematical structure as (4.9). With this structure we
always obtain that Gt

t = Gt
t and G

φ
φ = Gθ

θ. Then, we have two effective equations to
solve, and this is why we need µ(r) and ν(r) to close an algebraic system. These scalar
fields are given by

ν(r) =
3

4(1−B)

Cω

r3(ω+1)
(3ω + 1) (5.16)

µ(r) =
3

2

[B(3ω + 1)− 3(ω + 1)]Cω

(1−B)2r3+3ω
− 1

(1−B)2r2
(5.17)

We do not have any particular interpretation for µ and ν, but they play a fundamental
role in obtaining this solution. In this way, we have succeeded to generalize the BEC-
Schwarzschild line element (4.8), which describes a graviton condensate without matter
content. The line element (5.14) would describe a graviton condensate that is surrounded
with different matter contents because, as we have discussed throughout this chapter, the
Kiselev black hole can parameterize other black holes which have matter content. This
result is the natural extension of the metrics obtained in (56).

We can compute the graviton number recalling from subsection 4.1.2 that

N =

∫ r+

0

ρdV, ρ =
1

2r+

hαβh
αβ

Therefore, we obtain that the number of gravitons is given by

N =
4π

3
(r+)2B2 ⇒ N ∼ S (5.18)

As before, the number of gravitons is proportional to the entropy. We remark that in
the graviton condensate without matter, the horizon radius was r = 2M . In this solution,
r+ is not expressible analytically, it must satisfied that 1− 2M

r+
− C

r3ω+1
+

= 0. We must not
forget that r+ denotes the outermost horizon radius.

We will only give the radial mixed component of the Einstein tensor. The other
components are unnecessary for our purposes. Then, we have

Gr
r = −B

r2
+

3Cω(1−B)

r3(ω+1)
(5.19)

Therefore, the effective radial mixed component of the energy-momentum tensor is

T rr = − B

8πr2
+

3Cω(1−B)

8πr3(ω+1)
(5.20)

Evaluating at the horizon, we obtain the thermodynamic pressure used in HT
approach, which is

Ptot = − B

8πr2
+

+
3Cω(1−B)

8πr
3(ω+1)
+

(5.21)
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We split the total pressure as Ptot ≡ Pvac + Pmatt. Then, we have

Pvac ≡ −
B

8πr2
+

, Pmatt ≡
3Cω(1−B)

8πr
3(ω+1)
+

(5.22)

The first term is the pressure related to the vacuum solution, which we denote Pvac,
and the second term is the pressure related to the matter content Pmatt. If we take ω = 0,
we recover the thermodynamic pressure for graviton condensate without matter (4.20).
Using the equation (2.40), we obtain the Hawking temperature

Th =
(1−B)

4π

(
2M

r2
+

+
(3ω + 1)C

r3ω+2
+

)
(5.23)

Therefore, the first law and the Euler-Smarr relation of HT are

dU = ThdS − (Pvac + Pmat)dV (5.24)

U = 2ThS − 3(Pvac + Pmat)V (5.25)

The entropy and volume have the usual definition: S = πr2
+ and V =

4πr3
+

3
. Besides,

the internal energy is still U = r+
2
. Now we would have a graviton condensate surrounded

by matter. In this way, we were able to extend the results obtained in section 4.2.
We must emphasize that we cannot use the number of gravitons N to express each
thermodynamic quantity due to the presence of matter, as we did in chapter 4. In this
sense, the N-portrait proposal of Dvali and Gomez only works for the vacuum solution.

5.3.1 BEC-Reissner-Nordstrom BH and BEC-AdS Schwarzschild
BH

We will illustrate our result for the cases of two well-known black holes. We obtain
the BEC-Reissner-Nordstrom BH taking ω = 1

3
and C[1/3] = −Q2. From equation (5.14),

we obtain the line element

ds2
BEC = − 1

(1−B)

(
1− 2M

r
+
Q2

r2

)
dt2 +

1

(1−B)
(

1− 2M
r

+ Q2

r2

)dr2 + r2dΩ2 (5.26)

Using the equation (5.23), we obtain the Hawking temperature

Th =
(1−B)

2πr2
+

(
M − Q2

r+

)
We know that for BEC-Reissner-Nordstrom black hole, the outermost horizon is

located at r+ = M +
√
M2 −Q2. Therefore, another expression for the temperature is

⇒ Th =
(1−B)

√
M2 −Q2

2π(M +
√
M2 −Q2)2

(5.27)
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This temperature is almost the same that (2.41) from chapter 2 corrected by a factor
(1−B) in a similar line that we obtained in section 4.2. Using the second term of equation
(5.22), we obtain the electrical pressure

Pmatter = −Q(1−B)

8πr4
+

(5.28)

This pressure has almost the same form that the electrical pressure obtained in
equation (3.27) in chapter 3. Pmatter also includes the correction factor (1 − B). The
volume V , the entropy S, and internal energy U are functions of r+ only; hence, they do
not change with respect to the standard Reissner-Nordstrom BH. In summary, the
temperature (5.27) and the pressure (5.28) are for a graviton condensate surrounded by
an electric field.

In a similar line, we obtain the BEC-AdS Schwarzschild black hole taking ω = −1
and C[−1] = Λ

3
, which has the following line element

ds2
BEC = − 1

(1−B)

(
1− 2M

r
− Λ

3
r2

)
dt2 +

1

(1−B)
(
1− 2M

r
− Λ

3
r2
)dr2 + r2dΩ2 (5.29)

The Hawking temperature and pressure are respectively

Th =
(1−B)

2πr2
+

(
M − Λ

3
r3

+

)
, Pmatter = −(1−B)Λ

8π
(5.30)

Except for the correction (1−B), these quantities are precisely the same obtained in
chapter 3, i.e., equations (3.13) and (3.27) respectively. This graviton condensate would
be surrounded by a cosmological fluid.

Once again, in this chapter, we have illustrated the powerful mathematical tool that
is Kiselev’s solution. We can draw general conclusions from various black holes only by
using this solution. We have been able to study from energy conditions to the proposal
of graviton condensate with different types of matter in one go, thanks to the Kiselev
black hole’s ability to parameterize other black holes.
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Chapter 6

Conclusions

The N-Portrait proposal asserts that black holes physics can be understood in terms
of a graviton condensate at the critical point of a quantum phase transition. Besides, it
states that each thermodynamic quantity of the graviton condensate can be expressed in
terms of the number of gravitons N (52). The N-Portrait analysis made by its authors
is more qualitative than quantitative, further, of being not geometrical at all. On the
other hand, the geometrical BEC-BH model is a more geometric proposal to the graviton
condensate in a more quantitative setting, which we have presented in subsection 4.1.2.
If a black hole is a graviton condensate at the critical point [µchem = 0], it must have
well-established thermodynamic variables. In this thesis, we have calculated a negative
pressure for the graviton condensate in conjunction with a correction to the Hawking
temperature for a black hole of mass M . These results are

Th =
(1−B)

8πM
, P = − B

32πM2

Where B is a small constant associated with the quantum fluctuation hµν (4.10). In
the spirit of the N-Portrait proposal, we have been able to express each thermodynamic
variable in terms of the number of gravitons N as follows

S ∼ N, M ∼
√
N Th ∼

1√
N
, V ∼ N3/2, P ∼ 1

N

We have successfully defined the thermodynamic variables of the graviton condensate.
We recall that these quantities, under the N-Portrait proposal, are only defined at the
critical point where the chemical potential is zero, as is the case with an ideal quantum
gas. This fact is possible because the coupling between gravitons is extremely small (52).
Finally, we have also established a formal equivalence between the Letelier black hole
with the BEC-Schwarzchild line element, which describes the graviton condensate. We
hope in future works to be able to exploit this equivalence more and perhaps be able to
calculate the entropy of the black hole using the cloud of strings associated with Letelier’s
solution with mathematical tools from Loop Quantum Gravity or String Theory.

In the second part of this thesis, we have shown how the Kiselev black hole can be
used to parameterize other well-known spherically symmetric black holes. Under this
premise, we have obtained the Smarr relation and the first law of thermodynamics for an
arbitrary state parameter ωi. These results are
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M = 2ThS −
∑
i

Ci
2

(3ωi + 1)r−3ωi
+

dM = ThdS +
∑
i

θidλi, θi ≡ −
1

2
r−3ωi

+

∂Ci
∂λi

With these equations, appropriately choosing the state parameter ωi and the Kiselev
charge Ci, we recover the thermodynamics of the AdS Reissner-Nordstrom black hole.
Furthermore, we extended the standard thermodynamics approach by introducing an
arbitrary pair (ωi, Ci) in the first law of the black hole thermodynamics [See equation
(5.11)]. In future works, we hope to study thermodynamic cycles with these equations
and speculate if it is possible to establish a Kiselev/CFT correspondence.

The third result of this thesis was to extend the geometrical BEC-BH model in order
to include different types of matter. We have once again used the Kiselev black hole and
its ability to parameterize other solutions. We have obtained the following new solution
called the BEC-Kiselev black hole

ds2
BEC = − 1

(1−B)

(
1− 2M

r
− C

r3ω+1

)
dt2 +

1

(1−B)
(
1− 2M

r
− C

r3ω+1

)dr2 + r2dΩ2

By choosing the pair (ωi, Ci) appropriately, we can obtain BEC-Reissner-Nordstrom
black hole and BEC-AdS Schwarzschild black hole [See equations (5.26) and (5.29)
respectively]. Finally, the temperature and pressure associated with this solution are

Th =
(1−B)

4π

(
2M

r2
+

+
(3ω + 1)C

r3ω+2
+

)

Ptot = Pvac + Pmatt, Pvac ≡ −
B

8πr2
+

, Pmatt ≡
3Cω(1−B)

8πr
3(ω+1)
+

In this way, we can describe a graviton condensate with different matter contents,
as we have done in subsection 5.3.1. When we have matter contents, we cannot express
all the thermodynamic quantities in terms of the number of gravitons N . However, this
number N continues to be proportional to the entropy of the black hole [See equation
(5.18)].
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Appendix A

Connection, Einstein Tensor, and Local
Frame

We write the line element for static spherical symmetry solutions as follows

ds2 = −f(r)dt2 +
1

h(r)
dr2 + r2dΩ2 (A.1)

Here dΩ ≡ dθ2 + sin2(θ)dφ2 is the unit 2-sphere. The nonzero components of the
connection are given by

Γrtt =
1

2
h(r)f ′(r), Γttr =

1

2

f ′(r)

f(r)
, (A.2)

Γrrr = −1

2

h′(r)

h(r)
, Γθrθ = Γφrφ =

1

r
, (A.3)

Γrθθ = −h(r)r, Γφθφ =
cos(θ)

sin(θ)
(A.4)

Γrφφ = −h(r)r sin2(θ), Γθφφ = − cos(θ) sin(θ) (A.5)

The nonzero mixed components of the Einstein tensor are

Gt
t =

h− 1 + rh′

r2
(A.6)

Gr
r =

f(h− 1) + rhf ′

r2f
(A.7)

Gθ
θ = Gφ

φ =
2hff ′′ + h′f ′fr − h(f ′)2r + 2h′f 2 + 2hh′f

4r2
(A.8)

Where we used as notation f ≡ f(r), h ≡ h(r), f ′ ≡ df
dr

and h′ ≡ dh
dr
.
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A.1 Local Frame

For any arbitrary metric one can introduce a set of orthonormal units vectors, which
is called the orthonormal basis, and fulfills

~eµ̂ · ~eν̂ = ηµ̂ν̂ (A.9)

The local components of an arbitrary basis ~eµ is given by

~eµ = eµ̂µ~eµ̂ (A.10)

Then, the metric can be written as

gµν = eµ̂µe
ν̂
νηµ̂ν̂ (A.11)

The hat indices are with respect to the orthonormal basis. The no hat indices are the
global indices of the spacetime. To see more details go to sections 4.6-4.8 of (9).

Doing the transformation of gtt to the local frame in a diagonal metric, one has that

gtt = eµ̂te
ν̂
t ⇒ gtt = −

(
et̂ t

)2

⇒ et̂ t =
√
−gtt

Doing the same for each component of the diagonal metric, we obtain

et̂ t =
√
−gtt, er̂ r =

√
grr, eφ̂φ =

√
gφφ, eθ̂θ =

√
gθθ (A.12)

We can use these coordinate transformations to obtain the local components of the
Einstein tensor using that

Gµ̂ν̂ = eµ̂µe
ν̂
νG

µν (A.13)

From this, we obtain for the case of diagonal metric that

Gt̂t̂ = −Gt
t, Gr̂r̂ = Gr

r, Gφ̂φ̂ = Gφ
φ, Gθ̂θ̂ = Gθ

θ (A.14)

Using the Einstein equation (2.6), we obtain the local components of the energy-
momentum tensor

T t̂t̂ = −G
t
t

8π
, T r̂r̂ =

Gr
r

8π
, T φ̂φ̂ =

Gφ
φ

8π
, T θ̂θ̂ =

Gθ
θ

8π
(A.15)

These results are valid for the line element (A.1), which is diagonal. Notice the
negative sign between the time-time local component of the energy-momentum tensor
and the time-time mixed component of the Einstein tensor. This negative sign will be
necessary for interpreting the energy conditions, which will be given in Appendix D.
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Appendix B

Rindler Frame

Let (T,X, Y, Z) be an inertial coordinate system in flat spacetime. The Minkowski
line element is

ds2 = −dT 2 + dX2 + dY 2 + dZ2 (B.1)

The coordinate transformations between the inertial system and the system of the
uniformly accelerated observer are given by

X = a−1eax cosh(at), T = a−1eax sinh(at), Y = y, Z = z (B.2)

⇒ dX2 − dT 2 = e2ax(dx2 − dt2)

Where the uniform acceleration of the Rindler observer is a. Besides, we notice
that these coordinate transformations only described one-quarter of the total Minkowski
spacetime because of cosh(at) ≥ 1 (∀t). Therefore, the coordinates (x, t) describe only
the region X > |T |. See the diagram B.1. Then, the line element becomes

ds2 = e2ax(−dt2 + dx2) + dL2 (B.3)

We have defined the transversal part of this line element as dL2 ≡ dy2 + dx2. We
also notice that the factor e2ax appears because the coordinate transformations used are
nonlinear. We can do a new coordinate transformation for x to obtain an alternative line
element for the Rindler frame. Then, we have

eax = 1 + ax̄⇒ dx = −eaxx̄

The line element gets the new form

ds2 = − (1 + ax̄)2 dt2 + dx̄2 + dL2 (B.4)

This form of Rindler frame is fundamental at a conceptual level to understand GR.
We remind the line element of the weak gravitational approximation, which is

ds2 = − (1 + 2φ) dt2 + dx̄2 + dy2 + dz2
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Figure B.1: This diagram shows the region that is described by the coordinate
transformations given by (B.2). We notice that the events A, B cannot reach with a
signal to an accelerated observer. On the other hand, the event C is not reachable by
the accelerated observer. In this way, the lines X = T and X = −T act as a one-way
membrane, according to the accelerated observer. We call X = T the future Rindler
horizon and X = −T the past Rindler horizon. This diagram is similar to the Kruskal
diagram 2.1 showed in section 2.2. [Image extracted from (8)]

The scalar field φ is the Newtonian potential. Doing a Taylor expansion in (B.4)
(1 + ax̄)2 ≈ 1 + 2ax̄ for ax̄ << 1 [In the SI units ax̄

c2
<< 1]. From this, we recognize

that φ = ax̄. Therefore, we arrive at the conclusion that the gravitational field are
locally indistinguishable from accelerated frames. Unintentionally we have reached the
equivalence principle.

To establish a direct relation between the near-horizon metric of a BH and the Rindler
frame for the Minkowski spacetime, we perform the following transformation

1 + ax̄ =
√

2al⇒ dx̄ =
1√
2al

dl
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In this way, we have another alternative form of the Rindler line element

ds2 = −2aldt2 +
1

2al
dl2 + dL2 (B.5)

This line element has the same mathematical structure in the sector t − l that the
near-horizon metric of a BH given by equation (2.20). Finally, to reach other useful form
related to the Euclidean trick for the Rindler frame, we do the next transformation

r =

√
2l

a
⇒ dr =

1√
2al

dl

The line element becomes

ds2 = −(ar)2dt2 + dr2 + dL2 (B.6)

Just the time part of the metric contains "a special term" different from the standard
Minkowski line element. This form is pretty useful to apply the Euclidean trick. The
Rindler frame is a powerful tool to develop insight into the nature of spacetime, in a
general setting, and the spacetime near the black hole.
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Appendix C

Killing Vectors and Surface Gravity

The generally covariant way to determine the symmetries of the metric is through
the Lie Derivative

£ξgµν = ∇µξν +∇νξµ = 0 (C.1)

Any vector that satisfies this equation is called a Killing vector. If the metric tensor
is independent of a particular coordinate, for instance, xt in a given coordinate system,
then £ξgµν = 0 where the killing vector is simple ξµ(t) = δµt . To see this result, we take
the covariant derivative, so that

∇µξα = ∂µξα − Γνµαξν ⇒ ∇µξα(t) = −gαβΓβµt = −Γαµt

Therefore, in this particular case, the Killing equation is

∇µξν (t) +∇νξµ(t) = − (Γµνt + Γνµt)

We recall that ∂γgµν = Γµνγ + Γννγ, see, e.g, (2). From this, we obtain

∇µξν (t) +∇νξµ(t) = −∂tgµν ⇒ ∂tgµν = 0

This result was calculated in a given coordinate system. However, the Killing equation
(C.1) is covariant. Therefore, we know the spacetime itself has a time Killing vector,
which satisfies the Killing equation, even when ∂tgµν = 0 is not satisfied in some other
coordinate system. In spherical symmetry, a static spacetime is one that has a time
Killing vector or equivalently a spacetime where at least there is one coordinate system
where the metric does not depend on the time coordinate.

The equation (C.1) implies immediately that Killing vector fields have zero divergence

∇βξ
β = 0 (C.2)

Another pretty useful property is

∇α∇αξβ = −Rβ
µξ

µ (C.3)

To prove this equation, we remember that one of the possible definitions of the
Riemann tensor is

[∇α,∇β]vγ = Rµ
γβαvµ
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Where vγ is an arbitrary vector. So, taking vγ = ξγ, we have

[∇α,∇β]ξγ = Rµγ
βαξµ ⇒ −∇α∇αξβ = Rµγ

βγξµ ⇒ ∇α∇αξβ = −Rβ
µξ

µ

In the first equality, we contracted the indices α, γ, and we used equations (C.1) and
(C.2) to compute the commutator. In the second equality, we use the definition of the
Ricci tensor (2.3), and we raised the index β using the metric.

Now we will focus only on static spherically symmetric spacetimes where we have for
the line element given by (A.1) that ξµ(t) = δµt . Therefore, the norm of the time Killing
vector is

ξµ(t)ξµ(t) = gtt = −f(r) (C.4)

On the horizon, the norm of the time Killing vector vanishes. Outside the horizon,
the norm is negative, and inside is positive. These signs have an invariant meaning by
construction.

C.1 Surface Gravity

We define the surface gravity κ, on the horizon, following two equivalent ways

ξµ∇µξ
α ≡ κξα (C.5)

κ2 ≡ −1

2
∇µξν∇µξν (C.6)

It is not difficult to demonstrate this equivalence, but it is a long calculation. We
omit it. We will compute the surface gravity for the line element given by (A.1). Then,
we have

∇µξ
α = ∂µξ

α + Γαµνξ
ν ⇒ ∇µξ

α
(t) = Γαµt

Using the components of the affine connection given in equation (A.2) in equation
(C.6), we obtain

κ2 = −1

2
gµνgαβΓαµtΓ

β
νt ⇒ κ2 = −1

2

(
gttgrr (Γrtt)

2 + grrgtt
(
Γtrt
)2
)

Taking particularly f = h in the line element (A.1), one obtains

κ =
1

2
f ′(r+) (C.7)

The derivative of the lapse function is evaluated at the outermost horizon because
the other possible interior horizons are causally disconnected from the outside spacetime.
The gravity surface is physically related to the force on a massless (unphysical) string
at infinity, see, for instance, (4). Another interpretation of κ is the acceleration of a
static particle near the horizon as measured at spatial infinity (5). The basis for these
interpretations is that a static observer is not in free fall, so roughly speaking, a static
observer needs a motor to keep her static position.
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Appendix D

Energy Conditions

This appendix will be based on the textbook called A relativist’s toolkit written by
Poisson (6). Energy conditions are essential for two central purposes. First, to show
some powerful theorems in GR, such as the Hawking area theorem, which requires the
null energy condition. Second, the geometrical side of the Einstein equation Gµν can be
computed for an arbitrary metric gµν as a mathematical exercise regardless of any physical
content. Hence, we can propose any metric, then compute Gµν and equate with Gµν =
8πTµν . Thus we can define an energy-momentum tensor with this procedure. Doing this,
no one can assure that the energy-momentum tensor found is well-founded in physical
terms. The energy conditions give us some physical criteria to discard nonphysical Tµν .
Here, we are going to give only the classical energy conditions, no quantum ones. The
latter are currently hot topics of research.

To start, we expand the energy-momentum tensor in the local frame as follows

T α̂β̂ = ρeα̂te
β̂
t + Pre

α̂
re
β̂
r + Pφe

α̂
φe
β̂
φ + Pθe

α̂
θe
β̂
θ (D.1)

We will require a future-directed timelike vector vα, which can be decomposed as

vα = γ
(
eα̂t + aeα̂r + beα̂φ + ceα̂θ

)
, γ = (

√
1− a2 − b2 − c2)−1 (D.2)

Here a, b, c are arbitrary functions. Also, we will require a future-directed null like
vector kα, which can be decomposed as

kα =
(
eα̂t + feα̂r + geα̂φ + heα̂θ

)
, 1 = f 2 + g2 + h2 (D.3)

We recall that the normalization of a null vector is always arbitrary.

Weak Energy Condition:

An observer with four-velocity vα will measure the energy density as Tµνv
µvν .

Therefore, we demand

Tµνv
µvν ≥ 0 (D.4)

From the local energy-momentum tensor (D.1) and equation (D.2), we obtain from
the previous condition that

ρ+ a2Pr + b2Pφ + c2Pθ ≥ 0
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Since a, b, c are arbitrary functions, we set a = b = c = 0, so we get ρ ≥ 0. Now, we
only demand b = c = 0, then ρ + a2Pr ≥ 0, but from the normalization of vα (D.2) we
know that 1 > a2, therefore, ρ + Pr > 0. We can do the same for the other pressures to
obtain similar inequalities. To sum up, we obtain the following two conditions

ρ ≥ 0, ρ+ Pi > 0 (D.5)

Null Energy Condition:

The null energy condition is pretty similar to the weak one, except we use kα instead
of vα. Then, we demand the condition

Tµνk
µkν ≥ 0 (D.6)

From the local energy-momentum tensor (D.1) and equation (D.3), one obtains

ρ+ f 2Pr + g2Pφ + h2Pθ ≥ 0

We cannot demand simultaneously f = g = h = 0 due to the normalization condition
over kα (D.3). Choosing g = h = 0 implies a = 1, so we have ρ + Pr ≥ 0. The other
pressures hold similar inequalities. To sum up, we have for the null energy condition that

ρ+ Pi ≥ 0 (D.7)

The weak energy condition implies the null energy condition.

Strong Energy Condition:

For the strong energy condition, we demand that the energy-momentum tensor
satisfies (

Tµν −
1

2
gµνT

)
vµvν ≥ 0 (D.8)

This condition is actually a condition for the Ricci tensor. We see this from the
alternative Einstein equation (2.9), so Rµνv

µvν ≥ 0. In this sense, this is a mathematical
condition over the Ricci tensor, not a physical one. With the same philosophy of the
weak and null energy conditions, it is possible to show that the strong energy condition
implies the following restrictions

ρ+ Pr + Pφ + Pθ ≥ 0, ρ+ Pi ≥ 0 (D.9)

Where i can be (r, φ, θ). The strong energy condition does not imply the weak one.

Dominant Energy Condition :

The physical insight tells us that the matter should flow along timelike or null like
world lines. Mathematically, we impose that

−Tαβ vβ ≥ 0 (D.10)
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This quantity must be future-directed and represents the density momentum of matter
as measured by a local observer with four-velocity vβ. Doing the same procedure of weak
and null energy condition, one can prove

ρ ≥ 0, ρ ≥ |Pi| (D.11)

Where the index i can be taken from (r, φ, θ).

The weak, null, and dominant energy conditions are based on the physical
requirements of the local behavior of matter. In comparison, the strong energy
condition is based on a mathematical need for specific proofs of GR. These conditions
hold classically; in the quantum realm, they can be violated. The most notable example
of this is the Hawking radiation, which decreases the black hole area. Here, the null
energy condition, which is a hypothesis of the area theorem is violated at the quantum
level. Then, one must demand that the total entropy, the sum of Sbh and Smatter, does
not decrease, so there is not a problem with the decreasing of the BH entropy while the
entropy of surrounding increases enough to hold the generalized second law of BH
thermodynamics (17).

Finally, we use from Appendix A equation (A.15) combining with (D.1) to obtain that

ρ = −G
t
t

8π
, Pr =

Gr
r

8π
, Pφ =

Gφ
φ

8π
, Pθ =

Gθ
θ

8π
(D.12)

Thanks to this result, it is straightforward to study the energy conditions for a diagonal
metric.



61

Appendix E

BEC Energy-Momentum Tensor

We propose the following action principle to obtain the energy-momentum tensor
associated with the BEC solutions

SBEC = −1

8

∫
d4x
√
−g̃hαβhλσUαβλσ (E.1)

Where we have separated the full metric gαβ in the following way: gαβ = g̃αβ + hαβ.
Here g̃αβ is the background metric and hαβ is a correction to background metric which is
coupled with the BEC tensor Uαβλσ. We assume that this tensor can only depend on the
full metric, not in any power of derivative of gαβ. With this assumption the more general
way for Uαβλσ is

Uαβλσ = ν(x)gαβgλσ + µ(x)[gαλgβσ + gασgβλ] (E.2)

Here µ(x) and ν(x) are scalar functions of spacetime. The action takes the following
form

SBEC = −1

8

∫
d4x
√
−g̃
(
ν(x)gαβgλσhαβhλσ + µ(x)hαβhλσ[gαλgβσ + gασgβλ]

)
We notice that dx4

√
−g̃ is the measure of the background metric. Also, we assume

that the background metric is fixed δg̃αβ = 0, which implies that δgαβ = δhαβ. We
remark that the indices of all tensors are raised and lowered with gαβ. Particularly, we
have hαβ = gαωhωβ and hαβ = gαωgβλhωλ.

For simplicity, we will split the total Lagrangian density as follows

L1 = −1

8
ν(x)gαβgλσhαβhλσ (E.3)

L2 = −1

8
µ(x)hαβhλσ[gαλgβσ + gασgβλ] (E.4)

Although it is true that the action proposed conceptually is a quantum correction,
we can still consider it as an effective matter action and use equation (2.8) to obtain an
effective energy-momentum tensor. Then, we recall its definition

Tµν =
−2√
−g

δ(
√
−g̃L)

δhµν
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Where we already have considered that the background metric is fixed. Besides, we
recall the following result (2)

δgµν = −gµγgνεδgγε
Calculating the variation of the first Lagrangian density

δ(
√
−g̃L1) = −1

8

√
−g̃ν(x)((δgαβgλσ + gαβδgλσ)hαβhλσ + gαβgλσ(δhαβhλσ + hαβδhλσ))

⇒ δ(
√
−g̃L1) = −1

4

√
−g̃ν(x)hσσ(−hαβgαγgβεδgγε + gαβδhαβ)

⇒ δ(
√
−g̃L1) = −1

4
ν(x)hσσ(gαβ − hαβ)δhαβ

√
−g̃

Where we have used δgµν = δhµν in the last step. Hence, we obtain

⇒ Tαβ1 =
1

2

√
−g̃
−g

ν(x)hσσ(gαβ − hαβ)

However, we know that hαβ = gαωgβλhωλ. Then, we obtain

⇒ T 1
αβ =

1

2
ν(x)hσσg̃αβΣ (E.5)

Where we have defined Σ ≡
√
−g̃
−g . For the second Lagrangian density L2, it is better

to do some simplification before

L2 = −1

8
µ(x)(hαβhλσg

αλgβσ + hαβhλσg
ασgβλ)

⇒ L2 = −1

4
µ(x)hαβhλσg

ασgβλ

Calculating the variation, one has

δ(
√
−g̃L2) = −1

2

√
−g̃µ(x)(hλσg

ασgβλδhαβ + hαβhλσg
ασδgβλ)

⇒ (
√
−g̃L2) = −1

2

√
−g̃µ(x)(hαβ − hασhσβ)δhαβ

Therefore, the second contribution to the effective energy-momentum tensor is

⇒ Tαβ2 = Σµ(x)(hαβ − hασhσβ) (E.6)

The total effective energy-momentum is given by

T
(BEC)
αβ = Σ

(
1

2
ν(x)hσσg̃αβ + µ(x)(hαβ − hασhσβ)

)
(E.7)

The Einstein equation becomes

Gαβ(g̃ + h) = Σ

(
1

2
ν(x)hσσg̃αβ + µ(x)(hαβ − hασhσβ)

)
+ Tmatterαβ (E.8)
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Where Tmatterαβ represents any other contribution to the energy-momentum tensor
aside, which we have calculated. A more compact action to obtain the effective
energy-momentum tensor is given by

SBEC = −1

8

∫
d4x
√
−g̃(ν(x)h2 + µ(x)hαβh

αβ)

Where h ≡ hββ. This result is obtained after doing all the indices contractions. In
this way, the action SBEC contains all possible scalars built with hαβ up to quadratic
power.
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Appendix F

Letelier Spacetime

We will compute the spacetime of a black hole surrounded by a cloud of strings
based on (68). We start considering a moving infinitesimally thin string that traces out
a two-dimensional world sheet Σ, which is parameterized as follows

xµ = xµ(λa), a = 0, 1

Where λ0 is a time-like parameter and λ1 a space-like parameter. Assuming the action
depends only on λ0 and λ1, the Nambu-Goto action is proportional to the area of the
worldsheet expanded by the string motion. Therefore, we have

SNG = c

∫
Σ

√
−γdλ0dλ1 (F.1)

Where c is a positive constant related to the string tension, and γ is the determinant
of the induced metric, which is given by

γab = gµν
dxµ

dλa
dxν

dλb

We define the bi-vector Σµν as follows

Σµν ≡ εab
dxµ

dλa
dxν

dλb

Where εab is the two-dimensional Levi-Civita symbol. Using this definition in the
Nambu-Goto action, we obtain

SNG = c

∫
Σ

√
−1

2
ΣµνΣµνdλ0dλ1

Using equation (2.8) we obtain the energy-momentum tensor

T µν(string) = c
ΣµσΣ ν

σ√
−γ

This result is the energy-momentum tensor for one string. For a cloud of string, we
use T µν ≡ ρT µν(string), where ρ is the number density of the string cloud.

We will now consider a static spherically symmetric solution. The non-null
components of the bi-vector are ΣRT = −ΣTR, so we have
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T TT = TRR = cρ
ΣTRΣTR√
−γ

Imposing the condition ∇µT
µν = 0, and after long computations [see the details in

(68)], one arrives at

T TT = TRR = − a

R2
(F.2)

Here a is an integration constant related to the local energy density. Having an
explicit energy-momentum tensor, we can compute the line element for the so-called
Letelier spacetime (67)

ds2 = −
(

1− a− 2m

R

)
dT 2 +

1(
1− a− 2m

R

)dR2 +R2dΩ2 (F.3)

According to Letelier’s interpretation, this solution represents the Schwarzschild black
hole surrounded by a cloud of strings.

F.1 Standard Thermodynamics

From the Letelier line element (F.3), we have the following lapse function

f(r) = 1− a− 2m

R
(F.4)

The event horizon is located at Rh = 2m
1−a . Using the Bekenstein-Hawking relation

(2.36), the BH entropy is

S = πR2
h ⇒ S = π

4m2

(1− a)2
(F.5)

The temperature is given by the Hawking relation (2.40) as follows

Th =
f ′(rh)

4π
⇒ Th =

(1− a)2

8πm
(F.6)

The Komar energy in static spherical symmetry (2.25) is given by

Ek =
R2

2
f ′(rh)⇒ Ek = m (F.7)

From the global aspect of Black Holes we can compute the Smarr relation (3.3)

Ek − 2ThS = −8π

∫ R

rh

dr · r2

(
T tt −

T

2

)
However, in this spacetime, we have T = 2T tt, so the "matter" integral vanishes.

From this, we obtain the Smarr relation for the Letelier BH

Ek = 2ThS ⇔ m = 2ThS (F.8)
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It is easy to prove that multiplying the entropy S (F.5) with temperature Th (F.6)
the Smarr relation is satisfied. The first law of BH thermodynamics is

dm = ThdS (F.9)

The internal energy does not change due to the cloud of string. While the Hawking
temperature and BH entropy change by a factor proportional to (1− a)2. These results
appear in (69).

F.2 Horizon Thermodynamics

We recall the definition of Misner-Sharp mass from equation (3.23)

f(R) = 1− 2

r
U(R)

Reading from the lapse function (F.4), we have

⇒ U(R) = m+
aR

2

Evaluating at the horizon U ≡ U(Rh), we obtain

⇒ U =
m

(1− a)
(F.10)

According to the HT approach the pressure and volume (3.26) are given by

V ≡ 4πR3
h

3
, P ≡ T rr|Rh

,

Using Rh = 2m
1−a and equation (F.2), we obtain that

⇒ P =
−a(1− a)2

32πm2
, V =

32πm3

3(1− a)3
(F.11)

The Hawking temperature and BH entropy are given by equations (F.6) and (F.5)
respectively. We can prove explicitly that the Euler-Smarr relation (3.34) is satisfied. We
start with

2ThS − 3PV = 2

(
(1− a)2

8πm

)
·
(
π

4m2

(1− a)2

)
− 3

(
32πm3

3(1− a)3

)
·
(
−a(1− a)2

32πm2

)
⇒ 2ThS − 3PV = m+

am

(1− a)
⇒ 2ThS − 3PV =

m

(1− a)

⇒ 2ThS − 3PV = U

Where we used the Misner-Sharp mass from equation (F.10). Of course, from this
relation, we obtain the first law of HT immediately

dU = ThdS − PdV
We notice that the Komar mass is Ek = m, while the Misner-Sharp mass is U = m

1−a .
They are not equal due to the presence of the cloud of strings.
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Appendix G

Unruh Effect and Hawking Radiation

In section 2.4, we obtained the Hawking temperature Th using the Euclidean trick.
Here, we will obtain the Hawking radiation using a test scalar field on the Schwarzschild
BH background. This computation will be based on the following textbooks (1), (8).
We will start with the Unruh effect because it is conceptually simpler and has the same
math as Hawking radiation computation. Besides, we will perform the calculation in 1+1
dimensions, and then we will comment on the necessary changes for 3+1 dimensions.

G.1 Unruh Effect

From Appendix B we know that the Minkowski and Rindler line elements are
respectively

ds2 = −dT 2 + dX2, ds2 = e2ax(−dt2 + dx2) (G.1)

Where the coordinate transformations that connect both line elements are

X(t, x) = a−1eax cosh(at), T (t, x) = a−1eax sinh(at)

We define the lightcone coordinates (U, V ) for the Minkowski spacetime and the
lightcone coordinates (u, v) for the Rindler spacetime in the following way

U ≡ T −X, V ≡ T +X (G.2)

u ≡ t− x, v ≡ t+ x (G.3)

In these coordinates the line elements become

ds2 = −dUdV, ds2 = −e−a(v−u)dudv (G.4)

The future and past horizons of the Rindler spacetime described in figure B.1 now
are given by dU = 0 and dV = 0, respectively. The lightcone coordinate transformations
between the Rindler and the Minkowski spacetimes satisfy that U = U(u), and V = V (v).
We can prove this as follows

U = T −X ⇒ U = −a−1eax (cosh(at)− sinh(at))

⇒ U = −a−1 exp(a(x− t))⇒ U = −a−1e−au
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Similarly, it is possible to prove that V = a−1eav. This property of the lightcone
coordinate transformations will be useful later because it will allow us to separate the
right-moving and left-moving quantum modes.

The next step is to consider a massless scalar field in the spacetime as follows

S = −1

2

∫
d2x
√
−ggµν∂µφ∂νφ (G.5)

This action is conformally invariant because we are working in 1+1 dimensions.
Therefore, the action becomes

S = −2

∫
dUdV ∂Uφ∂V φ = −2

∫
dudv∂uφ∂vφ

The equations of motion from the action principle are

∂U∂V φ = 0, ∂u∂vφ = 0

The solutions of these equations are

φ = R(U) + L(V ), φ = R̃(u) + L̃(v)

Where R, L, R̃ and L̃ are arbitrary smooth functions. The letter R is for right-moving
mode, and L is for left-moving mode. These modes never mix between them thanks to,
in part, U = U(u), and V = V (v). Besides, the action (G.5) has the standard form.
Therefore, in the overlap region x > |t|, we can expand the field operator φ̂ in a canonical
way

φ̂ =

∫ ∞
0

dω√
2π

1√
2ω

[
e−iωU â−ω + eiωU â+

ω

]
+ LM (G.6)

φ̂ =

∫ ∞
0

dΩ√
2π

1√
2Ω

[
e−iΩub̂−Ω + eiΩub̂+

Ω

]
+ LM (G.7)

Where e−iωU is the right-moving mode with a positive frequency with respect to
Minkowski time T , while e−iΩu is the right-moving mode with a positive frequency with
respect to Rindler time t. We denote by LM the left-moving modes e±iωV and e±iωv, which
never mix with the right-moving quantum modes. For this reason, we do not explicitly
write down the form of left-moving modes. The canonical commutation relations are

[â−ω , â
+
ω′ ] = δ(ω − ω′), [b̂−Ω, b̂

+
Ω′ ] = δ(Ω− Ω′) (G.8)

The Minkowski vacuum state |0M > and the Rindler vacuum state |0R > are given
by

â−ω |0M >= 0, b̂−Ω|0R >= 0, |0M >6= |0R > (G.9)

The vacuum states are different. This fact is the key to understand the Unruh effect.
The Minkowski vacuum |0M > will be, from the point of view of the accelerated observer,
a state that contains particles.
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In order to connect the operators b̂±Ω and â±ω , we use Bogolyubov transformation

b̂−Ω =

∫ ∞
0

dω(αΩωâ
−
ω − βΩωâ

+
ω ) (G.10)

Introducing this expression and its conjugate in the commutation relation (G.8), one
obtains the following condition over the coefficients αΩω and βΩω∫ ∞

0

dω(αΩωα
∗
Ω′ω − βΩωβ

∗
Ω′ω) = δ(Ω− Ω′) (G.11)

We want to compute the number of Rindler particles N̂Ω ≡ b̂+
Ω b̂
−
Ω in the Minkowski

vacuum. Then, we must compute that

< N̂Ω >≡< 0M |b̂+
Ω b̂
−
Ω|0M > (G.12)

Using the Bogolyubov transformation (G.10), and â−ω |0M >= 0, we obtain

⇒< N̂Ω >=

∫ ∞
0

dω|βΩω|2 (G.13)

All the calculation reduces to obtain this integral. We start using equation (G.10) in
(G.7) to obtain

φ̂ =

∫ ∞
0

dω√
2π

1√
2ω

∫ ∞
0

dΩ

√
ω

Ω

[
â−ω
(
e−iΩuαωΩ − eiΩuβ∗ωΩ

)
+ â+

ω

(
eiΩuα∗ωΩ − e−iΩuβωΩ

)]
+LM

The field operator φ̂ is in terms of â±ω just as (G.6). Therefore, demanding that both
expressions are equal, we obtain

⇒ e−iωU =

∫ ∞
0

dΩ

√
ω

Ω

(
e−iΩuαωΩ − eiΩuβ∗ωΩ

)
We can invert this expression using the typical tricks of Dirac delta. Then, we obtain

the following expressions for the coefficients αΩω and βΩω

αΩω =

∫ ∞
−∞

e−iωU+iΩudu, βΩω =

∫ ∞
−∞

eiωU+iΩudu (G.14)

From these equations, one can prove the following identity

|αΩω|2 = e2πΩ/a|βΩω|2

Finally, inserting this result in (G.11), and taking Ω = Ω′, we reach the desired result∫ ∞
0

dω|βΩω|2 =
δ(0)

exp(2πΩ
a

)− 1
(G.15)

Comparing with (G.13), we obtain that

< N̂Ω >=
δ(0)

exp(2πΩ
a

)− 1
(G.16)
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The divergence δ(0) appears because we are considering all the spacetime. If we made
the integral in a volume V , δ(0) would be replace by V . Then, defining n ≡ <N̂Ω>

δ(0)
, we

obtain the mean density of the Rindler particles

nΩ =
1

exp(2πΩ
a

)− 1
(G.17)

This result is the Bose-Einstein distribution. Consequently, we can recognize the
Unruh temperature Tu as follows

Tu =
a

2π
(G.18)

Therefore, an accelerated observer will see a thermal bath of particles. The agent
that causes the Rindler observer acceleration is the energy source to excite particles in
the Minkowski vacuum. We must notice that the computation was carried out for right-
moving modes. One arrives at the same distribution (G.17) performing the calculation
with left-moving modes.

G.2 Hawking Radiation

The calculation of Hawking radiation is the same as the Unruh effect, once we identify
the vacuum states that we will need to perform this computation. To do this, we will
identify two coordinate systems related to two different observers. We start with the
Schwarzschild solution in 1+1 dimensions, which is

ds2 = −
(

1− rg
r

)
dt2 +

(
1− rg

r

)−1

dr2

Where we have defined rg ≡ 2M . Using the tortoise coordinate r∗ defined in (2.15),
we can obtain the following coordinate transformation

⇒ r∗ = r + rg ln

(
r

rg
− 1

)
− rg (G.19)

This coordinate transformation is valid for r > rg. Then, it describes the exterior of
the black hole. When r → rg, we have that r∗ → −∞. Besides, when r >>> rg, we
have that r∗ ∼ r. Thus, the tortoise coordinate is useful to describe a observer at rest at
infinity. Using (G.19) the line element becomes

ds2 = −
(

1− rg
r(r∗)

)
(dt2 − dr∗2)

Where r is an implicit function of r∗ defined through equation (G.19). As before, we
introduce lightcone coordinates: u ≡ t− r∗ and v ≡ t+ r∗. Then, we obtain

ds2 = −
(

1− rg
r(u, v)

)
dudv (G.20)

Later, we will use the observer related to this line element to define one of the vacuum
states that we will need later.

Now, we will describe the other line element related to the other vacuum state. We
start expressing the equation (G.19) as follows
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⇒ 1− rg
r

=
rg
r

exp

(
v − u
2rg

)
exp

(
1− r

rg

)
Using this result in equation (G.20), we have

⇒ ds2 = − rg
r(u, v)

exp

(
1− r(u, v)

rg

)(
exp

(
−u
2rg

)
du

)(
exp

(
v

2rg

)
dv

)
In this equation, we will use the following coordinate transformations

U = −2rg exp

(
− u

2rg

)
, V = 2rg exp

(
v

2rg

)
(G.21)

Finally, we arrive at the lightcone Kruskal coordinate system, which is

ds2 = − rg
r(U, V )

exp

(
1− r(U, V )

rg

)
dUdV (G.22)

This coordinate system will define another vacuum state. As the case of the Unruh
effect, we also have that U = U(u), and V = V (v). Therefore, left-moving and right-
moving modes will never mix between them. We can also see from (G.21) that u ∈
(−∞, 0) and v ∈ (0,∞). Then, we are still describing the exterior of the black hole.
However, we can extend u ∈ (−∞,∞) and v ∈ (−∞,∞) because the line element (G.22)
is still well-defined with this analytical extension.

Equations (G.20) and (G.22) are our two coordinate systems related by the coordinate
transformations (G.21). The proper time of an observer at rest at infinity coincides with
t. This result comes from the following line element

ds2 = −
(

1− rg
r(u, v)

)
dudv ⇒ ds2 → −dudv = −dt2 + dr∗, (r →∞)

In the region where r →∞, we can expand the field operator φ̂ as follows

φ̂ =

∫ ∞
0

dΩ√
2π

1√
2Ω

[
e−iΩub̂−Ω + eiΩub̂+

Ω

]
+ LM

The vacuum state is defined by b−Ω|0B >= 0. This state is called the Boulware vacuum
state. The tortoise coordinate covers only the exterior part of the black hole; in this sense,
they are similar to the Rindler coordinates because both coordinate systems describe only
a certain part of the whole spacetime. Besides, we notice that the right-moving positive
frequency mode e−iΩu propagates away from the black hole.

The Kruskal coordinates are regular at the event horizon. Thus, we have that

ds2 = − rg
r(U, V )

exp

(
1− r(U, V )

rg

)
dUdV ⇒ ds2 → −dUdV = −dT 2 + dR2, (r → rg)

Where we have defined in the canonical way T andR through the lightcone: U ≡ T−X
and U ≡ T + X. The Kruskal coordinates cover the whole Schwarzschild black hole; in
this sense, they are similar to the Minkowski coordinates. In the region where r → rg,
we can expand the field operator φ̂ as follows
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φ̂ =

∫ ∞
0

dω√
2π

1√
2ω

[
e−iωU â−ω + eiωU â+

ω

]
+ LM

The term e−iωU is the right-moving mode with a positive frequency with respect to
the time T near the horizon. The Kruskal vacuum state is defined by a−ω |0K >= 0. Now,
we have all the ingredients to perform the computation of Hawking radiation. At this
point, the calculation becomes similar to the one carried out for the Unruh effect.

In summary, the Kruskal vacuum state |0K > plays the role of Minkowski vacuum
|0M >, and the Boulware vacuum state |0B > plays the role of Rindler vacuum |0R >.
Besides, the surface gravity κ is equivalent to the acceleration a. Then, we want to
compute the number of Boulware particles N̂Ω ≡ b̂+

Ω b̂
−
Ω in the Kruskal vacuum

< N̂Ω >≡< 0K |b̂+
Ω b̂
−
Ω|0K >⇒< N̂Ω >=

∫ ∞
0

dω|βΩω|2

Doing precisely the same math that (G.13)-(G.17), we obtain the mean density of the
particles, which is given by

nΩ =
1

exp(2πΩ
κ

)− 1
(G.23)

This equation is the Bose-Einstein distribution again. Hence, we can recognize the
Hawking temperature Th as follows

Tu =
κ

2π
(G.24)

An eternal black hole is described by the analytical extension made in the Kruskal
coordinates. In this case, there are right-moving and left-moving modes because we
have two horizons du = 0 [future-horizon of the black hole] and dv = 0 [past-horizon of
the white hole]. The outgoing particles are the right-moving modes, and the incoming
particles are the left-moving modes. From this picture, we conclude that an eternal black
hole must be in a thermal reservoir at temperature Th, because the black hole will absorb
particles, so it will have to radiate particles to be in thermal equilibrium. On the other
hand, a black hole, which is a product of gravitational collapse, does not have a past-
horizon. Then, the black hole does not have left-moving modes, and it will only radiate
evaporating its mass. Thus, we arrive at the Hawking radiation.

In the 3+1 dimensions, we must consider the spherical part of the metric. However,
we can use separable variables in the scalar field as follows

Φ(t, r, φ, θ) =
∑
l,m

φlm(t, r)Ylm(φ, θ) (G.25)

One can prove that the wave equation of the scalar field becomes[
gab∂a∂bφ+

(
1− rg

r

)(rg
r3

+
l(l + 1)

r2

)]
φlm(r, t) = 0 (G.26)



APPENDIX G. UNRUH EFFECT AND HAWKING RADIATION 73

Where the indices a, b ∈ (t, r). Therefore, the wave equation acquires an effective
potential. This extra term in the wave equation introduces the gray factor ΓGR to the
mean density of particles as follows

nΩ =
ΓGF

exp(2πΩ
κ

)− 1
(G.27)

We will not prove this result here. The details are in (10). We notice that ΓGR < 1
because the quantum modes must overcome the aforementioned effective potential to
escape to infinity. The key idea is that the sector (t, r) is responsible for the Hawking
radiation, not the spherical part of the metric. Thus, the analysis in 1+1 dimensions is
enough to show the quantum nature of the Hawking radiation.

Finally, we recall the Stefan-Boltzmann law, which is given by

L = ΓGFσT
4
hA

Where σ = π2

60
is the Stefan-Boltzmann constant in natural units [σ =

π2k4
b

60~3c2
in SI

units], and ΓGF is the gray factor correction aforementioned. The mass of the black hole
decreases with time as follows

dM

dt
= −L

By combining the last two equations and using the area A and Hawking temperature
Th of the Schwarzschild black hole, we obtain

dM

dt
= − ΓGF

15360πM2
(G.28)

This result is the Hawking’s radiation power formula.
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