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This thesis is split into two parts: In the first one we study the minimal geometric defor-

mation approach in order to generate anisotropic solutions from Einstein’s equation and its

observational effects of such anisotropies when measuring the surface redshift.

On the other hand, we develop the theory of perturbation of Delta Gravity at first order,

we discuss the gauge transformations for metric and a perfect fluid in order to present the

equations of the evolution of cosmological fluctuations using the hydrodynamic approxima-

tion. Then we compute the temperature fluctuations for photons coming from the time of

last scattering tL. Finally, we present a formula for temperature multipole coefficients for

scalar modes, which can be used to compare the theory with astronomical observations.

http:www.uc.cl
carubiof@uc.cl




Acknowledgements

It is a great pleasure to thank my advisor, Dr. Jorge Alfaro, for an excellent supervision

and to encourage me to carry out my own ideas. He inspired me to go beyond the standard

theories yet never forgetting the observational constraints. In addition, his experience, his

ability, and his view of how physics works helped me to improve my own point of view about

physics.

Thanks to the members of my thesis committee Dr. Benjamin Koch, Dr. Rolando Dünner,

Dr. Segio Hojman and Dr. Gonzalo Palma, for the constructive criticism, useful comments

and suggestions.

I would like to thank the Physics Department of the Pontifical Catholic University of Chile

for its warmest hospitality all these years. Thanks to the Chilean government who supported

me by Conicyt PhD Fellowship No. 21150314.
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Chapter 1

Preliminar

1.1 Motivations

When we speak about the greatest contribution to the physics of the twentieth century,

we can undoubtedly affirm that Quantum Mechanics and General Relativity occupy the

podium. Both theories have been tested in different scenarios achieving to explain many

phenomena and thanks to them we can understand Nature in a much deeper way.

In particular, General Relativity, proposed by Einstein in 1916 has allowed us to understand

the nature of gravity, and with this, we can now figure out how extensive is our Universe

and how its constituents take part in it. The evolution of the understanding of the Universe

from the first habitants until the modern Cosmology has taught us about the infinite power

of the knowledge of mathematics and of the technological development involved.

Richard Feynman said that to those who do not know mathematics it is difficult to get across

a real feeling as to the beauty, the deepest beauty, of nature... if you want to learn about na-

ture, to appreciate nature, it is necessary to understand the language that she speaks in. I

could not agree more with his words, in my young career I have seen how mathematics can

not only describe phenomena yet it can predicts how nature behaves or the existence of new

particles such the case of neutrinos.

I will never forget one of my first classes of mechanics, where the professor Victor Muñoz

said that the calculator is dumb when he was referring to approximations in physics and

how the intuition will be one of the most powerful skills when solving problems, since that

moment I fell in love with physics and I knew that I wanted to be a physicist, and is this

1
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feeling who has driven me to this point where I am concluding the Ph.D. Along this road, I

have learned about many fields in physics, both theoretical and experimental. And despite I

am aware of Physics is an experimental science, I felt very intrigued when I see an equation

that describes an experiment.

With this hungry, I met Einstein’s Special Relativity. I am still impressed with how he

imagined that space and time behaved the way we understand today. But even more, is

how using mathematics he could present his theory and how it was verified with accuracy

later. It is not hard to describe my admiration when I went deeper and I studied Einstein’s

General Relativity. This was the moment when I realized that I wanted to dedicate my life

to understand the most possible about this theory. Predictions from the curvature of the

space-time which was verified a few years after its publication, the form and the evolution

of the Universe which is still in controversy, to gravitational waves which took almost 100

years for its measurement motivated me to do my research in this area.

This thesis tries to give a humble extension of the considerations when solving Einstein’s

equations, where all the information is encoded as much as in the geometry which is ref-

erenced to the metric, as in the content of matter in the Universe. Here are present two

main results which have in common a naively simple consideration: the modification of the

geometry (or the metric) permits to extend some solutions of GR to explain astronomical

observations. I hope these results could go in the right direction to the final answer to the

current controversies that the General Relativity is facing through.

1.2 Introduction

We know that general relativity (GR) has been tested from scales larger than a millimeter

to solar-system scales [1, 2]. Nevertheless, its quantization has proved to be difficult. The

theory is non-renormalizable, which prevents its unification with the other forces of nature.

There are some theories which have tried to make sense of quantum GR, like string theories,

Loop Quantum Gravity among others, but none of them has been accepted as the correct

and final answer to the problem of quantum gravity.

The study of analytical solutions of Einstein field equations plays a crucial role in the discov-

ery and understanding of relativistic phenomena. Theoretical grounds provide many exact

and non exact isotropic solutions in GR; however most of them have no physical relevance and

do not pass elementary test of astrophysical observations[3–6]. There are very few solutions
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under static and spherically symmetric assumptions. Worst yet, ever fewer of these solutions

have physical relevance passing elementary tests of astrophysical observations. Furthermore,

no astronomical object is constituted of perfect fluid only; hence isotropic approximation is

likely to fail.

Anisotropic configurations have continuously attracted interest and are still an active field of

research. Strong evidence suggests that a variety of very interesting physical phenomena gives

rise to a quite large number of local anisotropies, either for low or high density regimes (see [7]

and references therein). For instance, among high density regimes, there are highly compact

astrophysical objects with core densities ever higher than nuclear density (∼ 3×1017 kg/m3)

that may exhibit an anisotropic behaviour [8]. Certainly, the nuclear interactions of these

objects must be treated relativistically. The anisotropic behaviour is produced when the

standard pressure is split in two different contributions: i) the radial pressure pr and ii) the

transverse pressure pt, which are not likely to coincide.

Anisotropies in fluid pressure usually arise due to the presence of a mixture of fluids of

different types, rotation, viscosity, the existence of a solid core, the presence of a superfluid

or a magnetic field [9]. Even anisotropies are produced by some kind of phase transitions

or pion condensation among others [10, 11]. The sources of anisotropies have been widely

studied in the literature, particularly for different highly compact astrophysical objects such

as compact stars or black holes, either in 4 dimensions [12, 13] as well as in the context of

braneworld solution in higher dimensions [14–16].

The main purpose of this part of the Thesis is to generalize anisotropic analogous solutions of

a particular kind of isotropic compact objects by means of the so-called minimal geometric

deformation approach (MGD hereinafter) [17, 18]. This method was originally proposed

in the context of the Randall–Sundrum braneworld [19, 20] and was designed to deform

the standard Schwarzschild solution [21, 22]. It describes the 4D geometry of a brane stellar

distribution, hence obtaining braneworld corrections to standard GR solutions. Therefore, it

is a suitable method to obtain spherically symmetric and inhomogeneous stellar distributions

that are physically admissible in the braneworld. The key point of this approach is that the

isotropic and anisotropic sectors can be split. Thus, the decoupling of both gravitational

sources can be done in a simple and systematic way establishing a new window to search for

new families of anisotropic solutions of Einstein field equations.



Ph.D Thesis Carlos Rubio 4

We applied a gravitational decoupling through the MGD approach to derive exact and

physically acceptable anisotropic interior solutions analogous to the Durgapal and Fuloria

superdense star [23]. There have been several proposals of anisotropic models analogous to

Durgapal–Fuloria compact stars [24, 25]; the MGD method seems to generalize them. The

details of this method will be shown in the next chapter, however the main lines goes as

follows: Let us start with a well known spherically symmetric gravitational source T (0)
µν . This

source can be as simple as one would desire; one can start with any known perfect fluid or

even with vacuum itself. Any classical solution works as a seed for this method. After this,

one switch on a new source of anisotropy

T̃µν = T (0)

µν + αT (1)

µν . (1.1)

When gravitational sources are coupled via gravity only, i.e. they do not exchange energy-

momentum among each other, the set of equations can be split into two contributions. On

the one hand, a well known sector is identified with the classical field equations of the chosen

seed; the Durgapal-Fuloria solution for compact stars in our case. On the other hand, one

is left with a simpler set of ‘pseudo-Einstein’ equations for the sources of the anisotropy, to

be solved. Combining both sectors a full anisotropic and physically consistent solution of

Einstein field equations is obtained. Of course one can switch on as many arbitrary sources

of anisotropies T (i)
µν as desired, as long as a strategy to solve the new sector can be found.

This method for decoupling non-linear differential equations can be applied in a systematic

way and has a vast unexplored territory where it could give different novel perspectives.

MGD does not only give consistent interior solutions for different isotropic perfect fluid in

GR; it could also be conveniently exploited in relevant theories such as f(R)–gravity [26, 27],

intrinsically anisotropic theories as Hořava–aether gravity [28] or to study the stability of

novel proposals of Black Holes, described by Bose Einstein gravitational condensate systems

of gravitons [29–31]. This is a robust method to extend physical solutions into an anisotropic

domain preserving the physical acceptability.

The results of this part are presented in the publication Gravitational decoupled anisotropies

in compact stars[32] and will be explained detaily in Chapter 2.

On the other hand, recent discoveries in cosmology have revealed that most part of matter is

in the form of unknown matter, dark matter, and that the dynamics of the expansion of the

Universe is governed by a mysterious component that accelerates its expansion, the so called

dark energy. Although GR is able to accommodate both dark matter and dark energy, the
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interpretation of the dark sector in terms of fundamental theories of elementary particles is

problematic. Even though exist candidates that could play the role of dark matter, none of

them have been detected yet.

In GR, dark energy can be explained if a small cosmological constant (Λ) is present. At early

times, this constant is irrelevant, but at the later stages of the evolution of the Universe Λ will

dominate the expansion, explaining the observed acceleration. Such small Λ is very difficult

to generate in quantum field theory (QFT) models, because Λ is the vacuum energy, which

is usually predicted to be very large. Worse yet, ΛCDM which is the actual cosmological

model is showing inconsistencies between the early and late Universe description[33]. The

problem appears in different cosmological parameters such as the Hubble constant[34, 35],

the curvature[36] and S8 tension[37]. Measuring the cosmic microwave background (CMB)

radiation, the Planck team found a local expansion rate of H0 = 67.37 ± 0.54 Km/s/Mpc,

which is consistent with a flat Λ CDM model[38] (where the Hubble constant must be

derived taking into account other observations like BAOs). On the other hand, the SH0ES

collaboration found a larger value H0 = 73.52±1.62 Km/s/Mpc through model-independent

measurements of the local Universe[34], at & 3.5σ discrepancy with Planck value. This

tension between early and late Universe exists even without Planck CMB data or the SH0ES

distance ladder[33]. Another direct measurement of H0 = 72.5+2.1
−2.3 Km/s/Mpc[39] form the

H0LiCOW collaboration based on lensing time delays is in moderate tension with Planck,

while a constraint from Big Bang nucleosynthesis (BBN) combined with baryon acoustic

oscillation (BAO) data of H0 = 66.98± 1.18 Km/s/Mpc[33] is inconsistent with SH0ES.

Other studies have tried to explain this discrepancy, suggesting that due to cosmic variance,

the Hubble constant determined from nearby SNe-Ia may differ from that measured from

the CMB by ±0.8 percent at 1σ statistical significance. Still, this difference does not explain

the discrepancy between SNe-Ia and CMB.[40] Nevertheless, in an extreme case, observers

located in the centers of the immense voids could measure a Hubble constant from SNe-Ia

biased high by 5 percent.

From the first publication of the H0 tension [41] there have been many questions about the

origin of this discrepancy. It has been suggested that could be errors in the calibration of

Cepheids that contribute to systematic errors. This possible error has been discarded in an

extensive discussion made by Riess et. al. [42].

There are many works which have tried to solve the acceleration evidence, including anisotropies

at local scales. Using SNe-Ia data [43] they found evidence of anisotropies associated with



Ph.D Thesis Carlos Rubio 6

the direction and the amplitude of the bulk flow. Nevertheless, the effect of dipolar distri-

bution dark energy cannot be excluded at high redshift. Also, there is another publication

[44] where the anisotropies in cosmic acceleration are related to the Dark Energy, in their

words, the cosmic acceleration deduced from supernovae may be an artifact of our being non-

Copernican observers, rather than evidence for a dominant component of ”dark energy” in

the Universe.. Other studies [45] conclude that even in the case of anisotropy, the Dark

Energy could not be completely ruled out. This solution could provide solutions to explain

variations on the local scale, for example, different measurements on the local Hubble con-

stant. But this kind of hypothesis could defy all the analyses made by Planck using ΛCDM

model because the Dark Energy component is essential for the evolution of photons of the

CMB from the last Scattering Surface until now, even more, the sum over Ω for every compo-

nent in the Universe would drastically change. Many other suggestions about discrepancies

have appeared, not only related to SNe-Ia measurements, but also within the Planck data

itself. The anisotropies in these measurements have been debated and could be ruled out

because the uncertainty tends to be very high, and the results can be very inconsistent. Even

hypothesis about the possibility of a Universe with less Dark Energy [46] have appeared.

Another source of errors in the local measurement could be an inhomogeneity in the local

density. [47] In this scenario the presence of local structure does not appear to impede the

possibility of measuring the Hubble constant to 1% precision, and there is no evidence of a

change in the Hubble constant corresponding to an inhomogeneity.

Today, there are different methods to obtain the Hubble constant, even with SNe-II, [48]. In

this research, they used SN-II as standardizable candles to obtain an independent measure-

ment of the Hubble constant. The value obtained was H0 = 75.8+5.2
−4.9 km /s/Mpc. the local

H0 is higher than the value from the early Universe with a confidence level of 95%. They

concluded that there is no evidence that SNe Ia are the source of the H0 tension. Even,

from SNe-Ia, other publication concluded, from analyzing SNe-Ia as standard candles in the

near-infrared, that H0 = 72.8 ± 1.6 (statistical) ±2.7 (systematic) km/s/Mpc. Indeed, they

concluded that the tension in the competing H0 distance ladders is likely not a result of

supernova systematic.

Other proposals have tried to reconcile Planck and SNe-Ia data, including modifications in

the physics of the DE. In other words, introducing a [49] equation of state of interacting dark

energy component, where w is allowed to vary freely, could solve the H0 tension. Also, decay-

ing dark matter model has been proposal in order to alleviate the H0 and σ8 anomalies[50], in
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their work they reduce the tension for both measurements when only consider Planck CMB

data and the local SH0ES prior on H0, however when BAOs and JLA supernova dataset are

included their model is weakened.

Other controversies are related to inconsistencies with curvature (and other parameters

needed to describe the CMB) [36], or are related to the tension between measurements

of the amplitude of the power spectrum of density perturbations (inferred using CMB) and

directly measured by large-scale structure (LSS) on smaller scales. [51], Through the time,

the tension between Planck and SNe-Ia persist [38, 42], where the H0 is the most significant

tension. Furthermore, the Universe is composed principally by DE, but we still do not know

what it is.

Delta Gravity (DG) [52] is an extension of General Relativity (GR), where new fields are

added to the Lagrangian by a new symmetry (for more details see [52–54]). This model is

very similar to classical GR, but could make sense at the quantum level. In this construction,

the authors consider two different points. The first is that GR is finite on shell at one loop

in vacuum, so renormalization is no necessary at this level. The second is a type of gauge

theories, δ̃ gauge theories (DGT), presented in [55, 56], which main properties are: (a) a new

kind of field φ̃I is introduced, different from the original set φI . (b) The classical equations

of motion of φI are satisfied in the full quantum theory. (c) The model lives at one loop. (d)

The action is obtained through the extension of the original gauge symmetry of the model,

introducing an extra symmetry that they called δ̃ symmetry, since it is formally obtained

as the variation of the original symmetry. When we apply this prescription to GR we ob-

tain δ̃ Gravity (DG). This theory predicts an accelerating Universe without a cosmological

constant Λ, and a Hubble parameter H0 = 74.47 ± 1.63 Km/s/Mpc[57] when fitting SN-Ia

Data, which is in agreement with SH0ES.

Although DG gives good results for local measurements, we need to study its cosmological

predictions. In particular, the information provided by the anisotropies of matter and energy

fluctuations in the Cosmic Microwave Background (CMB) could allow us to understand the

physical meaning of this new fields which are included.

The temperature correlations give us information about the constituents of the Universe,

such as baryonic and dark matter. Therefore we have to study the evolution of the CMB

fluctuations from the last scattering (denoted by tls) to the present. Usually, these compu-

tations are carried out by codes such as CMBFast[58, 59] or CAMB1[60], where Boltzmann

1http://camb.info/
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equations for the fluids and its interactions provide us well-known results that are in agree-

ment with Planck measurements.[38]

Nevertheless, one can get a good approximation of this complex problem[61, 62]. In this

work, we used an analytical method that consists of two steps instead of study the evolution

of the scalar perturbations using Boltzmann equations. First, we used a hydrodynamic ap-

proximation, which assumes photons and baryonic plasma as a fluid in thermal equilibrium

at recombination time, where there is a high rate of collisions between free electrons and

photons. Second, we study the propagation of photons [52], by radial geodesics from the

moment when the Universe switch from opaque to transparent at time tls until now.

In this research, we presented the first steps of this essential procedure, developing the theory

of scalar perturbations at first order. We discussed the gauge transformations in an extended

Friedmann-Lemâıtre-Robertson-Walker (FRLW) Universe. Then we showed how to get an

expression for temperature fluctuations, and we demonstrated that they are gauge invariant,

which is a crucial test from a theoretical point of view. With this result, we derived a formula

for the scalar contribution to temperature multipole coefficients. This formula will be useful

to test the theory, and could give a sign of the physical consequence of the “delta matter”,

introduced in this theory.

The CMB provides cosmological constraints that are crucial to test a model. Many cos-

mological parameters can be obtained directly from the CMB Power Spectrum, such as

h2Ωb, h
2Ωc, 100θ, τ, As and ns [38], but others can be derived from constraining CMB ob-

servation with SNe-Ia or BAOs. With the study of the CMB anisotropies, we can study

two aspects: the compatibility between CMB Power Spectrum and DG fluctuations and the

compatibility between CMB and SNe-Ia in the DG theory.

Throughout the Ph. D. preliminary results were presented in the following conferences:

• XI SILAFAE: Latin American Symposium of High Energy Physics, CMB

Power Spectrum in Delta Gravity, Nov. 2016, Antigua, Guatemala.

• La parte y el Todo: Tópicos Avanzados en F́ısica de Altas Enerǵıas y Grav-

itación, CMB Power Spectrum in Delta Gravity, Jan. 2017, Afunalhue, IX Región de

la Araucańıa, Chile.

• XXI Simposio Chileno de F́ısica, Temperature Fluctuations of CMB in Delta Grav-

ity, Nov. 2018, Antofagasta, Chile.
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• XII SILAFAE: Latin American Symposium of High Energy Physics, Tem-

perature Fluctuations of CMB in Delta Gravity, Nov. 2018, Lima, Perú.

This Thesis is divided in four additional chapters, the first one is self-consistent with respect

to the other two in the sense that can be read separately without the need of having read

the preceding chapter. Finally, we add concluding chapter which sum up the main results

of this Thesis.

The second chapter is subdivided as follow: we present the Einstein field equations for an

anisotropic fluid. In Section 2.2 we explain how the MGD approach is implemented to gen-

erate arbitrary anisotropic solutions. Section 2.3 is dedicated to apply this method to a

particular seed, the Durgapal-Fuloria model for compact stars. In Section 2.4 we extend

the method to seeds which are already anisotropic. The last two sections are dedicated to

discuss the main results and summarize our conclusions.

The third chapter introduce the model of DG and its results that will be useful for the

develop of the fourth and fifth chapter. In Section 3.1 we introduce the δ̃ symmetry, and

how it used to extend an action. Then we applied this symmetry to Einstein-Hilbert action

to build the action of Delta Gravity, after that we present the equations of motion of this

theory. In Section 3.2 we show the form of the energy-momentum tensors for a perfect fluid

and the normalization of the velocity fields. In Section 3.3 we show how massive and massless

particles move in a gravitational field induced by DG. After that, in Section 3.4 we present

the main results of this theory for an extended FRLW-Universe. In Section 3.4.1 we derive

the form of the metric in the harmonic gauge. Then, in Section 3.4.2 we study the trajectory

of photons in this background. This define a modified scale factor which will replace the

usual scale factor of GR for observable distances. After that, in Sections 3.4.3 and 3.4.4 we

solve the complete system of equations of the theory and discuss some implications of these

results. Then, in Section 3.4.5 we impose the first lay of Thermodynamics to DG and we can

distinguish whether the solutions are physical or not. Also we show that if we require that

the black body distribution of photons that travel from the moment of the decoupling until

reaching us remain unchanged, the temperature should fall with the modified scale factor.

After that, in Section 3.4.6 we show the implication of considering the moment when the

density of radiation was equal to the density of Non Relativistic matter was the same for

both GR and DG. This gives a physical meaning of a parameter of DG. Finally, in Section
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3.4.7 we summarize the previous results of the Chapter and discus some points of the theory

about its foundation.

The fourth chapter presents the cosmological fluctuations in Delta Gravity. In Section 4.1 we

perturbed the FLRW metric using the scalar-vector-tensor decomposition. Then, in Sections

4.1.1 we study the gauge transformations for those perturbations. In Sections 4.1.2 and 4.1.3

we repeat the procedure for the energy-momentum tensor and present some gauge fixing sce-

narios. After that, in Section 4.1.4 we present the fields equations and energy-momentum

conservation in the synchronous gauge.

In Section 4.2 we analyze the evolution of cosmological perturbation and solve them in the

radiation era for adiabatic solutions. Then we do the same for the matter-dominated era in

Section 4.2.1. Finally we present a summary of the chapter with some conclusions.

In Chapter 5 we study the fluctuations of temperature in DG. In Section 5.1 we derive how

the perturbed FLRW background redshifts the temperature fluctuations. After that, in Sec-

tion 5.1.1 we study the gauge transformations of these fluctuations, this will be a theoretical

test of DG, because those fluctuations have to be gauge invariants. Then in Section 5.1.2

we consider scalar contributions dominated by a unique mode. With this consideration, we

derive the coefficients for the multipole temperature expansion in Section 5.2. Here we find

a formula for the CMB multipoles that will be useful to fit the data with DG. However,

this procedure is not part of this Thesis. Finally, we summarize the results obtained in this

Chapter and conclude over them.

To finish this Thesis, in Section 6 we present the main features of this work, and we give

some traces for future investigations.



Chapter 2

Gravitational decoupled anisotropies

in compact stars

This work was done in collaboration with Dr. Luciano Gabbanelli and Dr. Ángel Rincón,

with whom I am very grateful to work.

2.1 Anisotropic effective field equations

The simplest approach to describe compact distributions modelling stellar structures, is to

restrict the metric to be static and spherically symmetric. In the usual Schwarzschild-like

coordinates the line element takes the standard form

ds2 = eν dt2 − eλ dr2 − r2 (d2θ + sin2 θ d2φ) ; (2.1)

where the functions ν ≡ ν(r) and λ ≡ λ(r) depend on the radial coordinate only. The

encoded metric is a generic solution of the Einstein field equations

Rµν −
1

2
Rgµν = κT̃µν , (2.2)

describing an anisotropic fluid sphere. The coupling constant between matter is given by

κ = 8πG/c4. Along these lines we will work in relativistic geometrized units, G = c = 1.

The observable features of the object will be determined by the exterior metric that will

11
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describe the geometry of the outer part. In the present article to maintain the treatment as

simpler as possible, we will suppose a Schwarzschild vacuum outside.

The corresponding anisotropic effective stress-energy tensor T̃µν is characterized by its di-

agonal components ρ̃, p̃r and p̃t, that are related to the geometric functions µ, ν through

(2.2). Explicitly,

κρ̃ =
1

r2
− e−λ

(
1

r2
− λ′

r

)
, (2.3)

−κp̃r =
1

r2
− e−λ

(
1

r2
+
ν ′

r

)
, (2.4)

−κp̃t = −1

4
e−λ

(
2 ν ′′ + ν ′2 − λ′ ν ′ + 2

ν ′ − λ′

r

)
. (2.5)

The prime stand for derivatives w.r.t. r. There is another equation consequence of the

Bianchi identities: the covariant conservation of the stress-energy tensor

∇ν T̃µν = 0 . (2.6)

Since the discovery of the first interior stellar solution by Schwarzschild [63] and for several

years, stars interior were supposed to be constituted by perfect fluids. It was not until 1933

when Lemâıtre [64] develop that spherical symmetry do not require the isotropic condition

p̃r = p̃t, but only the equality of the two tangential pressures p̃θ = p̃φ = p̃t. The system of

equations (2.3)–(2.6) governs the matter distribution within the star, which is assumed to

be locally anisotropic (the radial and tangential pressure do not coincide). It is necessary to

solve for five unknowns functions: two geometric functions, ν(r) and λ(r); and three effective

scalar functions, ρ̃(r), p̃r(r) and p̃t(r). However there are more unknowns than equations,

hence the system is undetermined and constrains must be imposed. Some of them must

be chosen by consistency of regularity, stability and (or) energy conditions of relativistic

models; see for instance [7, 9, 65].

Throughout this chapter we will make use of the following representation for the effective

energy-momentum tensor

T̃µν = T (PF )

µν + α θµν . (2.7)
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The first term encodes a perfect fluid with isotropic pressure p = pr = pt,

T (PF )

µν = (ρ+ p)uµuν − p gµν . (2.8)

uµ is the normalized four-velocity field that accomplish uµuνg
µν = 1. In our case, the per-

fect fluid will invariably be given by the Durgapal–Fuloria interior solution. Under this

representation, the anisotropic sector is described by the θ–term. It describes additional

gravitational sources responsible for the anisotropies. These source may contain new fields,

whether scalar, vector or (and) tensor fields, coupled to gravity by means of a free dimen-

sionless and constant parameter α. One of the simplest and most treated examples in the

literature are the anisotropies that may arise due to extra interactions resulting from the

presence of charge [66]; besides there are plenty of complex treatments of anisotropies gen-

erated by other sophisticated physical fields [67].

The effective stress–energy tensor (2.7) contributes at the level of Einstein equations with an

effective energy density ρ̃, an effective radial pressure p̃r and an effective tangential pressure

p̃t defined as

ρ̃ = ρ+ α θt
t , (2.9)

p̃r = p− α θrr , (2.10)

p̃t = p− α θϕϕ . (2.11)

Thus, each magnitude is written as a deviation from the GR solution due to the presence

of the θ–term. The additive structure for the anisotropies allows the theory to have a

straightforward limit to GR; setting α = 0 the standard Einstein equations for the perfect

fluid are recovered.

Since the Einstein tensor is divergence free, under the representation taken in (2.7) the

covariant conservation equation (2.6) yields

p′ +
ν ′

2
(ρ+ p)− α

[
(θr

r)′ +
ν ′

2
(θr

r − θtt) +
2

r
(θr

r − θϕϕ)

]
= 0 . (2.12)

This equation is a linear combination of (2.3) and (2.5), as commonly happens in perfect

fluid solutions of Einstein equations.

As this point let us remark the appearance of the anisotropy: there is not an a priori

restriction for the components of θµν ; however, if θr
r 6= θϕ

ϕ when solving the equation
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system (2.3)–(2.5), we will be in the presence of the pressure anisotropy

Π ≡ p̃t − p̃r = α (θr
r − θϕϕ) . (2.13)

Therefore, an isotropic stellar distribution (perfect fluid) becomes anisotropic when the θ–

term is turned on. In these lines we will follow a different approach to tackle the equation

system (2.3)–(2.5); we will address this system by means of the MGD method. This theory

decouples the Einstein field equations when deforming the metric of the corresponding GR

solution [17, 18, 68, 69].

2.2 Minimal geometric deformation approach

With the aim of approaching the system of equations (2.3)–(2.5) in an alternative manner, a

briefly review on the MGD procedure will be presented. This method produces anisotropic

corrections to standard GR solutions providing physically admissible non-uniform and spher-

ically symmetric stellar distributions. The input (seed) is a known solution of Einstein equa-

tions: for instance the thermodynamic parameters satisfying (2.8), and the corresponding

geometric functions λ(r) and ν(r). When a perfect fluid solution is taken as a seed, the

isotropic condition pr = pt = p is automatically accomplished. The method will produce a

drift in the effective pressures such that p̃r 6= p̃t. For doing so, one implements the most

generic minimal geometric deformation over the metric without breaking the spherical sym-

metry of the initial solution; this is

e+ν(r) → eν(r) + α e∗(r), (2.14)

e−λ(r) → µ(r) + α f ∗(r), (2.15)

with e and f generic functions parametrizing the metric deformation. In Figure 2.1 a

schematic picture exemplifies how this method extends GR solutions to anisotropic domains

when releasing α. Even though the theory does not impose limits for the coupling strength,

the physical acceptability of the new solution does so; if α is increased, the anisotropies

become at some point unstable.

Although nothing prevent us from deforming the temporal component of the metric, it is

general enough to start setting e∗ = 0; hence the effects of the θµν source undergo in a

deformation over the radial coordinate only. The peculiarity of the MGD method is that it
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entails in its formulation a decoupling of the equations of motion. As a consequence of taking

the θ–sector as responsible of the minimal distortion of the metric, the system of equations

(2.3)–(2.5) results quasi-decoupled: we obtain the Einstein equations for the chosen perfect

fluid; and an effective ‘pseudo–Einstein’ system of equations governing the θ–sector. The

only parameter that connects the two sectors is the temporal geometric function ν(r). At

the same order as before, the temporal, radial and angular equations of motion relating the

geometry of the spacetime to the thermodynamic characteristic of the perfect fluid sector

reduce to

κ ρ =
1

r2
− µ

r2
− µ′

r
, (2.16)

−κ p =
1

r2
− µ

(
1

r2
+
ν ′

r

)
, (2.17)

−κ p = −1

4

[
µ

(
2 ν ′′ + ν ′2 + 2

ν ′

r

)
+ µ′

(
ν ′ +

2

r

)]
. (2.18)

The definition of a perfect fluid entails in itself the covariant conservation of the stress-energy

tensor, i.e.

∇νT (PF )

µν = 0 . (2.19)

  

Figure 2.1: Any perfect fluid solution can be extended via the MGD approach [18]. When α = 0
we are in the space of isotropic solution of Einstein equations, delimited by the red dashed line.

This solution has a smooth extension to the anisotropic domain releasing the α to be nonnull.
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The resulting equation is again a linear combination of the temporal and angular equations,

(2.16) and (2.18), and yields

p′ +
1

2
ν ′(ρ+ p) = 0 . (2.20)

It is worth noting that this system of equations is equivalent to Eqs. (2.3)–(2.5) if the

coupling between the two sectors is set to zero; that is if the anisotropic sector vanishes.

The temporal component of the metric must satisfy binding conditions in the anisotropic

sector: these are the remaining ‘pseudo–Einstein’ field equations for the θ–sector

κ θt
t = −f

∗

r2
− f ∗′

r
, (2.21)

κ θr
r = −f ∗

(
1

r2
+
ν ′

r

)
, (2.22)

κ θϕ
ϕ = −1

4

[
f ∗
(

2 ν ′′ + ν ′2 +
2

r
ν ′
)

+ f ∗′
(
ν ′ +

2

r

)]
. (2.23)

Once again, one has the corresponding conservation equation that is a consequence of (2.6)

and (2.19) being satisfied separately. This equation is

∇νθµν = 0 , (2.24)

and it is explicitly written as

(θt
t)′ − 1

2
ν ′(θt

t − θrr) +
2

r
(θr

r − θϕϕ) = 0 . (2.25)

This time the latter equation is not necessary linearly dependent of the ‘pseudo–Einstein’

equations, and there is no reason why it should be. At this point it makes explicit that the

interaction between the two sectors is purely gravitational; that is, from (2.19) and (2.24) is

clear that each sector is separately conserved and there is no exchange of energy-momentum

between them.

To conclude this section, let us summarize. First we started with an indeterminate system

of equations (2.3)–(2.5). Then, we performed a linear mapping of the radial geometric

function of the metric (2.15) that results in a ‘decoupling’ of the Einstein field equations.

We ended with two sets of equations: a perfect fluid sector {ρ ; p ; ν ; µ}, given by (2.16)–

(2.20) where everything is known once a perfect solution of GR is chosen; and a simpler
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sector of three linearly independent equations that can be chosen from (2.21) to (2.25), for

determining four unknown functions {f ∗ ; θt
t ; θr

r ; θϕ
ϕ}. Once the second sector is solved,

we can identify directly the effective physical quantities introduced in (2.9), (2.10) and (2.11).

At this point, is mandatory to recall that the underlying anisotropic effect which appears as

a consequence of breaking the isotropic condition over the effective pressures, p̃t 6= p̃r, causes

the appearance of the anisotropy Π(α; r) defined in Eq. (2.13).

2.3 Anisotropic Durgapal-Fuloria compact star

Let us proceed now to apply the MGD method with the aim of solving the Einstein field

equations for the interior of anisotropic superdense stars. In the present work we will take

as a seed the well-known Durgapal-Fuloria solution {ν ; µ ; ρ ; p} modeling compact stars.

As explained before, once the MGD method is applied the system of equations (2.3)–(2.5)

is decoupled. Half of the decoupled equations (2.16)–(2.18) are already solved once the rela-

tivistic perfect fluid is chosen. For instance, the thermodynamic functions that characterize

the Durgapal-Fuloria solution are

ρ(r) =
C (9 + 2Cr2 + C2r4)

7 π(1 + Cr2)3
, (2.26)

p(r) =
2C (2− 7Cr2 − C2r4)

7 π(1 + Cr2)3
, (2.27)

with C an integration constant. The gravitational mass of a sphere of radius r is obtained

integrating the density inside the corresponding volume; in spherical coordinates is

m(r) =

∫
V

ρ dV =
4Cr3(3 + Cr2)

7(1 + Cr2)2
. (2.28)

This mass function has a well defined behaviour, vanishing at the center of the compact

object, i.e. m(r = 0) = 0. It also determines the total mass evaluating the mass function at

the surface, m(r = R) = M .
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A massive object deforms the surrounding spacetime; the Durgapal-Fuloria solution is defined

by the following metric components

eν(r) = A
(
1 + Cr2

)4
, (2.29)

µ(r) = 1− 2m

r
. (2.30)

It is a custom in GR to write the radial component of the metric with the so-called compact-

ness parameter, given by ξ = 2m/r. The spacetime results regular everywhere, even at the

center where eλ(r=0) ≡ µ(r = 0) = 1; m vanishes faster than r as one can easily check from

(2.28) inside (2.30). A is the second (and last) integration constant to be determined using

boundary conditions over the surface r = R. In the present article the outer metric will be

chosen to satisfy the Schwarzschild form—for simplicity, an uncharged compact star. Both

constants A and C are positive; however they are expected to change as far as anisotropies

begin to be considered.

The remaining equations after the decoupling, (2.21) to (2.23), have to be solved if a generic

anisotropic self-gravitating system is desired. The system of equation is as explain before

underdetermined. A reasonable constrain is needed to close the system, but it is mandatory

not to lose the physical acceptability of the solution. These issues will be discussed in what

follows when three different anisotropic solutions (of many) are presented.

2.3.1 Pressure–like constraint for the anisotropy

In order to close the system of equations (2.21)–(2.23), additional information is needed.

For instance, an equation of state for the source θµν or some physically motivated constrain

on f ∗(r). A first acceptable interior solution is deduced when forcing the associated radial

pressure θr
r to mimic a physically acceptable pressure

θr
r(r) = p(r) . (2.31)

This means that one simple choice is to require that the stress-energy tensor for the perfect

fluid coincides with the anisotropy in that direction. As a consequence of (2.31), the radial

Einstein equations for the GR solution (2.17) and the radial ‘pseudo-Einstein’ equation (2.22)
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are equal. This gives immediately an expression for the radial component metric deformation

f ∗(r) = −µ+
1

1 + r ν ′
. (2.32)

The temporal component of the metric (2.29) remains non–deformed, so ν ′ is computed

directly. The resulting deformed component, the radial one in (2.15), then becomes

e−λ(r) → (1− α)µ+ α
1 + Cr2

1 + 9Cr2
. (2.33)

It is explicit that when the α→ 0 limit is taken, one gets the non-perturbed Durgapal-Fuloria

solution; particularly for the radial component of the metric, e−λ(r) = µ(r).

With the above considerations, the metric can be written in terms of an effective mass

function of the anisotropic sphere given by

m̃(r) = m− α r f
∗

2
. (2.34)

Expressed in this form, it is obtained one branch of MGD metrics that govern anisotropic

interiors of GR solutions, whatever the GR solution is chosen. This branch corresponds to

the pressure constrain imposed over the radial anisotropy. Therefore, the metric (2.1) is

deformed to

ds2 = eν dt2 −
(

1− 2 m̃

r

)−1

dr2 − r2 dΩ2 . (2.35)

As we have closed the system of equations with the constrain (2.31), we can compute all

the effective magnitudes that characterized the fluid; but first, the values of the integration

constants A and C are needed to be fixed. This will be done by means of consistent matching

conditions.

2.3.1.1 Matching conditions

A crucial aspect in the study of stellar distributions is the matching conditions at the star

surface between the interior and the exterior spacetime geometries [70, 71]. In our case, the

interior stellar geometry is given by the MGD metric (2.35); while the outer part is assumed

to be empty. Hence for r ≥ R the solution is given by the Schwarzschild vacuum solution.
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The continuity of the first fundamental form at the star surface Σ (defined by r = R) is

given by [ds2]Σ = 0. This equation implies the continuity of the metric when crossing the

surface and reads for the relevant components (tt and rr–components) as

gtt
∣∣
r=R− = grr

−1
∣∣∣
r=R−

= 1− 2MSchw

R+
. (2.36)

The superindices stand for the region from where we approach the surface, either from inside

with a minus sign, or from outside using the plus sign.

We must also take into account the Israel-Darmois matching condition at the stellar surface

Σ that gives the continuity of the second fundamental form [Gµν x
ν ]Σ = 0; xν is a unit vector.

If we make use of the field equations (2.2), the continuity reads as [T̃µν x
ν ]Σ = 0. Using the

full stress-energy tensor (2.7) and projecting in the radial direction xr = r, is written as

[(T (PF )
rr + α θrr) r]Σ = 0. This leads to

p̃r

∣∣∣
r=R−

= (p− α θrr)
∣∣∣
r=R−

= 0 ; (2.37)

where the effective pressure comes from Eq. (2.10). On the r.h.s. we are in vacuum, hence

the pressure must nullify. The equation system has been closed with the constrain (2.31),

therefore p̃(R) = 0 is equivalent to request p(R) = 0 in (2.27). This equivalence makes the

constant C not to vary from the perfect fluid solution once the anisotropies are considered.

The value is

CR2 =
−7 +

√
57

2
. (2.38)

With the constant fixed, we have fully determined the effective radial pressure of the anisotropic

Durgapal-Fuloria solution

p̃r(r;α) = (1− α) p . (2.39)

A natural bound is obtained, α < 1. In Figure 2.2, it is shown the dependence of the pressure

with a dimensionless radial coordinate r/R for different values of α. At first sight one can

observe that the higher α is, the smaller the radial pressure becomes. The decreasing of the

radial pressure is needed to produce the pressure anisotropy that is reflected in a change over
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the tangential pressure along the surface. The expression for the later pressure is written as

p̃t(r;α) = p̃r + α
6C2r2 (1 + 3Cr2)

π (1 + Cr2) (1 + 9Cr2)2 . (2.40)

The pressure (in both directions) must be a decreasing function along the radial coordinate.

This condition restricts even more the values of α; higher values immediately triggers in-

stabilities. In light of what was written in (2.37), the tangential pressure (2.40) determines

another physical constrain for α: this pressure is meaningful as long as it remains positive

everywhere p̃t(r) > 0; hence, so must be α > 0 to not contradict this statement in the surface

where p̃r(R) = 0. From the latter equation, the anisotropy is directly computed; comparing

0.0 0.2 0.4 0.6 0.8 1.0

0.06

0.08

0.10

0.12

0.14

0.16

r/R

ρ˜
(r
)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

r/R

p˜
r(

r)
&

p˜
t(

r)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

r/R

p˜
r(

r)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

r/R

p˜
t(

r)

Figure 2.2: Effective thermodynamic quantities for different values of α when the constrain mimics
the standard pressure in the radial direction θr

r = p. All curves share the same color code: α = 0
(solid black line) represents the standard Durgapal–Fuloria solution; α = 0.15 (dashed red line)
and α = 0.3 (dotted cyan line) represent two anisotropic solutions. The second curve shows a
comparison between the radial and transverse pressure (α = 0.2). The anisotropy becomes larger

when approaching the surface, hence the pressures values drift apart.
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with Eq. (2.13), we obtain

Π(r;α) ≡ α
6C2r2 (1 + 3Cr2)

π (1 + Cr2) (1 + 9Cr2)2 . (2.41)

One can go on computing the remaining thermodynamic parameters. For instance the

density can be expressed following (2.9) with the temporal component of the anisotropy

given by (2.21)

ρ̃(r;α) = ρ+ α
2C (6− 18Cr2 − 257C2r4 + 15C3r6 − 9C4r8)

7π (1 + Cr2)3 (1 + 9Cr2)2 . (2.42)

Some comments are pertinent. The Durgapal-Fuloria solution is a fluid sphere with a solid

crust. In Figure 2.2 the density shows a discontinuity in the surface. The anisotropy

smoothes this jump; the bigger the parameter α is, the lower the value of the density on the

surface of the star. This behaviour immediately triggers the question on the profile of the

effective mass function. This parameter has been defined in (2.34) and together with (2.32),

is written as

m̃(r;α) =

[
1 + α

2 (2− 7Cr2 + C2r4)

(3 + Cr2)(1 + 9Cr2)

]
m(r) . (2.43)

An observer outside the star, would see a resulting mass MSchw surrounded by vacuum as it

has been requested in (2.36). The continuity of the radial component of the metric (when

crossing the star surface Σ) is direct: (2.35) identifies the Schwarzschild mass seen from

outside with the effective mass of our solution ; i.e. MSchw ≡ m̃(R). Even more, a closer look

at the mass function shows that the correction (αrf ∗)/2 in (2.34) vanishes at the surface

r = R. This means that the effective total mass of the star is the same as the isotropic

total standard mass; m̃(R) ≡ m(R) from (2.28). This issue is not surprising at all. The

anisotropy mimics the radial pressure, hence the radial and tangential pressure start to drift

apart in the region close to the solid surface. For this anisotropic behaviour to happen, both

pressures must decrease in magnitude at the inner region. Of course this pressure discrepancy

with respect to the isotropic solution makes the density to be disturbed. The equilibrium

between gravitational collapse and pressure repulsion is modified; hence the mass function is

redistributed to the center of the star. Despite this, the total mass of the anisotropic object

remains unmodified.

To conclude this section, let us determine the value of the remaining constant A from (2.36).
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The temporal component of the MGD metric (2.29) should match smoothly with the outer

Schwarzschild region

gtt

∣∣∣
r=R−

= A(1− C r2)
∣∣∣
r=R−

= 1− 2MSchw

R+
. (2.44)

The constant A remains unchanged. This constant close one branch (α-dependent) of

anisotropic solutions analogous to Durgapal-Fuloria; namely {ν ; λ ; ρ̃ ; p̃r ; p̃t}. Of course,

this solution is not unique. Different anisotropic solutions can be obtained starting from

the Durgapal–Fuloria solution by means of requiring different constrains when closing the

indeterminate system of equations. In next section we will consider a different constrain and

we will see that a different anisotropic solution is obtained.

2.3.2 Density–like constrain for the anisotropy

Another useful constrain that gives an acceptable physical solution, is to impose that the

anisotropy ‘mimics’ a density. This requirement is written as

θt
t(r) ≡ ρ(r) (2.45)

and closes the system of equations (2.21)–(2.23). The consequence of this ansatz is direct, the

temporal Einstein equation for the perfect fluid (2.16) is identical to the temporal equation

of motion for the θµν–tensor (2.21). Equaling both equations, one notes immediately that

the resulting equation has a total derivative structure. The integration is straightforward

r(1− µ+ f ∗) = K =⇒ f ∗(r) = µ− 1 (2.46)

where K = 0 must be imposed for the invariants R, RµνR
µν and RµνγσR

µνγσ to remain

smooth and finite all over the inner region. Note that with this constraint the radial de-

formation is again totally determined by the solution of the perfect fluid. Eventually, one

computes the relevant component of the metric; the minimally deformed component is writ-

ten as in (2.15) (naming β to the coupling between sectors) as

e−λ(r) → (1 + β)µ− β ≡ µ− β 8Cr2(3 + Cr2)

7 (1 + Cr2)2
. (2.47)
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We can write the metric with the structure used in (2.35). The effective mass is written as

a minimal deviation from the GR mass m(r) presented in (2.28)

m̃(r) = m+ β
κ

2

∫
ρ r2dr = (1 + β)m. (2.48)

In the latter equality, if we make use of spherical coordinates and the corresponding relations,

we have
∫
ρ r2dr = m/Ω4; where the 4–dimensional solid angle is Ω4 =

∫∫
dΩ and 2 Ω4/κ =

1. Of course, this is not surprising at all, the constrain for the anisotropy is to mimic the

density, therefore the effective mass mimics the mass being proportional one to the other

(unlike the previous case where the mass is exactly the same with respect to the standard

GR solution).

Once the system is closed and the minimal deformation obtained, the remaining magnitudes

are easily derived. As before this will be done by means of the smooth matching between

the inner and outer region of the star.

2.3.2.1 Matching conditions

Here we will reproduce the same steps that we have done before in order to find the constants

A and C; this time for the density ansatz (2.45). It is already known that the constant C is

determined by the second fundamental form (2.37). Its value is

CR2 =
−7(1 + 2 β) +

√
(57 + 169 β)(1 + β)

2 + 9 β
. (2.49)

In this case, the anisotropic sector has an influence on the integration constant. It is explicitly

seen that in the limit of no coupling β → 0 the constant from Durgapal-Fuloria is recovered.

Because of the ansatz where it has been required for the anisotropy to mimic the density,

the effective value of the density is modified

ρ̃(r; β) = (1 + β) ρ . (2.50)

This is in complete accordance with the changes experienced by the mass. In what follows

we will show that this solution only admits a minimal geometric deformation over the metric

in only one ‘direction’; the ‘direction’ to where the density and the mass is increase. The

anisotropies restricted to the present constrain change the integration constants; for instance
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Figure 2.3: Effective thermodynamic quantities for different values of β when the anisotropy is
forced to act as a density, θt

t = ρ. The standard Durgapal-Fuloria solution has β = 0 (solid black
line); β = −0.16 (dashed red line) and β = −0.32 (dotted cyan line) represent two anisotropic
solutions. The second set of curves shows the anisotropy over the pressure, p̃r 6= p̃t for β = −0.2.

C is β dependent. An analysis over Eq. (2.49) shows that C increases when β becomes more

negative. This behaviour makes Eqs. (2.48) and (2.50) to increase when β increases in

modulus. Of course, both parameters can not increase without a limit; as in the previous

case, anisotropies develop instabilities. In the first curve of Figure 2.3 it is seen how the

density function increases in the inner region, while it slightly decreases its value over the

surface’s surroundings softening the crust. The mass function rises throughout the interior

and the total effective mass is also increased.

The remaining thermodynamic parameters are the effective radial pressure

p̃r(r; β) = p− β C(3 + Cr2)(1 + 9Cr2)

7π(1 + Cr2)3
(2.51)

and the effective tangential pressure

p̃t(r; β) = p̃r − β
C2r2

π(1 + Cr2)2
. (2.52)
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As can be seen in the second graph of Figure 2.3, being the latter pressure different from

the former, the anisotropy is developed. In the third and fourth set of curves, it is seen that

both pressures are enhanced for the anisotropy to take place. When the mass increases, the

enhancement of the density requires higher pressures for stability reasons.

In order to get some insight in the underlying sign for β in the new solution, we will focus

ourselves in the anisotropy, given by

Π(r; β) = −β C2r2

π(1 + Cr2)2
. (2.53)

It is worth to note that this magnitude can not be negative (let us remind that C > 0)

because if this were so, over the surface of the star where p̃r(R) = 0, we would have a

negative tangential pressure p̃t(R) < 0 which is not physically acceptable. Therefore, positive

pressures implies negative values for β. Now we have a physical domain for β. The constant

A is found in an analogous manner than in the previous section, i.e. by means of Eq.

(2.44). The value of this constant changes with β. The usual constant of Durgapal-Fuloria

is recovered in the limit of β → 0 as it should be.

2.3.3 On the detectability and observational differences for anisotropic

distributions

One of the many remarkable predictions of the theory of general relativity is the time dilation

within a gravitational well. This results in footprints in the lines of the spectrum shifting

towards the red. Although it is a useful quantity, particularly for astronomers, which allows

to get some insight into compact stars physics, this effect is extremely difficult to deal with

because of its complexity to be disentangle from the displacements and alterations due to

various causes such as the Doppler, Zeeman and pressure effects among others. Theoretical

derivations states that the redshift factor associated to a star comes when relating the proper

time τ of the object with the observer clock t. This relation is given by the standard formula

dτ 2 = gtt dt2 that yields the following for the surface redshift

1 + z =
νe
νo

=
1√
gtt(R)

. (2.54)

Therefore the relation between the emitted and observed frequency makes the redshift man-

ifest [72].
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Over the years, the study of anisotropies in compact objects has received considerable at-

tention and this parameter is a simple way to contrast theory with observations. Formula

(2.54) relates the measured redshift with the compactness parameter ξ = 2m/r of the star

(that depends on the anisotropic coupling in this case α/β) introduced after Eq. (2.29). An

observer outside would see the Schwarzschild metric, hence the redshift, that depends on ξ,

is directly related with the total mass of the star (we are generating anisotropic contribu-

tions over fixed radius stars). Now, we want to investigate how this parameter evolve in our

particular solutions.

Let us start with the first solution derived in Section 2.3.1. The interest should focus

in the mass function (2.43) evaluated over the surface. As we have explained after this

equation the Schwarzschild mass remains unmodified with respect to the Durgapal-Fuloria

mass, MSchw ≡ m̃(R) = m(DF )(R). Hence, there is no observational evidence to differentiate

an isotropic star from these anisotropic counterpart.

On the contrary, things change in the second case. The solution obtained in Section 2.3.1 is

based on an increment of the total mass. Then a shift occurs when observing this anisotropic

configuration

z(β) =

[
1− 2MSchw(β)

R

]−1/2

− 1 . (2.55)

The Schwarzschild mass coincides with the mass function over the surface; i.e. MSchw = m̃(R)

in Eq. (2.48). As it has been explained, the mass increases when β increases in modulus.

Therefore, the compactness parameter is also increased; the star becomes more and more

denser with β. Then, the parenthesis in (2.55) decrease and z(β) grows when |β| grows.

This means that these anisotropic contributions increases the gravitational redshift as it is

expected when the stars are more dense.

2.4 Anisotropizing an anisotropic Durgapal-Fuloria star

In section 2.2, we present a method to generate different anisotropic solutions of Einstein field

equations using any well known perfect fluid as a seed. After this, we apply this prescription

to the Durgapal-Fuloria perfect sphere. In section 2.3, with some reasonable constrains we

found two novel physical anisotropic solutions analogous to the Durgapal-Fuloria compact

star.
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The decomposition of Einstein equations (2.3)–(2.5) stem on the minimal geometric defor-

mation (2.15); the anisotropic sector (2.21)–(2.23) is decoupled with respect to any perfect

fluid sector (2.16)–(2.18). However, there is no need for the known sector to be a perfect

fluid solution exclusively. Whatever solution of Einstein field equations, either a perfect or

an anisotropic fluid, work as a seed for implementing the MGD decomposition. For instance,

we can take any of the two previous found solutions; e.g. the one obtained in section 2.3.1

given by {ν ; µ̃ ; p̃r ; p̃t}. So as not to obscure how the method works, we will minimally de-

form the anisotropic solution along the radial component of the metric. While the temporal

geometric function in Eq. (2.29) remains unchanged, the minimal distortion takes place only

over the radial component

e−λ̃(r) → e−λ̄(r) = µ̃(r) + β g∗(r) . (2.56)

of an anisotropic metric solution of Einstein equation; in this case (2.35). This deformation

is caused by new generic sources of anisotropies (called ψµν in order to avoid confusion with

the deformed seed by θµν) that acts over the anisotropic energy momentum tensor (2.7)

T µν = T̃µν + β ψµν . (2.57)

The Einstein field equations connecting the latter effective stress-energy tensor to the space-

time curvature are

κ ρ̄ =
1

r2
− e−λ̄

(
1

r2
− λ̄′

r

)
, (2.58)

−κ p̄r =
1

r2
− e−λ̄

(
1

r2
+
ν ′

r

)
, (2.59)

−κ p̄t = −1

4
e−λ̄

(
2 ν ′′ + ν ′2 − λ̄′ ν ′ + 2

ν ′ − λ̄′

r

)
. (2.60)

The minimal geometric deformation (2.56) decouples the two anisotropic sectors. On the

one hand, the seed sector characterized by the density given by (2.42), the radial pressure p̃r

(2.39) and the tangential anisotropic pressure p̃t obtained in (2.40). This parameters solve
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the already known equation system

κρ̃ =
1

r2
− µ̃

r2
− µ̃′

r
, (2.61)

−κp̃r =
1

r2
− µ̃

(
1

r2
+
ν ′

r

)
, (2.62)

−κp̃t = −1

4

[
µ̃

(
2 ν ′′ + ν ′2 + 2

ν ′

r

)
+ µ̃′

(
ν ′ +

2

r

)]
; (2.63)

and on the other hand, we are left with the new anisotropic sector for ψµν completely

decoupled. In this sector we have the following ‘pseudo-Einstein’ equations

κψt
t = −g

∗(r)

r2
− g∗′(r)

r
, (2.64)

κψr
r = −g∗

(
1

r2
+
ν ′

r

)
, (2.65)

κψϕ
ϕ = −1

4

[
g∗
(

2 ν ′′ + ν ′2 +
2

r
ν ′
)

+ g∗′
(
ν ′ +

2

r

)]
. (2.66)

Subsequently, a constrain over the solution must be imposed; the system is indeterminate.

Until now we used a constrain that mimics the pressure to obtain the seed solution; a density

constrain will be applied now to combine both previously found solutions. The ansatz then

is to require

ψt
t ≡ ρ̃(r) . (2.67)

Now the steps that follow are known. Eqs. (2.61) and (2.64) equals and give a total derivative

equivalent to (2.46). The solution for the second minimal deformation function is straight-

forward because the constant of integration is again null

g∗ = µ̃− 1 . (2.68)

The radial metric component from (2.56) then promotes to

e−λ(r) = (1− α)(1 + β)µ+
α(1 + β)

1 + r ν ′
− β ; (2.69)

where the anisotropic radial component of the metric (2.33) has been used.
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The effective radial pressure p̄r = p̃r − βψrr is computed from (2.59)

p̄r(r;α, β) = [1− α(1 + β)] p− β C(3 + Cr2)(1 + 9Cr2)

7π(1 + Cr2)3
. (2.70)

The first integration constant C is obtain by means of the continuity of the second funda-

mental form, analogous condition to (2.37). Imposing the annulment of the latter effective

radial pressure at the surface Σ, we get

CR2 =
−7 [1− α + β(2− α)] +

√
[57(1− α) + β(169− 57α)] (1− α)(1 + β)

2 (1− α) + β(9− 2α)
. (2.71)

Both the integration constant C as well as the effective pressure p̄r recover the corresponding

values: (2.38) and (2.39) in the limit of β → 0 or (2.49) and (2.51) when α → 0. Besides,

this constant is required to plot the thermodynamic parameters.

In Figure 2.4 we present the corresponding evolution of the parameters of the theory: for

a comparison, we include also the Durgapal–Fuloria isotropic solution (α = β = 0 in solid

line). If for instance, one of the couplings move away from zero but the other remains null,

the thermodynamic quantities behave as in Figures 2.2 (if α 6= 0) or 2.3 (if β 6= 0), as it

is expected. After this, we plot the anisotropic seed to be minimally deformed by fixing

the coupling α (red dashed-line). Finally, β drifts away the parameters again. We choose

one smaller order of magnitude for the second deformation to make notorious the effect

over the seed solution. An important statement is that as the seed is anisotropic and the

corresponding tangential pressure is nonnull over the surface, then there is no restriction for
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Figure 2.4: Effective thermodynamic quantities for different values of the parameters {α, β}. The
solid black line represents the standard Durgapal-Fuloria solution (α = β = 0). The dashed red line
is the anisotropic solution used as a seed {α = 0.3, β = 0}. This configuration is minimally deformed
by a ψ–sector. Two different solutions are presented: dotted green line for {α = 0.3, β = 0.03} and

the dotted-dashed cyan line for {α = 0.3, β = −0.03}.
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β to be negative. β is allowed to be positive until either it decrease the tangential pressure

until it becomes null, or the anisotropy becomes unstable.

Lest we forget, we include the expression of the two remaining parameters: first the effective

density ρ̄ = ρ̃+ βψt
t, whose structure is analogous to (2.50),

ρ̄(r;α, β) = (1 + β)ρ̃ (2.72)

with ρ̃ the seed density (2.42). And secondly, the anisotropic tangential pressure p̄t =

p̃t − βψϕϕ that can be written as

p̄t(r;α, β) = p̄r(r;α, β) + Π(r;α, β) . (2.73)

The anisotropy is now written as

Π(r;α, β) = −β C2r2

π(1 + Cr2)2
+ (1 + β)α

6C2r2(1 + 3Cr2)

π(1 + Cr2)(1 + 9Cr2)2
. (2.74)

It is important to remark that in all expressions we recover both previous limits when either

α or β are set to zero, and the standard Durgapal-Fuloria solution for α = β = 0. Let us

conclude presenting the profile of the anisotropy over the surface Σ of the sphere. In Figure

2.5, we plot the function Π from Eq. (2.74) versus the couplings α and β. Nearby α closer

to zero and β positive, the anisotropy becomes unphysical (Π < 0); thus deformations with

this parameters are prohibited and excluded from the physical surface. In particular this

procedure extends the range of physical values for β. Each time α grows, new possible values

of β > 0 are released.
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Figure 2.5: The figure illustrate the anisotropy Π as a function of the couplings {α, β} evaluated
at the star’s surface Σ. The region where α < 0.1 and β > 0, the anisotropy is unphysical.
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Besides should be noted that the anisotropy can be interpreted as a lineal combination of

the first two cases studied

Π(r;α, β) = Π(r; β) + (1 + β)Π(r;α) ; (2.75)

Each single parameter anisotropy have been computed in (2.41) and (2.53). In this case,

the resulting Π(α, β) no longer coincides with β(ψr
r − ψtt) as mentioned in (2.13), because

the seed is no more an isotropic fluid. Immediately, the linearity is translated to the stress-

energy tensor; the components of the new ψ–sector can be written as a combination of the

single minimal geometric deformations computed in Section 2.3

ψµν = θ(density)

µν + α θ(pressure)

µν . (2.76)

making the ‘additive’ character of the method manifest. If one starts with any perfect

solution of GR, T (PF )
µν , a minimal deformation induced by an anisotropy subjected to a

pressure structure, makes the stress energy tensor to become T̃µν = T (PF )
µν + α θ(pressure)

µν .

After this, a second minimal deformation acts over the already anisotropic solution, but now

subjected to a density constrain. The new contribution is given by (2.76), therefore the

effective energy-momentum tensor (2.57) is decomposed as

T µν = T (PF )

µν + α θ(pressure)

µν + β
[
θ(density)

µν + α θ(pressure)

µν

]
. (2.77)

This expression states the noncommutative structure of the MGD-decoupling method; the

order in which the deformations take place matters. For instance, if we take as a seed the

solution found in Section 2.3.2 where the deformation obeys a density–like constrain, and

then we deform the anisotropic solution with a different constrain analogous to (2.31), the

noncommutative character of the theory becomes manifest. The equations (2.75) and (2.76)

change their form and become

Π(r; β, α) = Π(r;α) + (1− α)Π(r; β) ,

ψµν = θ(pressure)

µν − β θ(density)

µν ;
(2.78)

respectively. Likewise, the effective energy-momentum tensor (2.77) becomes

T µν = T (PF )

µν + β θ(density)

µν + α
[
θ(pressure)

µν − β θ(density)

µν

]
(2.79)
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when the order of the two anistropizations is reversed. The reason of the noncommutativity is

that the coefficients involved in the linear combinations of the components of the anisotropic

tensor θµν depends explicitly on the coupling constants. This is not surprising at all; we are

dealing with nonlinear differential equations. The commutativity is likely to be lost in this

kind of systems.

From a perturbation theory point of view, one can think that the deformations over the

metric (zero order) is due to the existence of the anisotropic term which acts at O(α); being

α the coupling strength to the anisotropies. We must emphasize that, although the MGD

approach seems like a perturbation technique, the method, in fact, is not, and this is easily

visualized by noticing that the couplings do not necessarily have to be small, which is a

crucial ingredient in perturbation theories. The deformation being a perturbation is just a

well behaved limit of the theory, and means that we can softly deform the seed configuration.

Being the theory noncommutative, successive and mixed perturbative deformations give

different configurations depending on the order in which each of them are implemented.

This provides infinite manners of deforming realistic configurations controlling rigorously

the physical acceptability of the resulting anisotropic distribution.

2.5 Conclusions

In this work we have presented different branches of solutions that determines non-rotating

and uncharged anisotropic superdense stars. Each branch opens a possibility for new physi-

cally acceptable anisotropic configuration for these objects. They were obtained by guided

deformations using as a starting point the isotropic Durgapal-Fuloria model for compact

stars, and exemplify some possible anisotropic distributions among the many that the MGD-

method generates. This prescription has been design to decouple the field equations of static

and spherically symmetric self-gravitating systems. It associates the anisotropic sector with a

deformation over the geometric potentials. Hence, after the decoupling, one obtains a sector

which solution is already known (seed sector) and the anisotropic sector which obeys a set of

simpler ‘pseudo-Einstein’ equations associated to the metric deformation. It is worth to note

that the minimal geometric deformations stems in an exclusively gravitational interaction

between sectors; i.e. there is no exchange of energy-momentum among sectors.

We have then proceed to solve the decoupled anisotropic sector. When the equations are

forced to be decoupled, no new information is introduced. Then we have an underdetermined
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system of equations; consistent constrains are needed. We have shown how intuitive constrain

leads to new physical anisotropic solutions. Variations in the couplings between the seed and

the anisotropic sector reveals consistent evolution of the thermodynamical parameter giving

to the MGD-method a new prove of validity. We also have discussed the observational

features of the anisotropic sectors. When the anisotropy changes the compactness of the

star, the observed redshift increases as it is expected. Not all anisotropic contributions

have observational effects, because some anisotropies only redistribute the thermodynamical

parameters in the interior. However, when the anisotropy tweak the compactness parameter,

the star suffer a redshift. Therefore, observational data would bound the parameters of the

model.

After presenting two branches of solutions that provides an infinite number of physical

configurations, we have proceed to deform anisotropic solutions. Any solution of Einstein

equation admits a minimal deformation. Different anisotropic sources have additive effect,

however these effects are noncommutative. The path to the final configuration matters, and

same deformations in reversed order produces different resulting configurations. Hence, the

method provides a ’fine-tuning structure’ that generates an enormous amount of different

physically acceptable anisotropic stars.



Chapter 3

Delta Gravity

3.1 Definition of Delta Gravity

In this section, we present the action as well all the symmetries of the model and derive the

equations of motion.

These approaches are based on the application of a variation called δ̃. And it has the usual

properties of a variation such as:

δ̃(AB) = (δ̃A)B + A(δ̃B),

δ̃δA = δδ̃A,

δ̃(Φµ) = (δ̃Φ)µ, (3.1)

where δ is another variation. The main point of this variation is that, when it is applied on

a field (function, tensor, etc), it produces new elements that we define as δ̃ fields, which we

treat them as an entirely new independent object from the original, Φ̃ = δ̃(Φ). We use the

convention that a tilde tensor is equal to the δ̃ transformation of the original tensor when

all its indexes are covariant.

Now we will present the δ̃ prescription to a general action. The extension of the new sym-

metry is given by:

S0 =

∫
dnxL0(φ, ∂iφ)→ S =

∫
dnx(L0(φ, ∂iφ) + δ̃L0(φ, ∂iφ)), (3.2)

35
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where S0 is the original action and S is the extended action in Delta Gauge Theories.

When we apply this formalism to the Einstein-Hilbert action of GR, we get [52]

S =

∫
d4x
√
−g
(
R

2κ
+ LM −

1

2κ

(
Gαβ − κTαβ

)
g̃αβ + L̃M

)
, (3.3)

where κ = 8πG
c2

, g̃µν = δ̃gµν , LM is the matter Lagrangian and:

T µν =
2√
−g

δ

δgµν

[√
−gLM

]
, (3.4)

L̃M = φ̃I
δLM
δφI

+ (∂µφ̃I)
δLM
δ(∂µφI)

, (3.5)

with φ̃ = δ̃φ are the δ̃ matter fields or “delta matter” fields. The equations of motion are

given by the variation of gµν and g̃µν , it is easy to see that we get the usual Einstein’s

equations varying the action (3.3) with respect to g̃µν . By the other hand, variations with

respect to gµν give the equations for g̃µν :

F (µν)(αβ)ρλDρDλg̃αβ +
1

2
Rαβ g̃αβg

µν +
1

2
Rg̃µν −Rµαg̃να −Rναg̃µα +

1

2
g̃ααG

µν

=
κ√
−g

δ

δgµν

[√
−g
(
Tαβ g̃αβ + 2L̃M

)]
, (3.6)

with:

F (µν)(αβ)ρλ = P ((ρµ)(αβ))gνλ + P ((ρν)(αβ))gµλ − P ((µν)(αβ))gρλ − P ((ρλ)(αβ))gµν

P ((αβ)(µν)) =
1

4

(
gαµgβν + gανgβµ − gαβgµν

)
, (3.7)

where (µν) denotes the totally symmetric combination of µ and ν. It is possible to simplify

(3.6) (see [52]) to get the following system of equations:
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Gµν = κT µν , (3.8)

F (µν)(αβ)ρλDρDλg̃αβ +
1

2
gµνRαβ g̃αβ −

1

2
g̃µνR = κT̃ µν , (3.9)

where T̃ µν = δ̃T µν . Besides, the energy momentum conservation now is given by

DνT
µν = 0, (3.10)

DνT̃
µν =

1

2
TαβDµg̃αβ −

1

2
T µβDβ g̃

α
α +Dβ(g̃βαT

αµ). (3.11)

Then, we are going to work with equations (3.8), (3.9), (3.10) and (3.11). It is very important

to notice that as Einstein’s equations (3.8) and (3.10) do not change in this theory, the

standard results of GR holds in DG, and they will be important to solve the delta sector

(3.9) and (3.11).

3.2 Perfect fluid

The derivation of the Tµν and T̃µν is explained in detail in [53], here we present the final

results which will be useful henceforth. In particular, uT is related to the new velocity field

coming from the new symmetry, however, we have to emphasize that δ̃uα 6= uTα . Also, we

have set the speed of light c = 1 and we will explicitly put it back when it needed.

The energy-momentum tensors Tµν and T̃µν now read

Tµν = p(ρ)gµν + (ρ+ p(ρ))uµuν (3.12)

T̃µν = p(ρ)g̃µν +
∂p

∂ρ
(ρ)ρ̃gµν +

(
ρ̃+

∂p

∂ρ
(ρ)ρ̃

)
uµuν

+ (ρ+ p(ρ))

(
1

2
(uνu

αg̃µα + uµu
αg̃να) + uTµuν + uµu

T
ν

)
. (3.13)
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With extended normalization conditions

uαuα = −1 (3.14)

uαuTα = 0 . (3.15)

The condition (3.15) is interesting because will give similar results on the background of DG

as when we set a particular gauge condition in the perturbation theory of GR. Nevertheless,

we point out that delta sector is not a perturbation of GR sector, it could be understood

better as a modification of GR. We will deepen to this point later.

3.3 Test Particle

As DG include a new gravitational field, it is necessary to describe the particles trajectories

in this new approach, here we will review the trajectory for both massive and massless

particles.

3.3.1 Massive Particles

The action for a test particle is given by:

S0[ẋ, g] = −m
∫
dt
√
−gµν ẋµẋν , (3.16)

with ẋµ = dxµ

dt
. This action is invariant under reparametrizations, t′ = t− ε(t). This means,

in the infinitesimal form, that:

δRx
µ = ẋµε. (3.17)

In DG, we have a new test particle action. To obtain this action, we need to evaluate (3.16)

in (3.2):
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S[ẋ, y, g, g̃] = m

∫
dt

(
ḡµν ẋ

µẋν + 1
2
(2gµν ẏ

µẋν + gµν,ρy
ρẋµẋν)√

−gαβẋαẋβ

)
, (3.18)

where ḡµν = gµν + 1
2
g̃µν and yµ = δ̃xµ. This action is invariant under reparametrization

transformations, given by (3.17), plus δ̃ reparametrization transformations:

δRy
µ = ẏµε+ ẋµε̃. (3.19)

The presence of yµ introduce a new system of coordinates. Because we do not want new coor-

dinates, we impose that 2gµν ẏ
µẋν+gµν,ρy

ρẋµẋν = 0 like a gauge condition on δ̃ reparametriza-

tion, fixing ε̃. With this we eliminate this new symmetry, however the general coordinate

transformations as well as time reparametrizations continue to be preserved. Finally, (3.18)

is reduced to:

S[ẋ, g, g̃] = m

∫
dt

(
ḡµν ẋ

µẋν√
−gαβẋαẋβ

)
. (3.20)

Now, if we vary (3.20) with respect to xµ, we obtain the equation of motion for a massive

test particle. That is:

ĝµν ẍ
ν + Γ̂µαβẋ

αẋβ =
1

4
K̃,µ, (3.21)

with:
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Γ̂µαβ =
1

2
(ĝµα,β + ĝβµ,α − ĝαβ,µ)

ĝαβ =

(
1 +

1

2
K̃

)
gαβ + g̃αβ

K̃ = g̃αβẋ
αẋβ

and, if we choose t equal to the proper time, then gµν ẋ
µẋν = −1. The equation of motion

of a free massive particle is a second-order equation, but there is no longer a geodesic in an

effective metric.

3.3.2 Massless Particles

When considering massless particles, action (3.16) is useless, because it is null when m = 0.

To solve this problem, it is common to start from the action:

S0[ẋ, g, v] =
1

2

∫
dt
(
vm2 − v−1gµν ẋ

µẋν
)
, (3.22)

where v is a Lagrange multiplier. From (3.22), we can obtain the equation of motion for v:

v = −
√
−gµν ẋµẋν

m
. (3.23)

If we substitute (3.23) in (3.22), we recover (3.16). In other words, (3.22) is a good action

that includes the massless case. So, we must substitute (3.22) in (3.2) to obtain the modified

test particle action. That is:

S[ẋ, g, g̃, v, ṽ] =
1

2

∫
dt
[
vm2 − v−1 (gµν + g̃µν) ẋ

µẋν + ṽ
(
m2 + v−2gµν ẋ

µẋν
)]
, (3.24)
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where we must discard yµ for the same reason used in Section 3.3.1. Besides, two Lagrange

multiplier are unnecessary, so we will eliminate one of them. The equation of motion for ṽ

is:

ṽ =
m2 + v−2 (gµν + g̃µν) ẋ

µẋν

2v−3gαβẋαẋβ
. (3.25)

If we now replace (3.25) in (3.24), we obtain our δ̃ Test Particle Action:

S[ẋ, g, g̃, v] =

∫
dt

(
m2v − (gµν + g̃µν) ẋ

µẋν

4v
+

m2v3

4gαβẋαẋβ
(
m2 + v−2g̃µν ẋ

µẋν
))

. (3.26)

Therefore, we can use (3.26) to represent the trajectory of a particle in the presence of a

gravitational field, given by g and g̃, for the massless and massive case. In the previous

section, we have developed the massive case, so we need to study the massless case now.

Evaluating m = 0 in (3.22) and (3.26), they are respectively:

S
(m=0)
0 [ẋ, g, v] = −1

2

∫
dtv−1gµν ẋ

µẋν (3.27)

S(m=0)[ẋ, g, g̃, v] = −1

4

∫
dtv−1gµν ẋ

µẋν , (3.28)

with gµν = gµν + g̃µν . In the usual and modified case, the equation of motion for v implies

that a massless particle will move in a null-geodesic. In the usual case we have gµν ẋ
µẋν = 0,

but in this model the null-geodesic is gµν ẋ
µẋν = 0.

All this means that, in DG, the equation of motion of a free massless particle is given by:

gµν ẍ
ν + Γµαβẋ

αẋβ = 0 (3.29)

gµν ẋ
µẋν = 0,
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with:

Γµαβ =
1

2
(gµα,β + gβµ,α − gαβ,µ).

To summarize, we obtained how a test particle moves when it is coupled to gµν and g̃µν , given

by (3.21) or (3.29) if we have a massive or massless particle respectively. It is important to

emphasize that the proper time is given by gµν . This will be important when we study the

cosmology of DG. Also, we notice the importance of a gauge condition in order to remove

new coordinates. This will be the characteristic of this model, because as we will see, in the

cosmological case we will need to fix another gauge to reduce the system, this fix will break

explicitly the delta symmetry and therefore both sector will evolved independently.

3.4 Cosmology in DG

Now we are able to present the solutions and its implications on the Cosmology in DG.

3.4.1 Harmonic gauge in an Isotropic and Homogeneous Universe

When we consider an isotropic and homogeneous Universe, the most generic solution in GR

is

gµνdx
µdxν = −A(t)c2dt2 + a2(t)(dx2 + dy2 + dz2) , (3.30)

where a(t) is the scale factor. Usually the function A(t) is setted to 1, however the reason

for this election is just a gauge condition known as the harmonic gauge1. That is

Γµ ≡ gαβΓµαβ = 0. (3.31)

1for more details, see Section 7.4, Chapter 8 and Chapter 9. Gravitation and Cosmology: Principles and
Applications of the General Theory of Relativity. Weinberg
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Under general coordinate transformation x→ x′, Γµ transform:

Γ′µ =
∂x′µ

∂xα
Γα − gαβ ∂2x′µ

∂xα∂xβ
.

Therefore, if Γα does not vanish, we can define a new coordinate system x′µ where Γ′µ = 0.

So, it is always possible to choose an harmonic coordinate system. When we use (3.31) with

the metric (3.30) we obtain A(t) = 1.

The extension of the harmonic gauge to g̃µν is natural if we consider

δ̃ (Γµ) ≡ gαβ δ̃
(
Γµαβ
)
− g̃αβΓµαβ = 0, (3.32)

where δ̃
(
Γµαβ
)

= 1
2
gµλ (Dβ g̃λα +Dαg̃βλ −Dλg̃αβ). Then, a generic solution for g̃µν is

g̃µνdx
µdxν = −Fa(t)c2dt2 + Fb(t)R

2(t)(dx2 + dy2 + dz2) (3.33)

After the condition (3.32), the solution for those functions are Fa(t) = 3Fb(t) ≡ F (t). With

the harmonic gauge fixed, we can solve the system of equation in the cosmological case.

3.4.2 Photon Trajectory

While a photon emitted from a source travels to the Earth, the Universe is expanding. Then

the photon is affected by the cosmological Doppler effect. If we consider a radial trajectory

from r1 to r = 0 in a null geodesic we have

−(1 + 3F (t))c2dt2 + a2(t)(1 + F (t))dr2 = 0.

In GR, we have that cdt = −R(t)dr. So, in the DG we can define the effective scale factor:
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aDG(t) = a(t)

√
1 + F (t)

1 + 3F (t)
(3.34)

such that cdt = −aDG(t)dr now. If we integrate this expression from r1 to 0, we obtain:

r1 = c

∫ t0

t1

dt

aDG(t)
, (3.35)

where t1 and t0 are the emission and reception times. If a second wave crest is emitted at

t = t1 + ∆t1 from r = r1, it will reach r = 0 at t = t0 + ∆t0, so:

r1 = c

∫ t0+∆t0

t1+∆t1

dt

aDG(t)
. (3.36)

Therefore, for ∆t1, ∆t0 small, which is appropriate for light waves, we get:

∆t0
∆t1

=
aDG(t0)

aDG(t1)
(3.37)

or:

∆ν1

∆ν0

=
aDG(t0)

aDG(t1)
, (3.38)

where ν0 is the light frequency detected at r = 0, corresponding to a source emission at

frequency ν1. So, the redshift is now:

1 + z(t1) =
aDG (t0)

aDG(t1)
≡ 1

YDG
. (3.39)
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We see that YDG (t) replaces the usual scale factor a(t) to compute z. This means that

distances such the luminosity distance changes and need to be redefine. This was done in

[57], where they used this result to fit SNe-Ia without a Dark Energy component. In Chapter

4 we will present the redefinition of the important distances involved in the CMB.

3.4.3 Einstein’s Equations

Now lets review the main results of Einstein’s equation in the cosmological case. It is usual

to use uα = (c, 0, 0, 0), then the equations for gµν are just the Friedmann’s equations

(
ȧ(t)

a(t)

)2

=
κc2

3

∑
i

ρi(t) (3.40)

ρ̇i(t) = −3ȧ(t)

a(t)
(ρi(t) + pi(t)), (3.41)

with ḟ = df/dt(t). In order to solve (3.40)–(3.41) it is necessary equations of state pα = ωαρα.

Where α could be non-relativistic matter (cold dark matter, baryonic matter) where ωNR = 0

and radiation (photons, massless particles) where ωR = 1/3. Replacing in (3.40)–(3.41) we

get

ρ(Y ) = ρM(Y ) + ρR(Y )

=
3H2

0 ΩR

κc2C

Y + C

Y 4
, (3.42)

p(Y ) =
1

3
ρR(t)

=
H2

0 ΩR

κc2

1

Y 4
, (3.43)

t(Y ) =
2
√
C

3H0

√
ΩR

(√
Y + C(Y − 2C) + 2C

3
2

)
, (3.44)

with Y = a(t)/a(t = 0) = a(t) because we set a(t = 0) = 1 the value of the scale factor

in the present. H0 = ȧ/a evaluated at the present, however this is not longer the physical

Hubble constant. C = ΩR0/ΩM0, where ΩR0 and ΩM0 are the values at the present for those
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density parameters, and they are defined as.

ΩR =
ρR0

ρc
(3.45)

ΩM =
ρM0

ρc
(3.46)

ρc =
3H2

0

8πG
. (3.47)

This definition is useful because as we only have radiation and non-relativistic matter the

first Friedmann equation at the present reads

1 = ΩR + ΩM → ΩR =
C

1 + C
(3.48)

Then the value C defines the values of ΩR and ΩM .

3.4.4 Delta Sector

After fixing the harmonic gauge the delta symmetry was broken explicitly, then the delta

sector evolved independently. So, using (3.42)-(3.44), then (3.9) and (3.11) equations are

reduced to:

uTµ = 0 (3.49)

F (Y ) =
3

2
(2C2 − C1)

Y

C

√Y

C
+ 1 ln


√

Y
C

+ 1 + 1√
Y
C

+ 1− 1

− 2


−2C2 + C3

Y

C

√
Y

C
+ 1 (3.50)

ρ̃M(Y ) =
9H2

0 ΩR

2κc2C

(C1 − F (Y ))

Y 3
(3.51)

ρ̃R(Y ) =
6H2

0 ΩR

κc2

(C2 − F (Y ))

Y 4
, (3.52)

where C1, C2 and C3 are integration constants. In [53] and [57], they set C1 = C2 = 0 because

those terms in (3.51) and (3.52) produce a contribution of matter of the same nature that

was obtained in the GR sector. And we are not interested in that contribution. Besides, DG
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was expected to explain Dark Energy, so if we use (3.50) in (3.34) we can see that

aDG '
√

1− 2k2C2

1− 6k2C2

Y +O(Y 2)

when Y � C. As Dark Energy is irrelevant in the early Universe, we impose that aDG =

Y + O(Y 2). For this, we must use C2 = 0. Under this analysis, we can not say anything

about C1, but as we explained before, we are not interested in delta matter which has the

same nature that the standard matter of GR.

For completeness, we point out that DG has a Big-Rip, when aDG = ∞. We need a Big-

Rip to explain the accelerated expansion of the universe because we want that aDG to grow

quickly when Y is bigger.

The effective scale factor is:

aDG(Y, L, C) = Y

√
1− LY

3

√
Y + C

1− LY
√
Y + C

, (3.53)

where we used C3 = −C
3
2 L
3

and L ∼ 1. That is because we need that C3 ∼ C
3
2 � 1. If we

use C3 = 0 ie L = 0, the Big-Rip is not produced and we cannot explain the expansion of

the universe. Therefore, we need to consider that 1 � C 6= 0. To see the Big-Rip we must

analyze (3.53) for Y � C:

aDG(Y, L, C) ' Y

√
3− LY 3

2

3(1− LY 3
2 )

+O(C
1
2 ). (3.54)

It is clear that the Big-Rip is produced when:

YRip =

(
1

L

) 2
3

. (3.55)
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In summary, we have that aDG ∼ Y when Y � C, so the Universe evolves normally at

its beginning, without differences with GR. But, when Y � C, an accelerated expansion is

produced, ending in a Big-Rip when the denominator is null.

3.4.5 Thermodynamics in DG

Now we will study some implications of thermodynamics in DG. This results are crucial in

the understanding or the theory and the interpretation of physical quantities.

In Section 3.4.4 we show that the geometry which photons follow is given by a modified scale

factor

aDG(t) = a(t)

√
1 + F (t)

1 + 3F (t)

Then the volume of a cosmological sphere is now

V =
4

3
πr3a3

DG

where r is the radial coordinate. Thus, any physical fluid has a density given by

ρ =
U

c2V
(3.56)

where U is the internal energy and V is the volume. From the first law of Thermodynamics

we have
dU

dt
= T

dS

dt
− P dV

dt
(3.57)

We will assume that the Universe evolved adiabatically as in GR (see for instance [73]). This

means Ṡ = 0. Then we get the well known relation for the energy conservation

ρ̇ = −3HDG

(
ρ+

P

c2

)
(3.58)

with HDG = ȧDG/aDG. In order to known the evolution of ρ we need an equation of

state P (ρ). In [57] they showed that HDG(t) replaces the first Friedmann equation, now

we know that the second Friedmann equation is the thermodynamics statement that the

Universe evolves adiabatically, so the physical densities must satisfies eq. (3.58). If we
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assume P = c2ωρ we found

ρa
3(1+ω)
DG = ρ0a

3(1+ω)
DG 0 (3.59)

where ρ0 is the density at the present. A crucial point in this theory is that GR equations

(3.8) and (3.10) are valid, then we also have a similar relation for the densities of GR, but

with the standard scale factor a(t), explicitly

ρGRa
3(1+ω) = ρGR 0a

3(1+ω)
0 (3.60)

These solution for ρGR are the same as (3.42). Then we can relate both densities by the

ratio between them

ρ

ρGR

(√
1 + F (t)

1 + 3F (t)

)3(1+ω)

= constant(ω) (3.61)

This ratio will be vitally important when we study the perturbations of the system. Because

we will study the evolution of fractional perturbations at the last-scattering time defined as

δGR α =
δρGR α

ρ̄GR α + p̄GR α

(3.62)

where α runs between γ, ν, B and D (photons, neutrinos, baryons and dark matter, respec-

tively). If we consider the results from [57] (C ∼ 10−4 and L ∼ 0.45), at the moment of

last-scatering (T ∼ 3000 K) we get √
1 + F (tls)

1 + 3F (tls)
∼ 1 (3.63)

This mean that at that moment the physical density was proportional to the densities of

GR, and without lost of generality we can take

δphys α(tls) = δGR α(tls) = δα(tls) (3.64)

as it will be introduce in Section 4.2. In facts, (3.63) is valid for a wide range of times, from

the beginning of the Universe (z → ∞) until z ∼ 10, so this approximation is valid in the

study of primordial perturbations in DG when using the equations of GR.

On the other hand, the number density (number of photons over the volume) at equilibrium
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with matter at temperature T is

nT (ν)dν =
8πν2dν

e
hν
kBT − 1

; (3.65)

After decoupling photons travel freely from the surface of last scattering to us. So the

number of photons is conserved

dN = nTls(νls)dνlsdVls = nT (ν)dνdV (3.66)

as frequencies are redshifted by ν = νlsaDG(tls)/aDG, and the volume V = Vlsa
3
DG/a

3
DG(tls)

we find that in order to keep the form of a black body distribution, the temperature in the

number density should evolves as

TaDG = constant→ T =
T0

YDG
, (3.67)

where T0 = 2.73 K is the temperature of the Universe at the present based on the black

body radiation of the CMB.

To summarize this Section, thermodynamics establish that the physical densities diluted

with YDG and not with Y , this means that ΩR and ΩM defined before are not the physical

density parameter which Planck measures. However, as we know exactly the evolution of

ρGR because Friedmann’s equation’s are valid in DG, we can use (3.61) to know the evolution

of the physical densities. By the other side, in DG temperature must fall with the modified

scale factor YDG (or aDG). This is important because we will study how the temperature of

the photons coming from the CMB decreased until the actual temperature.

3.4.6 Equality time tEQ

After concluding this chapter, there is an ansatz that we need to propose in order to be

completely consistent when solving the cosmological perturbation theory in the next chapter.

This is about when the radiation was equal to the non-relativistic matter. The relevance of

this moment is due we will solve the perturbed equation when the Universe was dominated by

radiation and when it was dominated by matter. We state that the moment when radiation

and matter were equal at some tEQ is the same as in GR as in DG. The implication of this

statement is the following: Let us consider the ratio of the matter and radiation densities of
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GR (3.60)

ρGR M

ρGR R

=
Y

C
, (3.68)

we remind that C = ΩR/ΩM . Then the moment of equality in GR correspond to YEQ = C.

On the other side, if we consider the same ratio but now between the physical densities using

(3.59), we get

ρphys;M
ρphys R

=
YDG
CDG

, (3.69)

where CDG = ΩDG R/ΩDG M . Then in the equality we need to impose YDG(YEQ) = CDG,

explicitly

CDG = C

√
1+F (C)
1+3F (C)√
1+F (1)
1+3F (1)

, (3.70)

if we take the value from [57], C ∼ 10−4 and L ∼ 0.45 implies F (C) ∼ 10−3 << 1 and

F (1) ∼ −L/3, then

CDG = C

√
1− L

1− L/3
(3.71)

This means that total density of matter and radiation today depends explicitly on the ge-

ometry measured with L.

3.4.7 Conclusions

We have presented the definition of Delta Gravity, showing how this delta symmetry acts on

an general action, in particular in the Einstein-Hilbert action. We presented the system of

equations of the model, and we emphasize that General Relativity equations are valid in this

theory. Then we just present the form of the energy-momentum tensors Tµν and T̃µν and

the normalization of the velocity fields. After that, we described how particles move in this

theory, concluding that massive particles do not move in geodesics, while massless particles

do in an effective metric gµν = gµν + g̃µν .

Then we presented cosmological solutions for an isotropic and homogeneous Universe, show-

ing that in order to reduce the free functions of the theory it is necessary to impose the

extended harmonic gauge. It is important to notice that after fixing this gauge the delta
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symmetry is broken and both sectors evolves independently. Then we described the trajec-

tory of photons coming from a source in a radial trajectory until reaching us, this introduce

a new scale factor which defines the geometry and the redshift. After that we presented the

solutions of Einstein’s equation and the delta sector, with only radiation and non-relativistic

matter and its delta versions, where we consider the same equation of state for each species

in both GR and delta sector. Here we consider that in order to explain the CMB and Nu-

cleosynthesis, DG must be equal to GR for early times, while it predicts a Big-Rip in the

future.

Then, we discussed the implications of the first law of thermodynamics in the modified ge-

ometry of this model. We distinguish the physical densities from the GR densities in terms

of which scale factor they dilute. However knowing the solutions of the GR sector is enough

for us to know about the behavior of the physical densities. Also, if we consider that the

number of photons is conserved after the moment of decoupling, the black body distribution

should keep the form, and that means that temperature is redshifted with the modified scale

factor YDG. Finally, we stated the anzatz that the moment of equality between radiation and

matter was the same in GR and in DG and we showed it implications in some parameters

of the theory.

We will use all this results as the background of the theory, and in the next Chapter we will

study the scalar perturbations of CMB.

Before finishing this Chapter, let’s discuss the foundations of DG. We have solved completely

the system in the harmonic gauge, this gave us solutions that we will use as background in

the following chapters. However, when solving GR linear perturbation theory in the comov-

ing gauge [74] where one uses δu = 0, one gets exactly the same equations for DG but now

as a perturbed equations from GR, because we imposed uT = 0. Nevertheless, we emphasize

that DG is not a perturbation theory of GR, so solutions of the delta sector could have the

same or even more weight that GR solutions because in DG the delta fields are unbounded

whereas perturbations are valid in a certain range.



Chapter 4

Cosmological Fluctuations in Delta

Gravity

In this Chapter we present the perturbation theory of DG in the cosmological FRLW back-

ground described in Chapter 3. As the physics of DG should be the same as in GR, we will

use of the equation of GR in order to describe the evolution of the physical perturbations.

We follow the prescription given by Weinberg[62] step by step, translating their results to

this theory.

4.1 Perturbation Theory

Let’s start with a perturbation as follows:

gµν = ḡµν + hµν , (4.1)

g̃µν = ˜̄gµν + h̃µν (4.2)

where h, h̃ � 1. The bar means the background solutions which was obtained before.

However we remind that in the harmonic gauge we have

ḡµνdx
µdxν = −c2dt2 + a2(t)(dx2 + dy2 + dz2) (4.3)

˜̄gµνdx
2µdxν = −3F (t)c2dt2 + F (t)a2(t)(dx2 + dy2 + dz2) . (4.4)
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Then, we follow the standard method, known as Scalar-Vector-Tensor decomposition [75].

This process allows us to study those sectors independently. Therefore, the perturbations

are

h00 = −E hi0 = a

[
∂H

∂xi
+Gi

]
hij = a2

[
Aδij +

∂2B

∂xi∂xj
+
∂Ci
∂xj

+
∂Cj
∂xi

+Dij

]
, (4.5)

where

∂Ci
∂xi

=
∂Gi

∂xi
= 0

∂Dij

∂xj
= 0 Dii = 0 . (4.6)

This decomposition must be equivalent for h̃µν (by group theory):

h̃00 = −Ẽ h̃i0 = a

[
∂H̃

∂xi
+ G̃i

]
h̃ij = a2

[
Ãδij +

∂2B̃

∂xi∂xj
+
∂C̃i
∂xj

+
∂C̃j
∂xi

+ D̃ij

]
, (4.7)

with

∂C̃i
∂xi

=
∂G̃i

∂xi
= 0

∂D̃ij

∂xj
= 0 D̃ii = 0 . (4.8)

If we replace perturbations in (3.8), (3.9), (3.10), and (3.11), we get the equations for the

perturbations. However, there are degrees of freedom that we have to take into account to

have physical solutions. In the next subsection, we show how to choose a gauge to delete

those nonphysical solutions.

4.1.1 Choosing a gauge

Under a space-time coordinate transformation, the metric perturbations transform as

∆hµν(x) = −ḡλν(x)
∂ελ

∂xµ
− ḡµλ(x)

∂ελ

∂xν
− ∂ḡµν
∂xλ

ελ . (4.9)
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In more detail,

∆hij = − ∂εi
∂xj
− ∂εj
∂xi

+ 2aȧδijε0, (4.10)

∆hi0 = −∂εi
∂t
− ∂ε0
∂xi

+ 2
ȧ

a
εi, (4.11)

∆h00 = −2
∂ε0
∂t

. (4.12)

For delta perturbations we get1

∆h̃µν = −˜̄gµλ
∂ελ

∂xν
− ˜̄gλν

∂ελ

∂xµ
− ∂ ˜̄gµν
∂xλ

ελ − ḡµλ
∂ε̃λ

∂xν
− ḡλν

∂ε̃λ

∂xµ
− ∂ḡµν
∂xλ

ε̃λ . (4.13)

In more detail,

∆h̃ij = −F ∂εi
∂xj
− F ∂εj

∂xi
− ∂ε̃j
∂xi
− ∂ε̃i
∂xj

+
[
ε0

(
2Faȧ+ Ḟ a2

)
+ 2ε̃0aȧ

]
δij, (4.14)

∆h̃i0 = −F ∂εi
∂t
− 3F

∂ε0
∂xi
− ∂ε̃i
∂t
− ∂ε̃0
∂xi

+ 2F
ȧ

a
εi + 2

ȧ

a
ε̃i, (4.15)

∆h̃00 = −3ε0Ḟ − 6F
∂ε0
∂t
− 2

∂ε̃0
dt

, (4.16)

where ε and ε̃ = δ̃ε defines the coordinates transformation. Also we raised and lowered index

using ḡµν , so ε0 = −ε0, ε̃0 = −ε̃0, εi = a−2εi and ε̃j = a−2ε̃j.

Following the standard procedure, we decompose the spatial part of εµ and ε̃µ into the

gradient of a spatial scalar plus a divergenceless vector:

εi = ∂iε
S + εVi , ∂iε

V = 0 , (4.17)

ε̃i = ∂iε̃
S + ε̃Vi , ∂iε̃

V = 0 (4.18)

Thus, we can compare equations (4.5) and (4.7) with (4.10)-(4.12) and (4.14)-(4.16) to obtain

the gauge transformations of the metric components:

1This form is obtained taking the delta symmetry to (4.9), for more details see [52]
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∆A =
2ȧ

a
ε0 , ∆B = − 2

a2
εS ,

∆Ci = − 1

a2
εVi , ∆Dij = 0 , ∆E = 2ε̇0 , (4.19)

∆H =
1

a

(
−ε0 − ε̇S +

2ȧ

a
εS
)
, ∆Gi =

1

a

(
−ε̇Vi +

2ȧ

a
εVi

)
,

and

∆Ã =

(
2ȧF

a
+ Ḟ

)
ε0 + 2

ȧ

a
ε̃0 , ∆B̃ = − 2

a2

(
FεS + ε̃S

)
,

∆C̃i = − 1

a2

(
FεVi + ε̃Vi

)
, ∆D̃ij = 0 , ∆Ẽ = 6F ε̇0 + 3Ḟ ε0 + 2 ˙̃ε0 , (4.20)

∆H̃ =
1

a

(
−3Fε0 − ε̃0 − F ε̇S − ˙̃εS +

2F ȧ

a
εS +

2ȧ

a
ε̃S
)
,

∆G̃i =
1

a

(
−F ε̇Vi − ˙̃εVi +

2F ȧ

a
εVi +

2ȧ

a
ε̃Vi

)
.

There are different scenarios in which we can continue with the calculations when we impose

conditions on the parameters εµ and ε̃µ. However, before discussing it, we will study the

gauge transformations of energy-momentum tensors Tµν and T̃µν .

4.1.2 Tµν and T̃µν

Now we will decompose the energy-momentum tensors Tµν and T̃µν in the same way. For a

perfect fluid, we showed

Tµν = pgµν + (ρ+ p)uµuν , (4.21)

while for T̃µν

T̃µν = p̃gµν +pg̃µν + (ρ̃+ p̃)uµuν + (ρ+p)

(
1

2
(g̃µαuνu

α + g̃ναuµu
α) + uTµuν + uµu

T
ν

)
, (4.22)
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where

gµνuµuν = −1 , (4.23)

gµνuµu
T
ν = 0 . (4.24)

Now let us consider

p = p̄+ δp,

ρ = ρ̄+ δρ,

uµ = ūµ + δuµ,

p̃ = ˜̄p+ δp̃,

ρ̃ = ˜̄ρ+ δρ̃,

uTµ = ūTµ + δuTµ . (4.25)

Usually, the equation of state is given by p(ρ), so we could reduce this system. For now, we

will work in the generic case. When we work in the frame ūµ = (−1, 0, 0, 0) we have ūTµ = 0,

and the normalization conditions (4.23) and (4.24) give

δu0 = δu0 =
h00

2
δuT0 = δu0

T = 0 (4.26)

while δui and δuTi are independent dynamical variables (note that δuµ ≡ δ(gµνuν) is not given

by ḡµνδuν , the same for δuµT ). Then, the first-order perturbation for both energy-momentum

tensors are

δTµν = p̄hµν + δpḡµν + (p̄+ ρ̄)(ūµδuν + δuµuν) + (δp+ δρ)ūµūν , (4.27)

Therefore,
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δTij = p̄hij + a2δijδp, , δTi0 = p̄hi0 − (p̄+ ρ̄)δui, , δT00 = −ρ̄h00 + δρ . (4.28)

While

δT̃µν = ˜̄phµν + δp̃ḡµν + p̄h̃µν + δp˜̄gµν + (˜̄ρ+ ˜̄p)(ūµδuν + δuµūν)

+ (δρ̃+ δp̃)ūµūν + (ρ̄+ p̄)

{
1

2

[
˜̄gµα(ūνδu

α + δuν ū
α) + h̃µαūν ū

α

+ ˜̄gνα(ūµδu
α + δuµū

α) + h̃ναūµū
α
]

+ ūTµδuν + δuTµ ūν + ūµδu
T
ν + δuµū

T
ν

}
+ (δρ+ δp)

{
1

2
[˜̄gµαūν ū

α + ˜̄gναūµū
α] + ūTµ ūν + ūµū

T
ν

}
, (4.29)

and

δT̃00 = − ˜̄ρh00 − ρ̄h̃00 + 3Fδρ+ δρ̃,

δT̃i0 = ˜̄phi0 + p̄h̃i0 − (˜̄ρ+ ˜̄p)δui + (ρ̄+ p̄)

{
1

2
[Fhi0 − h̃i0 − 4Fδui]− δuTi

}
,

δT̃ij = ˜̄phij + δp̃a2δij + p̄h̃ij + δpFa2δij , (4.30)

where we used δuα = δ(gαβuβ) = ḡαβδuβ + hµν ūβ. Generally, we decompose δui (δu
T
i ) into

the gradient of a scalar velocity potential δu (δũ) and a divergenceless vector δuVi (δũVi ), and

the dissipative corrections to the inertia tensor are added as follows

δTij = p̄hij + a2
[
δijδp+ ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + πTij

]
, (4.31)

δTi0 = p̄hi0 − (p̄+ ρ̄)
(
∂iδu+ δuVi

)
, (4.32)

δT00 = −ρ̄h00 + δρ , (4.33)

and
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δT̃ij = ˜̄phij + a2
[
δijδp̃+ ∂i∂jπ̃

S + ∂iπ̃
V
j + ∂jπ̃

V
i + π̃Tij

]
+ p̄h̃ij

+ Fa2
[
δijδp+ ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + πTij

]
, (4.34)

δT̃i0 = ˜̄phi0 + p̄h̃i0 − (˜̄ρ+ ˜̄p)(∂i∂u+ ∂uVi )

+ (ρ̄+ p̄)

{
1

2
[Fhi0 − h̃i0 − 4F (∂iδu+ δuVi )]− ∂iδũ+ δũVi

}
, (4.35)

δT̃00 = − ˜̄ρh00 − ρ̄h̃00 + 3Fδρ+ δρ̃ , (4.36)

where πVi (π̃Vi ), πTij (π̃Tij) and δuVi (δũVi ) satisfy similar conditions to (4.6) and (4.8). These

conditions are (expressed before as Ci (C̃i), Dij (D̃ij) Gi (G̃i)):

∂iπ
V
i = ∂iπ̃

V
i = ∂iδu

V
i = ∂iδũ

V
i = 0 ∂iπ

T
ij = ∂iπ̃

T
ij = 0 , πTii = π̃Tii = 0 . (4.37)

The dissipative corrections take into account physical configurations when radial pressure is

not longer equal to the tangential pressure; we added it here just for completeness of the

development of the theory, however when we solve the system of equations of DG we will

set them equal to zero because we consider perfect fluids as sources.

4.1.3 Gauge Transformations for the Energy-Momentum tensors

The gauge transformation for Tµν is given by

∆δTµν(x) = −T̄λν(x)
∂ελ

∂xµ
− T̄µλ(x)

∂ελ

∂xν
− ∂T̄µν

∂xλ
ελ , (4.38)

where the components are

∆δTij = −p̄
(
∂εi
∂xj

+
∂εj
∂xi

)
+
∂

∂t
(a2p̄)δijε0, (4.39)

∆δTi0 = −p̄∂εi
∂t

+ ρ̄
∂ε0
∂xi

+ 2p̄
ȧ

a
εi, (4.40)

∆δT00 = 2ρ̄
∂ε0
∂t

+ ˙̄ρε0 . (4.41)
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While the gauge transformation of δT̃µν is given by

∆δT̃µν = − ˜̄Tµλ
∂ελ

∂xν
− ˜̄Tλν

∂ελ

∂xµ
− ∂ ˜̄Tµν

∂xλ
ελ − T̄µλ

∂ε̃λ

∂xν
− T̄λν

∂ε̃λ

∂xµ
− ∂T̄µν

∂xλ
ε̃λ , (4.42)

where the components are

∆δT̃ij = −(˜̄p+ p̄F )
∂εi
∂xj
− (˜̄p+ p̄F )

∂εj
∂xi
− p̄ ∂ε̃j

∂xi
− p̄ ∂ε̃i

∂xj

+

[
ε0
∂

∂t
[a2 (˜̄p+ p̄F )] +

∂

∂t
(a2p̄)ε̃0

]
δij (4.43)

∆δT̃i0 = −(˜̄p+ p̄F )
∂εi
∂t

+ (˜̄ρ+ 3F ρ̄)
∂ε0
∂xi
− p̄∂ε̃i

∂t
+ ρ̄

∂ε̃0
∂xi

+ 2(˜̄p+ p̄F )
ȧ

a
εi + 2p̄

ȧ

a
ε̃i (4.44)

∆δT̃00 = ε0
∂

∂t
(˜̄ρ+ 3F ρ̄) + 2(˜̄ρ+ 3F ρ̄)

∂ε0
∂t

+ ˙̄ρε̃0 + 2ρ̄
∂ε̃0
dt

. (4.45)

εi and ε̃i were decomposed in (4.17) to write these gauge transformations in terms of the

scalar, vector and tensor components. The transformations (4.10)-(4.12) and (4.14)-(4.16)

with (4.39)-(4.40) and (4.43)-(4.45) give the gauge transformation for the pressure, energy

density and velocity potential:

∆δp = ˙̄pε0 , ∆δρ = ˙̄ρε0 , ∆δu = −ε0 . (4.46)

The other ingredients of the energy-momentum tensor are gauge invariants:

∆πS = ∆πVi = ∆πTij = ∆δuVi = 0 . (4.47)

Nevertheless, the other transformations are
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∆δρ̃ =
∂

∂t
(˜̄ρ+ 3F ρ̄)ε0 + 2(˜̄ρ+ 3F ρ̄)ε̇0 + ˙̄ρε̃0 + 2ρ̄ ˙̃ε0 − ˜̄ρ∆E

− 3F ρ̄∆Ẽ − 3F∆δρ , (4.48)

∆δp̃ =
1

a2

∂

∂t
[a2 (˜̄p+ p̄F )]ε0 +

1

a2

∂

∂t
(a2ρ̄)ε̃0 − ˜̄p∆A− p̄F∆Ã− F∆δp , (4.49)

∆δũ =
1

(ρ̄+ p̄)

{
(˜̄p+ p̄F )ε̇S − (˜̄ρ+ 3F ρ̄)ε0 + p̄ ˙̃εS − ρ̄ε̃0 − 2(˜̄p+ p̄F )

ȧ

a
εS

− 2p̄
ȧ

a
ε̃S + ˜̄pa∆H + p̄a∆H̃ − (ρ̄+ p̄)

[
1

2
(1− F )a∆H̃ + 2F∆δu

]}
, (4.50)

∆δũVi =
1

(ρ̄+ p̄)

{
(˜̄p+ p̄F )ε̇Vi + p̄ ˙̃εVi − 2(˜̄p+ p̄F )

ȧ

a
εVi − 2p̄

ȧ

a
ε̃Vi + ˜̄pa∆Gi

+ p̄a∆G̃i −
1

2
(ρ̄+ p̄)(1− F )a∆G̃i

}
, (4.51)

∆δπ̃S = − 2

a2
(˜̄p+ p̄F )εS − 2

p̄

a2
ε̃S − ˜̄p∆B − p̄F∆B̃ , (4.52)

∆δπ̃Vi = − 1

a2
(˜̄p+ p̄F )εVi −

p̄

a2
ε̃Vi − ˜̄p∆Ci − p̄F∆C̃i , (4.53)

∆δπ̃ij = 0 . (4.54)

The results given in (4.19), (4.20) and (4.46) are used to obtain

∆δρ̃ = ˙̄̃ρε0 + ( ˙̄ρ− 3F ρ̄)ε̃0 , (4.55)

∆δp̃ = ˙̄̃pε0 + ˙̄pε̃0 , (4.56)

∆δũ =

[
(1− 3F )

F

2
− (˜̄p+ ˜̄ρ)

(p̄+ ρ̄)

]
ε0 −

1

2
(1 + F )ε̃0 − (1− F )

ȧ

a

(
FεS + ε̃S

)
+

1

2
(1− F )

(
F ε̇S + ˙̃εS

)
, (4.57)

∆δũVi =
1

2
(1− F )[F ε̇Vi + ˙̃εVi − 2

ȧ

a
F εVi − 2

ȧ

a
ε̃Vi ] , (4.58)

∆δπ̃Si = 0 , (4.59)

∆δπ̃Vi = 0 , (4.60)

∆δπ̃ij = 0 . (4.61)

As we said before, there are different choices for ε and ε̃ parameter to fix all the gauge free-

doms. The most common and well-known gauges are the Newtonian gauge and Synchronous
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gauge[62, 74]. The former fix εS such that B = 0, and choose ε0 such that H = 0 ( in equa-

tion (4.19) ). In DG, this choice is extended imposing similar conditions in (4.20) for ε̃S and

ε̃0, such that B̃ = H̃ = 0. There is no remaining freedom to make a gauge transformation in

this scenario. Nevertheless, in this work, we will use the Synchronous gauge, where we will

choose ε0 such that E = 0, and εS such that H = 0, (similar conditions for ε̃0 and ε̃S). In

the next section, we present the perturbed equations of motion in this frame and we discuss

the suitability of this choice for our purposes.

4.1.4 Fields equations and energy momentum conservation in syn-

chronous gauge

Under this gauge fixing, perturbed Einstein equations Eq. (3.8) reads (at first order):

− 4πG(δρ+ 3δp+∇2πS) =
1

2

(
3Ä+∇2B̈

)
+

ȧ

2a

(
3Ȧ+∇2Ḃ

)
. (4.62)

While the energy-momentum conservation gives

δp+∇2πS + ∂0[(ρ̄+ p̄)δu] +
3ȧ

a
(ρ̄+ p̄)δu = 0, (4.63)

δρ̇+
3ȧ

a
(δρ+ δp) +∇2

[
a−2(ρ̄+ p̄)δu+

ȧ

a
πS
]

+
1

2
(ρ̄+ p̄)∂0

[
3A+∇2B

]
= 0. (4.64)

We define

Ψ ≡ 1

2

[
3A+∇2B

]
, (4.65)

then,

− 4πGa2(δρ+ 3δp+∇2πS) =
∂

∂t

(
a2Ψ̇

)
, (4.66)

δρ̇+
3ȧ

a
(δρ+ δp) +∇2

[
a−2(ρ̄+ p̄)δu+

ȧ

a
πS
]

+
1

2
(ρ̄+ p̄)Ψ̇ = 0. (4.67)
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The unperturbed Einstein equations correspond to the Friedmann equations. In the delta

sector, computations give the non-perturbed equations:

3Ḟ
ȧ

a
= κ(3F ρ̄+ ˜̄ρ) (4.68)

, and

12F
ä

a
+ 6F

(
ȧ

a

)2

+ 3Ḟ
ȧ

a
− 3F̈ = κ(˜̄ρ+ 3˜̄p+ 3F ρ̄+ 3F p̄). (4.69)

The perturbed contribution (at first order) is

[
2Ḟ

ȧ

a
+ F̈

] [
3A+∇2B

]
+

[
6F

ȧ

a
+

5

2
Ḟ

] [
3Ȧ+∇2Ḃ

]
−
[
2
ȧ

a

] [
3 ˙̃A+∇2 ˙̃B

]
+3F

[
3Ä+∇2B̈

]
−
[
3 ¨̃A+∇2 ¨̃B

]
= κ

(
3δp̃+ δρ̃+ Fδρ+ 3Fδp+∇2π̃ + F∇2π

)
(4.70)

Besides, 00 component of delta Energy-momentum conservation in (3.11) give

δ ˙̃ρ+
3ȧ

a
(δρ̃+ δp̃) +

3Ḟ

2
(δρ+ δp) +∇2

[
(˜̄ρ+ ˜̄p)

a2
δu+

(ρ̄+ p̄)F

a2
δu+

(ρ̄+ p̄)

a2
δũ

]
+

(˜̄ρ+ ˜̄p)

2
∂0[3A+∇2B] +

(ρ̄+ p̄)

2
∂0[3Ã+∇2B̃]− (ρ̄+ p̄)

2
∂0(F [3A+∇2B]) = 0 , (4.71)

while the i0 component gives

δp̃+ ∂0[( ˜̄ρ+ ˜̄p)δu] + ∂0[(ρ̄+ p̄)δũ]− ∂0[(ρ̄+ p̄)Fδu] + 3(ρ̄+ p̄)Ḟ δu

+
3ȧ

a
(ρ̄+ p̄)δũ+

3ȧ

a
(˜̄ρ+ ˜̄p)δu− 3ȧ

a
F (ρ̄+ p̄)δu = 0 . (4.72)

Analogous to the standard sector, we define

Ψ̃ ≡ 1

2

[
3Ã+∇2B̃

]
, (4.73)
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then the gravitational equation becomes

[
2Ḟ

ȧ

a
+ F̈

]
a2Ψ +

[
6F

ȧ

a
+

5

2
Ḟ

]
a2Ψ̇ + 3Fa2Ψ̈− d

dt

(
a2 ˙̃Ψ

)
=
κ

2

(
3δp̃+ δρ̃+ Fδρ+ 3Fδp+∇2π̃ + F∇2π

)
. (4.74)

Now, the delta energy conservation is given by

δ ˙̃ρ+
3ȧ

a
(δρ̃+ δp̃) +

3Ḟ

2
(δρ+ δp) +∇2

[
(˜̄ρ+ ˜̄p)

a2
δu+

(ρ̄+ p̄)F

a2
δu+

(ρ̄+ p̄)

a2
δũ

]
+(˜̄ρ+ ˜̄p)Ψ̇ + (ρ̄+ p̄) ˙̃Ψ− (ρ̄+ p̄)∂0(FΨ) = 0 . (4.75)

The study of the non-perturbed sector was already treated in Alfaro et al.[52–54] and applied

to the supernovae observations[57]. In Chapter 3 we presented the results that will be useful

for our treatment.

We have to remark that our definition of Ψ is not the usual since the standard definition[62]

is with the time derivative of fields A and B, respectively. In the delta sector appears

explicitly the combinations of these fields without a time derivative, so if the reader wants to

compare results with other works, he or she should take into consideration this definition to

analyze the solutions. In the next Section, we will discuss the evolution of the cosmological

fluctuations, and why of choosing this particular gauge frame which will help us to calculate

the scalar contribution to the CMB.

4.2 Evolution of cosmological fluctuations

Until now, we have developed the perturbation theory in DG; now, we are interested in

studying the evolution of the cosmological fluctuations to have a physical interpretation of

the delta matter fields, which this theory naturally introduces. Even in the standard cos-

mology, the system of equations that describes these perturbations are complicated to allow

analytic solutions, and there are comprehensive computer programs to this task, such as

CMBfast[58, 59], and CAMB[60]. However, such computer programs can not give a clear
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understanding of the physical phenomena involved. Nevertheless, some good approximations

allow the compute of the spectrum of the CMB fluctuations with a rather good agreement

with these computer programs[61, 62]. In particular, we are going to extend Weinberg ap-

proach for this task. This method consists of two main aspects: first, the hydrodynamic limit,

which assumes that near recombination time photons were in local thermal equilibrium with

the baryonic plasma, then photons could be treated hydro-dynamically, like plasma and cold

dark matter. Second, a sharp transition from thermal equilibrium to complete transparency

at the moment tls of the last scattering.

Since we will reproduce this approach, we consider the Universe’s standard components,

which means photons, neutrinos, baryons, and cold dark matter. Then the task is to under-

stand the role of their own delta-counterpart. We will also neglect both anisotropic inertia

tensors and took the usual state equation for pressures and energy densities and perturba-

tions. Besides, as we will treat photons and delta photons hydro-dynamically, we will use

δuγ = δuB and δũγ = δũB. Finally, as the synchronous scheme does not completely fix

the gauge freedom, one can use the remaining freedom to put δuD = 0, which means that

cold dark matter evolves at rest with respect to the Universe expansion. In our theory, the

extended synchronous scheme also has extra freedom, which we will use to choose δũD = 0

as its standard part. Now we will present the equations for both sectors. However, we will

provide more detail in the delta sector because Weinberg[62] already calculates the solution

of Einstein’s equations.

Einstein’s equations and its energy-momentum conservation in Fourier space are

d

dt

(
a2Ψ̇q

)
= −4πGa2 (δρDq + δρBq + 2δργq + 2δρνq) , (4.76)

δρ̇γq + 4Hδργq − (4q/3a)ρ̄γδuγq = −(4/3)ρ̄γΨ̇q , (4.77)

δρ̇Dq + 3HδρDq = −ρ̄DΨ̇q , (4.78)

δρ̇Bq + 3HδρBq − (q/a)ρ̄Bδuγq = −ρ̄BΨ̇q , (4.79)

δρ̇νq + 4Hδρνq − (4q/3a)ρ̄νδuνq = −(4/3)ρ̄νΨ̇q , , (4.80)

where H ≡ ȧ/a. It is useful to rewrite these equations in term of the dimensionless fractional

perturbation
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δαq =
δραq

ρ̄α + p̄α
, (4.81)

where α can be γ, ν, B and D (photons, neutrinos, baryons and dark matter, respectively).

a4ρ̄γ, a
4ρ̄ν , a

3ρ̄D, a3ρ̄B are time independent quantities, then (4.76)-(4.80) are

d

dt

(
a2Ψ̇q

)
= −4πGa2

(
ρ̄DδDq + ρ̄BδBq +

8

3
ρ̄γδγq +

8

3
ρ̄νδνq

)
, (4.82)

δ̇γq − (q2/a2)δuγq = −Ψ̇q (4.83)

δ̇Dq = −Ψq , (4.84)

δ̇Bq − (q2/a2)δuγq = −Ψ̇q (4.85)

δ̇νq − (q2/a2)δuνq = −Ψ̇q (4.86)

d

dt

(
(1 +R) δuγq

a

)
= − 1

3a
δγq (4.87)

d

dt

(
δuνq
a

)
= − 1

3a
δνq , (4.88)

where R = 3ρ̄B/4ρ̄γ. By the other side, in delta sector we will also use a dimensionless

fractional perturbation. However, this perturbation is defined as the delta transformation of

(4.81)2,

δ̃αq ≡ δ̃δαq =
δρ̃αq

ρ̄α + p̄α
−

˜̄ρα + ˜̄pα
ρ̄α + p̄α

δαq . (4.89)

In Section 3.4.3 and 3.4.4, we presented the solutions for the densities (eqs. (3.42), (3.51)

and (3.52), with C1 = C2 = 0), finding

2We choose this definition because the system of equations now seems as an homogeneous system exactly
equal to the GR sector (where now the variables are the tilde-fields) with external forces mediated by the
GR solutions. Maybe the most intuitive solution should be

δ̃intαq =
δρ̃αq

˜̄ρα + ˜̄pα
,

however these definitions are related by

δ̃αq =
˜̄ρα + ˜̄pα
ρ̄α + p̄α

(
δ̃intαq − δαq

)
.
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˜̄ρR
ρ̄R

= −2F (a) and
˜̄ρM
ρ̄M

= −3

2
F (a) (4.90)

We will assume that this quotient holds for every component. Also using the result that

a4 ˜̄ργ/F , a4 ˜̄ρν/F , a3 ˜̄ρD/F , a3 ˜̄ρB/F are time independent, the equations for the delta sector

are

[
2Ḟ

ȧ

a
+ F̈

]
a2Ψq +

[
6F

ȧ

a
+

5

2
Ḟ

]
a2Ψ̇q + 3Fa2Ψ̈q −

d

dt

(
a2 ˙̃Ψq

)
=

κ

2
a2
[
ρ̄Dδ̃Dq

+ ρ̄B δ̃Bq +
8

3
ρ̄γ δ̃γq +

8

3
ρ̄ν δ̃νq −

F

2
(ρ̄DδDq + ρ̄BδBq)−

8

3
F (ρ̄γδγq + ρ̄νδνq)

]
(4.91)

˙̃δγq −
q2

a2
(δũγq + Fδuγq) + ˙̃Ψq − ∂0(FΨq) = 0 ,(4.92)

˙̃δDq + ˙̃Ψq − ∂0(FΨq) = 0 ,(4.93)

˙̃δBq −
q2

a2
(δũγq + Fδuγq) + ˙̃Ψq − ∂0(FΨq) = 0 ,(4.94)

˙̃δνq −
q2

a2
(δũνq + Fδuνq) + ˙̃Ψq − ∂0(FΨq) = 0 ,(4.95)

δ̃γq
3a

+
d

dt

(
(1 +R)δũγq

a

)
+ 2F

d

dt

(
(R− R̃)δuγq

a

)
− F d

dt

(
(1 +R)δuγq

a

)
−2Ḟ (R̃−R)

δuγq
a

= 0 ,(4.96)

δ̃νq
3a

+
d

dt

(
δũνq
a

)
− F d

dt

(
δuνq
a

)
= 0 ,(4.97)

with R̃ = 3˜̄ρD/4˜̄ργ. Due to the definition of tilde fractional perturbation (4.89), solutions

for (4.91)-(4.97) can be obtained easily, putting all solutions of GR equal to zero, then the

system is exactly equal to the system of equations (4.82)-(4.88) and the solution of tilde

perturbations in the homogeneous system are exactly equal to the GR solutions, and then

we only need to ”turn on” the GR source and find the complete solutions just like a forced-

system.

We will impose initial conditions to find solutions valid up to recombination time. At suf-

ficiently early times the Universe was dominated by radiation, and as Friedmann equations
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are valid in our theory (in particular the first equation), we can use as a good approximation

that a ∝
√
t and 8πGρ̄R/3 = 1/4t2, while R and R̃� 1. Here

ρ̄M ≡ ρ̄D + ρ̄B , ρ̄R ≡ ρ̄γ + ρ̄ν . (4.98)

Besides, we are interested in adiabatic solutions, in the sense that all the δαq and δ̃αq become

equal at very early times. So, we make the ansatz:

δγq = δνq = δBq = δDq = δq δuγq = δuνq = δuq , (4.99)

δ̃γq = δ̃νq = δ̃Bq = δ̃Dq = δ̃q δũγq = δũνq = δũq . (4.100)

Finally, we drop the term q2/a2 because we are considering very early times. Then Equations

(4.82)-(4.88) becomes

d

dt
(tΨq) = −1

t
δq , (4.101)

δ̇q = −Ψq , (4.102)

d

dt

(
δuq√
t

)
= −1

t
δq . (4.103)

While equations (4.91)-(4.97) becomes

[
2Ḟ

ȧ

a
+ F̈

]
a2Ψq +

[
6F

ȧ

a
+

5

2
Ḟ

]
a2Ψ̇q + 3Fa2Ψ̈q

− d

dt

(
a2 ˙̃Ψq

)
=

a2

t2
(δ̃q − Fδq) , (4.104)

˙̃δq + ˙̃Ψq − ∂0(FΨq) = 0 , (4.105)

δ̃q
3a

+
d

dt

(
δũq
a

)
− F d

dt

(
δuq
a

)
= 0 . (4.106)

Inspection of Eq. (3.50) show that at this era that for Y � C = YEQ we have F ∝
−L2a

√
C/3 (as we are using a0 = 1 we have Y = a). Also, the time is obtained by (3.44)
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t(Y ) =
2
√

1 + C

3H0

(√
Y + C(Y − 2C) + 2C

3
2

)
, (4.107)

we recall that H0 = ȧ0/a0 is the usual Hubble parameter which is not longer the physical

Hubble parameter observed by Planck[38] and Riess[34]. Thus, in radiation era time and a(t)

was related by a(t) = (3H0

√
C/
√

1 + C)1/2t1/2. The complete system Eqs. (4.101)-(4.103)

and Eqs. (4.104)-(4.106) has analytical solution:

δγq = δBq = δDq = δνq =
q2t2Rq

a2
, (4.108)

Ψ̇q = −tq
2Rq

a2
, (4.109)

δuγq = δuνq = −2t3q2Rq

9a2
, (4.110)

where3

q2Rq ≡ −a2HΨq + 4πGa2δρq + q2Hδuq , (4.111)

is a gauge invariant quantity, which take a time independent value for q/a � H. Here

H = ȧ/a is the GR definition of the Hubble parameter, which we recall is not longer the

physical one. On the other hand, we get

δ̃q = −L2

√
Cq2Rqt

2

3a
, (4.112)

˙̃Ψq =
L2

√
Cq2Rqt

a
, (4.113)

δũq =
L2

√
Cq2Rqt

3

a
(4.114)

We will talk about this initial conditions later. Note that Eq. (4.83) and (4.85) give

3the definition of Rq is given in section 5.4: Conservation outside the horizon, Cosmology, Weinberg.
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d

dt
(δγ − δB) = 0 . (4.115)

This implies that if we start from adiabatic solutions, δγ = δB is true for all the Universe

evolution (the same happens for its delta version, from Eq. (4.92) and Eq (4.94)).

4.2.1 Matter era

In this era (a� C) we have a ∝ t2/3, then (still using R = R̃ = 0) we have

d

dt

(
a2Ψq

)
= −4πGρ̄Da

2δDq, (4.116)

δ̇Dq = −Ψq, (4.117)

d

dt

(
δuγq
a

)
= − 1

3a
δγq, (4.118)

d

dt

(
δuνq
a

)
= − 1

3a
δνq. (4.119)

For the delta sector,

[
2Ḟ

ȧ

a
+ F̈

]
a2Ψq +

[
6F

ȧ

a
+

5

2
Ḟ

]
a2Ψ̇q + 3Fa2Ψ̈q,

− d

dt

(
a2 ˙̃Ψq

)
=

2a2

3t2

(
δ̃Dq − F

δDq
2

)
, (4.120)

˙̃δγq −
q2

a2
(δũγq + Fδuγq) + ˙̃Ψq − ∂0(FΨq) = 0, (4.121)

˙̃δDq + ˙̃Ψq − ∂0(FΨq) = 0, (4.122)

δ̃γq
3a

+
d

dt

(
δũγq
a

)
− F d

dt

(
δuγq
a

)
= 0 (4.123)

Where,
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a(t) =

(
3H0

2
√

1 + C

)2/3

t2/3, (4.124)

F (t) = −L
3
a(t)3/2. (4.125)

It is remarkable that in GR sector there are exact solutions, given by

δDq =
9q2t2RqT (κ)

10a2
(4.126)

Ψ̇q = −3q2tRqT (κ)

5a2
(4.127)

δγq = δνq =
3Rq

5

[
T (κ)− S(κ) cos

(
q

∫ t

0

dt√
3a

+ ∆(κ)

)]
, (4.128)

δuγq = δuνq =
3tRq

5

[
−T (κ) + S(κ)

a√
3qt

sin

(
q

∫ t

0

dt√
3a

+ ∆(κ)

)]
(4.129)

Where T (κ), S(κ) and ∆(κ) are time-independent dimensionless functions of the dimension-

less re-scaled wave number

κ ≡ q
√

2

aEQHEQ

(4.130)

aEQ and HEQ are, respectively, the Robertson-Walker scale factor and the expansion rate at

matter-radiation equally. These are known as transfer functions. (These functions can only

depend on κ because they must be independent of the spatial coordinates normalization and

are dimensionless. A complete discussion of the behavior of these functions can be found

in [62]). On the other side, delta perturbations have not an exact solution, and numerical

calculation is needed to find them, however we will not present numerical solutions because

there are not part of this Thesis, and we only will estimate the initial conditions of the

perturbations at the end of this section.
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In order to get all transfer functions we have to compare solutions with the full equation

system (with ρB = ρ̃B = 0). To do this task lets make the change of variable y ≡ a/aEQ =

a/C, this means

d

dt
=
HEQ√

2

√
1 + y

y

d

dy
(4.131)

Also, we will use the following parametrization for all perturbations

δDq = κ2R0
qd(y)/4 , δγq = δνq = κ2R0

qr(y)/4 ,

Ψ̇q = (κ2HEQ/4
√

2)R0
qf(y) , δuγq = δuνq = (κ2

√
2/4HEQ)R0

qg(y) ,

and

δ̃Dq = κ2R0
q d̃(y)/4 , δ̃γq = δ̃νq = κ2R0

q r̃(y)/4

˙̃Ψq = (κ2HEQ/4
√

2)R0
q f̃(y) , δũγq = δũνq = (κ2

√
2/4HEQ)R0

q g̃(y) .

Then Eqs. (4.116)-(4.119) and Eqs. (4.120)-(4.123) become

√
1 + y

d

dy

(
y2f(y)

)
= −3

2
d(y)− 4r(y)

y
, (4.132)√

1 + y
d

dy
r(y)− κ2g(y)

y
= −yf(y), (4.133)√

1 + y
d

dy
d(y) = −yf(y), (4.134)√

1 + y
d

dy

(
g(y)

y

)
= −r(y)

3
, (4.135)
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and

− [(1 + 2y)yF ′(y) + y(1 + y)F ′′(y)] d(y) +

[
6F (y) +

5

2
yF ′(y)

]
y
√

1 + yf(y)

+3F (y)y2
√

1 + yf ′(y)−
√

1 + y
d

dy

(
y2f̃(y)

)
=

3d̃(y)

2
+

4r̃(y)

y

−3F (y)d(y)

4
− 4F (y)r(y)

y
, (4.136)√

1 + y
d

dy
d̃(y) = −yf̃(y)−

√
1 + y

d

dy
d(y), (4.137)√

1 + y
d

dy
r̃(y) =

κ2

y
[g̃(y) + F (y)g(y)]− yf̃(y)−

√
1 + y

d

dy
d(y), (4.138)√

1 + y
d

dy

(
g̃(y)

y

)
= − r̃(y)

3
+
√

1 + yF (y)
d

dy

(
g(y)

y

)
. (4.139)

In this notation, the initial conditions are

d(y) = r(y)→ y2

f(y)→ −2

g(y)→ −y
4

9

For delta sector,

d̃(y) = r̃(y)→ −L2C
3/2

3
y3

f̃(y)→
√

2L2C
3/2y

g̃(y)→ L2C
3/2

2
y5

From supernovae fit, we know that C ∼ 10−4 and L ∼ 0.45 [53, 57], thus we can estimate

that delta matter perturbation at the beginning of the Universe was much smaller than

standard matter. For example, at y ∼ 10−3 the ratio between components of the Universe

is |δ̃α/δα| ∼ 10−10. This does not mean that the intuitive fractional perturbation of delta

matter δ̃intαq = δρ̃α/(˜̄ρα + ˜̄p) was much lower than the standard perturbations δα because
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δ̃αq(t) ∝ (δ̃intαq − δαq) , (4.140)

this implies that δ̃intαq ∼ δαq.

We do not show numerical solutions here because the aim of this Thesis is to trace a guide

for future work, in particular, in the numeric computation of multipole coefficients for tem-

perature fluctuations in the CMB. However, in the next Chapter we will derive a formula to

do that computation.

After finishing this Chapter, we must include the effect of taking R and R̃ 6= 0, this could

be included using a WKB approximation described in Appendix A, besides we also need to

include another effect. Before the moment of last scattering the fluid of baryons and photons

was damped due Thompson Scattering. This effect is known as the Silk damping [76, 77].

Then the full solutions for photons density perturbations are

δγq =
3Ro

q

5
[T (κ)(1 + 3R)

−(1 +R)−1/4e−
∫ t
0 ΓdtS(κ) cos

(∫ t

0

qdt√
3(1 +R(t))aDG(t)

+ ∆(κ)

)]
,(4.141)

δuγq =
3Ro

q

5

[
−tT (κ) +

aDG√
3q(1 +R)3/4

e−
∫ t
0 ΓdtS(κ)

× sin

(∫ t

0

qdt√
3(1 +R(t))aDG(t)

+ ∆(κ)

)]
, (4.142)

where

Γ =
q2tγ

6a2
DG(1 +R)

[
16

15
+

R2

1 +R

]
(4.143)

Note that at this level we used a ∼ aDG which is true for t < tls. In particular we will see that

those solutions at the moment of last scattering will play the crucial role when computing

the temperature multipole coefficients of the CMB.
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4.3 Summary and Conclusions

We have study the cosmological fluctuations in DG, to do that we perturbed the FLRW

background of the theory and studied how the fields transform under an space-time coordi-

nate transformation. We found that to fix gauge freedoms, DG extends the usual choices in

GR, such as the Newtonian and Synchronous gauge. The extended Newtonian gauge fix all

the degrees of freedom as usual, while Synchronous scenario left a remaining freedom that

we can use it to set the velocity field of dark matter equal to zero, this mean that for us

dark matter and its delta version evolves in rest with respect to the evolution of the Uni-

verse. This choice simplify the integration of the equations of this theory allowing us to get

analytical solutions in the beginning of the Universe. When solving the matter-dominated

era, we need to add some effects due the transition from R = 0 to R 6= 0, in particular we

can mediated this by the WKB approximation. Besides, the fluid of photons and baryons is

damped by viscosity and heat conduction due Thompson scattering, so we need to include

this effect.

One could use these perturbations to study of the very beginning of the Universe, such

as inflationary scenarios, as for later effects, such as BAOs and others. However, in the

next Chapter we will present the temperature fluctuations coming from the moment of last

scattering tls, where we will present a formula for the scalar contribution to the CMB.





Chapter 5

Temperature Fluctuations

In this Chapter we present the derivation of temperature fluctuations coming from the mo-

ment of last scattering because we are interested in the CMB observations. However the

analysis could be done for any photons coming from any source. The complete derivation

should consider the evolution of Boltzmann equations for photons. Nevertheless, as photons

follow geodesics in DG, we can study their propagation in the FLRW perturbed coordinates

under the condition gi0 = 0, because we are not considering angular deflections of photons

when travelling to us.

5.1 Derivation of temperature fluctuations

As we saw in Section 4.1, photons moves in the metric (imposing gi0 = 0)

g00 = −((1 + 3F (t))c2 + E(x, t) + Ẽ(x, t))

gi0 = 0 (5.1)

gij = a2(t)(1 + F (t))δij + hij(x, t) + h̃ij(x, t) ,

A ray of light propagating to the origin of the FRLW coordinate system , from a direction

n̂, will have a comoving radial coordinate r related with t by

77
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0 = ḡµνdx
µdxν = −((1 + 3F (t))c2 + E(rn̂, t) + Ẽ(rn̂, t))dt2

+ (a2(t)(1 + F (t)) + hrr(rn̂, t) + h̃rr(rn̂, t))dr
2 , (5.2)

in other words,

dr

dt
= −

(
(1 + 3F (t))c2 + E + Ẽ

a2(t)(1 + F (t)) + hrr + h̃rr

)1/2

' − c

aDG(t)
+

c(hrr + h̃rr)

2(1 + 3F (t))a3
DG(t)

− E + Ẽ

2(1 + 3F (t))caDG(t)
, (5.3)

where aDG(t) is the modified scale factor defined in (3.34)

aDG(t) = a(t)

√
1 + F (t)

1 + 3F (t)
. (5.4)

Now we will use the approximation of a sharp transition between opaque and transpar-

ent Universe at a moment tls of last scattering, at temperature T ' 3000 K. With this

approximation, the relevant term at first order in Eq. (5.3) is

r(t) = c

[
s(t) +

∫ t

tls

dt′

aDG(t′)
N (cs(t′)n̂, t′)

]
, (5.5)

where

N(x, t) ≡ 1

2(1 + 3F )

[
hrr(x, t) + h̃rr(x, t)

a2
DG

− E(x, t)

c2
− Ẽ(x, t)

c2

]
, (5.6)

and s(t) is the zero order solution for the radial coordinate. s(t) = rls when t = tls:

s(t) = rls −
∫ t

tls

dt′

aDG(t′)
=

∫ t0

t

dt′

aDG(t′)
. (5.7)
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If a ray of light arrives to r = 0 at a time t0, then Eq. (5.5) gives

0 = s(t0) +

∫ t

tls

dt′

aDG(t′)
N (cs(t′)n̂, t′) = rls +

∫ t0

tls

dt

aDG(t)
(N (cs(t)n̂, t)− 1) . (5.8)

A time interval δtls, between departure of successive rays of light at time tls of last scattering,

produces an interval of time δt0, between the arrival of the rays of light at t0, given by the

variation of Eq. (5.8):

0 =
δtls

aDG(tls)

[
1−N(crlsn̂, tls) + c

∫ t0

tls

dt

aDG(t)

(
∂N (r(t)n̂, t)

∂r

)
r=cs(t)

]
+δtls(∂u

r
γ(crlsn̂, tls) + ∂ũrγ(crlsn̂, tls)) +

δt0
aDG(t0)

[−1 +N(0, t0)] . (5.9)

The velocity terms of the photon-gas or photon-electron-nucleon arise because of the varia-

tion respect to the time of the radial coordinate rls described by the Eq. (5.8). The exchange

rate of N(s(t)n̂, t) is

d

dt
N (s(t)n̂, t) =

(
∂

∂t
N(rn̂, t)

)
r=cs(t)

− c

aDG(t)

(
∂N(rn̂, t)

∂r

)
r=cs(t)

,

then,

0 =
δtls

aDG(tls)

[
1−N(0, tls) +

∫ t0

tls

dt

(
∂N (rn̂, t)

∂t

)
r=cs(t)

]
+δtls(∂u

r
γ(rlsn̂, tls) + ∂ũrγ(rlsn̂, tls)) +

δt0
aDG(t0)

[−1 +N(0, t0)] . (5.10)

This result gives the ratio between the time intervals between ray of lights that are emitted

and received. However, we are interested in this ratio, but for the proper time, that in DG

it is defined with the original metric gµν :

δτL =

√
1 +

E(rls, tls)

c2
δtls , δτ0 =

√
1 +

E(0, t0)

c2
δt0 , (5.11)
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At first order, it gives the ratio between a received frequency and an emitted one:

ν0

νL
=
δτL
δτ0

=
aDG(tls)

aDG(t0)

[
1 +

1

2c2
(E(rlsn̂, t)− E(0, t0))

−
∫ t0

tls

(
∂

∂t
N(rn̂, t)

)
r=cs(t)

dt− aDG(t)(δurγ(rlsn̂, t) + δũrγ(rlsn̂, t))

]
(5.12)

Eq. (5.12) extended the expression for the redshift in the perturbed background. The

observed temperature at the present time t0 from direction n̂ is

T (n̂) =

(
ν0

νL

)
(T̄ (tls) + δT (crlsn̂, tls)) , (5.13)

In absence of perturbations, the observed temperature in all directions should be

T0 =

(
aDG(tls)

aDG(t0)

)
T̄ (tls) , (5.14)

therefore, the ratio between the observed temperature shift that comes from direction n̂ and

the unperturbed value is

∆T (n̂)

T0

≡ T (n̂)− T0

T0

=
ν0aDG(t0)

νLaDG(tls)
− 1 +

δT (crlsn̂, tls)

T̄ (tls)

=
1

2c2
(E(rlsn̂, t)− E(0, t0))−

∫ t0

tls

dt

(
∂

∂t
N(rn̂, t)

)
r=cs(t)

− aDG(t)(δurγ(rlsn̂, t) + δũrγ(rlsn̂, t)) +
δT (crlsn̂, tls)

T̄ (tls)
. (5.15)

For scalar perturbations in any gauge with hi0 = 0, the metric perturbations are
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h00 = −E , hij = (1 + F )a2

[
Aδij +

∂2B

∂xi∂xj

]
,

h̃00 = −Ẽ , h̃ij = (1 + F )a2

[
Ãδij +

∂2B̃

∂xi∂xj

]
. (5.16)

Besides for scalar perturbations radial velocity of the photon fluid and the delta versions are

given in terms of the velocity potentials δuγ and δũγ, respectively,

δurγ = (ḡ + ¯̃g)rµ
∂δuγ
∂xµ

=
1

(1 + F (t))a2

∂δuγ
∂r

δũrγ = (ḡ + ¯̃g)rµ
∂δũγ
∂xµ

=
1

(1 + F (t))a2

∂δũγ
∂r

. (5.17)

Then Eq. (5.15) gives the scalar contribution to temperature fluctuations

(
∆T (n̂)

T0

)S
=

1

2c2
(E(rlsn̂, t)− E(0, t0))−

∫ t0

tls

dt

(
∂

∂t
N(rn̂, t)

)
r=cs(t)

− 1

(1 + 3F (t))aDG

(
∂δuγ(crlsn̂, t)

∂r
+
∂δũγ(crlsn̂, t)

∂t

)
+

δT (crlsn̂, tls)

T̄ (tls)
, (5.18)

where

N =
1

2

[
A+

∂2B

∂r2
+

(
Ã+

∂2B̃

∂r2

)
− E

1 + 3F
− Ẽ

1 + 3F

]
. (5.19)

In the next step we will study the gauge transformations of these fluctuations. The following

identity for the fields B and B̃ will be useful:
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(
∂2Ḃ

∂r2

)
r=s(t)

= −

(
d

dt

[
aDG

∂Ḃ

∂r
+ aDGȧDGḂ + a2

DGB̈

]
+
∂

∂t

[
aDGȧDGḂ + a2

DGB̈
])

r=s(t)

.

(5.20)

Then, the temperature fluctuations are described by

(
∆T (n̂)

T0

)S
=

(
∆T (n̂)

T0

)S
early

+

(
∆T (n̂)

T0

)S
late

+

(
∆T (n̂)

T0

)S
ISW

(5.21)

where

(
∆T (n̂)

T0

)S
early

= −1

2
aDG(tls)ȧDG(tls)Ḃ(rlsn̂, tls)−

1

2
a2
DG(tls)B̈(rlsn̂, tls) +

1

2
E(rlsn̂, tls) +

δT (rlsn̂)

T̄ (tls)

− aDG(tls)

[
∂

∂r

(
1

2
Ḃ(rn̂, tls) +

1

(1 + 3F (tls))a
2
DG(tls)

δuγ(rn̂, tls)

)
r=rls

]

−
{(

1

2
aDG(tls)ȧDG(tls)

˙̃B(rlsn̂, tls) +
1

2
a2
DG(tls)

¨̃B(rlsn̂, tls)

)
+ aDG(tls)

[
∂

∂r

(
1

2
˙̃B(rn̂, tls) +

1

(1 + 3F (tls))a
2
DG(tls)

δũγ(rn̂, tls)

)
r=rls

]}
(5.22)

(
∆T (n̂)

T0

)S
late

=
1

2
aDG(t0)ȧDG(t0)Ḃ(0, t0) +

1

2
a2
DG(t0)B̈(0, t0)− 1

2
E(0, t0)

+ aDG(t0)

[
∂

∂r

(
1

2
Ḃ(rn̂, t0) +

1

(1 + 3F (t0))a2
DG(t0)

δuγ(rn̂, t0)

)
r=0

]
+

{(
1

2
aDG(t0)ȧDG(t0) ˙̃B(0, t0) +

1

2
a2
DG(t0) ¨̃B(0, t0)

)
+ aDG(t0)

[
∂

∂r

(
1

2
˙̃B(rn̂, t0) +

1

(1 + 3F (t0))a2
DG(t0)

δũγ(rn̂, t0)

)
r=rls

]}
(5.23)
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(
∆T (n̂)

T0

)S
ISW

= −1

2

∫ t0

tls

dt

{
∂

∂t

[
a2
DG(t)B̈(rn̂, t) + aDG(t)ȧDG(t)Ḃ(rn̂, t) + A(rn̂, t)− E(rn̂, t)

1 + 3F (t)

+

(
a2
DG(t) ¨̃B(rn̂, t) + aDG(t)ȧDG(t) ˙̃B(rn̂, t) + Ã(rn̂, t)− Ẽ(rn̂, t)

1 + 3F (t)

)]}
(5.24)

The “late” term is the sum of independent direction terms and a term proportional to n̂,

which was added to represent the local anisotropies of the gravitational field and the local

fluid. In GR, these terms only contribute to the multipole expansion for l = 0 and l = 1.

Thus we will ignore their contribution to DG. The acronym ISW refers to the integrate

Sachs-Wolve effect[78, 79] and involved the evolution of perturbations from the moment of

last scattering tls until the present. We will refer to this effect in the next section.

5.1.1 Gauge transformations

We need to study the gauge transformations for photons propagating in the metric gµν with

a parameter εµ. The transformations are

∆A =
2ȧ

(1 + F )a

ε0
1 + 3F

, ∆B = − 2

1 + F

εS

(1 + F )a2
,

∆Ci = − 1

1 + F

εVi
(1 + F )a2

, ∆Dij = 0 , ∆E = 2
∂

∂t

(
ε0

1 + 3F

)
, (5.25)

∆H = − 1√
1 + Fa

[
a2 ∂

∂t

(
εS

(1 + F )a2

)
+

ε0
(1 + 3F )

]
, ∆Gi = − a√

1 + F

∂

∂t

(
εVi

(1 + F )a2

)
.

and
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∆Ã =
1

(1 + F )a2

[
∂

∂t
(Fa2)

ε0
1 + 3F

]
, ∆B̃ = − 1

(1 + F )a2

[
2F

1 + F
εS
]
,

∆C̃i = − F

1 + F

εVi
(1 + F )a2

, ∆D̃ij = 0 , ∆Ẽ = 6F
∂

∂t

(
ε0

1 + 3F

)
+

3Ḟ

1 + 3F
ε0

∆H̃ = − 1√
1 + Fa

[
Fa2 ∂

∂t

(
εS

(1 + F )a2

)
+

3Fε0
(1 + 3F )

]
,

∆G̃i = − 1√
1 + Fa

[
Fa2 ∂

∂t

(
εVi

(1 + F )a2

)]
. (5.26)

Considering the sum of the perturbations we get

∆A+ ∆Ã =
1

(1 + F )a2

∂

∂t
[(1 + F )a2]

ε0
1 + 3F

, (5.27)

∆B + ∆B̃ = − 2εS

(1 + F )a2
, (5.28)

∆E + ∆Ẽ = 2(1 + 3F )
∂

∂t

(
ε0

1 + 3F

)
+

3Ḟ

1 + 3F
ε0, (5.29)

∆H + ∆H̃ = − 1√
1 + Fa

[
(1 + F )a2 ∂

∂t

(
εS

(1 + F )a2

)
+ ε0

]
, (5.30)

∆Ci + ∆C̃i = −
εVi

(1 + F )a2
, (5.31)

∆Gi + ∆G̃i = − 1√
1 + Fa

[
(1 + F )a2 ∂

∂t

(
εVi

(1 + F )a2

)]
. (5.32)

We are interested in gauge transformations that preserve the condition gi0 = gio + g̃i0 = 0.

This means that ∆H + ∆H̃ = 0. This gives a solution for ε0 given by

ε0 = −(1 + F )a2 ∂

∂t

(
εS

(1 + F )a2

)
(5.33)

When we study how “ISW” term transform under this type of transformations, we found

that ∆ISW = 0. While for the “early” term we should note that temperature perturbations

transforms as
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∆δT (rlsn̂, t) = ˙̄T (t)
ε0

1 + 3F
, (5.34)

With this expression and T̄ aDG = cte, we finally obtain

∆δT (rlsn̂, t)

T̄ (tls)
= − ȧDG

aDG

ε0
1 + 3F

. (5.35)

This result implies that the “early” term is invariant under this gauge transformation

∆early = 0. Note that this gauge transformation is equivalent to the previously discussed in

Section 4.1.1, because we can always take ε as a combination of ε and ε̃. Then we remark that

the three terms of temperature fluctuations are gauge invariant under scalar transformations

that leave gi0 = 0.

5.1.2 Single modes

We will assume that since the last scattering until now all the scalar contributions are

dominated by a unique mode, such that any perturbation X(x, t) could be written as

X(x, t) =

∫
d3qα(q)eiq·xXq(t) , (5.36)

where α(q) an stochastic variable, normalized such that

〈α(q)α∗(q′)〉 = δ3(q− q′). (5.37)

Then Eqs (5.22) and (5.24) become

(
∆T (n̂)

T0

)S
early

=

∫
d3qα(q)eiq·n̂r(tls)

(
F(q) + F̃(q) + iq̂ · n̂(G(q) + G̃(q))

)
, (5.38)(

∆T (n̂)

T0

)S
ISW

= −1

2

∫ t1

t0

dt

∫
d3qα(q)eiq·n̂s(t)

d

dt

[
a2
DG(t)B̈q(t) + aDG(t)ȧDG(t)Ḃq(t) + Aq(t)

− Eq(t)

1 + 3F (t)
+

(
a2
DG(t) ¨̃Bq(t) + aDG(t)ȧDG(t) ˙̃Bq(t) + Ãq(t)−

Ẽq(t)

1 + 3F (t)

)]
, (5.39)
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where

F(q) = −1

2
a2
DG(t)B̈q(tls)−

1

2
aDG(t)ȧDG(tls)Ḃq(tls) +

1

2
Eq(tls) +

δTq(tls)

T̄ (tls)
, (5.40)

F̃(q) = −1

2
a2
DG(t) ¨̃Bq(tls)−

1

2
aDG(tls)ȧDG(tls)

˙̃Bq(tls), (5.41)

G(q) = −q
(

1

2
aDG(tls)Ḃq(tls) +

1

(1 + 3F (tls))aDG(tls)
δuγ(tls)

)
, (5.42)

G̃(q) = −q
(

1

2
aDG(tls)

˙̃Bq(tls) +
1

(1 + 3F (tls))aDG(tls)
δũγ(tls)

)
. (5.43)

These functions are called form factors. We emphasize that combination given by F(q)+F̃(q)

and G(q)+G̃(q), and the expression inside the integral are gauge invariants under gauge trans-

formations that preserve gi0 equal to zero.

In the next section we present the scalar contribution to the coefficients of multipole tem-

perature expansion. In these computation we only consider the early contribution to the

temperature fluctuations, because the integrate Sachs-Wolves term (5.39) incorporate the

evolution of the gravitational fields from the last scattering to the present. In GR, its con-

tribution is dominant from relative low l, say 10 < l < 50. As we are interested in an

estimation of the scalar contribution we will neglect this effect in our analysis. Moreover,

our solutions are valid up to the last scattering time tls, so we are not able to do a proper

analysis of ISW contribution.

5.2 Coefficients of multipole temperature expansion:

Scalar modes

As an application of the previous results, we will study the contribution of the scalar modes

for temperature-temperature correlation, given by:

CTT,l =
1

4π

∫
d2n̂

∫
d2n̂′Pl(n̂ · n̂′)〈∆T (n̂)∆T (n̂′)〉 , (5.44)
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where ∆T (n̂) is the stochastic variable which gives the deviation of the average of observed

temperature in direction n̂, and 〈. . .〉 denotes the average over the position of the observer.

However, the observed quantity is

Cobs
TT,l =

1

4π

∫
d2n̂

∫
d2n̂′Pl(n̂ · n̂′)∆T (n̂)∆T (n̂′) , (5.45)

nevertheless, the mean square fractional difference between this equation and Eq. (5.44) is

2/(2l + 1), and therefore it may be neglected for l� 1 (say l > 200).

In order to calculate this coefficients we use the following expansion in spherical harmonics

eiq̂·n̂ρ = 4π
∞∑
l=0

m=l∑
m=−l

iljl(ρ)Y m
l (n̂)Y m∗

l (q̂) , (5.46)

where jl(ρ) are the spherical Bessel’s functions. Using this expression in Eq. (5.38), and

replacing the factor iq̂ · n̂ for time derivatives of Bessel’s functions, the scalar contribution

of the observed T-T fluctuations in direction n̂ are

(∆T (n̂))S =
∑
lm

aST,lmY
m
l (n̂) , (5.47)

where

aST,lm = 4πilT0

∫
d3qα(q)Y l∗

l (q̂)
[
jl(qrls)(F(q) + F̃(q)) + j′l(qrls)(G(q) + G̃(q))

]
, (5.48)

and α(q) is a stochastic parameter for the dominant scalar mode. It is normalized such that

〈α(q)α∗(q′)〉 = δ3(q− q′) . (5.49)

Inserting this expression in Eq. (5.44) we get

CS
TT,l = 16π2T 2

0

∫ ∞
0

q2dq
[
jl(qrls)(F(q) + F̃(q)) + j′l(qrls)(G(q) + G̃(q))

]2

(5.50)
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Now we will consider the case l � 1. In this limit we can use the following approximation

for Bessel’s functions1:

jl(ρ)→

{
cos(b) cos [ν(tan b− b)− π/4] /(ν

√
sin b) ρ > ν,

0 ρ < ν ,
(5.51)

where ν ≡ l + 1/2, and cos b ≡ ν/ρ, with 0 ≤ b ≤ π/2. Besides, for ρ > ν � 1 the phase

ν(tan b− b) is a function of ρ that grows very fast, then the derivatives of Bessel’s functions

only acts in its phase:

j′l(ρ)→

{
− cos(b)

√
sin b sin [ν(tan b− b)− π/4] /ν ρ > ν

0 ρ < ν .
(5.52)

Using these approximations in Eq. (5.50) and changing the variable from q to b = cos−1(ν/qrls),

we obtain

CS
TT,l =

16π2T 2
0 ν

r3
ls

∫ π/2

0

db

cos2 b

×
[(
F
(

ν

rls cos b

)
+ F̃

(
ν

rls cos b

))
cos[ν(tan b− b)− π/4]

− sin b

(
G
(

ν

rls cos b

)
+ G̃

(
ν

rls cos b

))
sin[ν(tan b− b)− π/4]

]2

. (5.53)

When ν � 1, the functions cos[ν(tan b− b)− π/4] and sin[ν(tan b− b)− π/4] oscillate very

rapidly, then the squared average of its values are 1/2, while the averaged cross terms are

zero. Using l ≈ ν, and changing the integration variable from b to β = 1/ cos b, the Eq.

(5.53) becomes

1See, e.g. I. S. Gradsteyn & I. M. Ryzhik, Table of Integral, Series, and Products, translated, corrected
and enlarged by A. Jeffrey (Academic Press, New York, 1980): formula 8.453.1.
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l(l + 1)CS
TT,l =

8π2T 2
0 l

3

r3
ls

∫ ∞
1

βdβ√
β2 − 1

×

[(
F
(
lβ

rls

)
+ F̃

(
lβ

rls

))2

+
β2 − 1

β2

(
G
(
lβ

rls

)
+ G̃

(
lβ

rls

))2
]
.(5.54)

Note that dA = rlsR̃ls is the angular diameter distance of the last scattering surface. To

calculate the CMB power spectrum, we need to know the value of ˙̃Bq. We use the off diagonal

equation from Delta sector to obtain it. This gives:

˙̃Aq = ȦqF + AqḞ − 2a2(ρ+ p)δuq − a2(ρ̃+ p̃)δuq − (ρ+ p)δũq , (5.55)

so if we use this equation with the definition of Ψ̃

˙̃Ψq =
1

2
(3 ˙̃Aq − q2 ˙̃Bq), (5.56)

it allow us to find ˙̃B. As we used the approximation of that perturbations of gravitational

field were dominated by perturbations of dark matter density at matter-dominated era. at

this regime Ȧq(tls) = 0 and in the synchronous gauge, the velocity perturbations for Dark

matter are zero, then

˙̃Aq(tls) = Aq(tls)Ḟ (tls) , (5.57)

and

˙̃Bq(tls) =
3

q2
Aq(tls)Ḟ (tls)−

2 ˙̃Ψq(tls)

q2
⇒ ¨̃Bq(tls) =

3

q2
Aq(tls)F̈ (tls)−

2 ¨̃Ψq(tls)

q2
, (5.58)

where
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q2Aq = 8πGa2δρDq − 2Ha2Ψ̇q

= 3H2a2δDq − 2Ha2Ψ̇q . (5.59)

In GR Ḃq = −2Ψ̇q/q
2, and Ψ̇q ∝ t−1/3 implies B̈q = 2Ψ̇q/3tq

2. Therefore,the usual form

factors are:

F(q) =
1

3
δγq(tls) +

Ψ̇q(tls)

q2

(
aDG(tls)ȧDG(tls)−

2

3

a2
DG(tls)

tls

)
(5.60)

G(q) = −q δuγq(tls)

(1 + 3F (tls))aDG(tls)
+
aDG(tls)Ψ̇q(tls)

q
. (5.61)

where we have used δTq/T̄ = δργq/4ρ̄γ = δγq/3. Nevertheless, for the “delta” contribution,
˙̃Ψq and ¨̃Ψq satisfy the same relation than the standard case. Due to our decomposition, the

tilde expressions are

F̃(q) = −3

2

Aq(tls)

q2
(a2
DG(tls)F̈ (tls) + aDG(tls)ȧDG(tls)Ḟ (tls))

+
˙̃Ψq(tls)

q2

(
aDG(tls)ȧDG(tls)−

2

3

a2
DG(tls)

tls

)
(5.62)

G̃(q) = −q δũγq(tls)

(1 + 3F (tls))aDG(tls)
+
aDG(tls)

˙̃Ψq(tls)

q
. (5.63)

Unfortunately, due to all the approximations we have used, we need to add one more correc-

tion to the solutions of the GR sector, as Weinberg does. We considered a sharp transition

from the moment when the Universe was opaque to transparent. However, this was actu-

ally not instantaneous yet it could be considered Gaussian. This effect is known as Landau

damping[80] and is described in Appendix A.2. With these considerations, the solutions of

perturbations are given by:
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Ψ̇q(tls) = −
3q2tlsRo

qT (κ)

5a2
DG(tls)

, (5.64)

δγq(tls) =
3Ro

q

5

[
T (κ)(1 + 3Rls)− (1 +Rls)

−1/4e−q
2d2D/a

2
DG(tls)

× S(κ) cos

(
q

∫ tls

0

dt√
3(1 +R(t))aDG(t)

+ ∆(κ)

)]
, (5.65)

δuγq(tls) =
3Ro

q

5

[
−tlsT (κ) +

aDG(tls)√
3q(1 +Rls)3/4

e−q
2d2D/a

2
DG(tls)

× S(κ) sin

(
q

∫ tls

0

dt√
3(1 +R(t))aDG(t)

+ ∆(κ)

)]
, (5.66)

where

d2
D = d2

Silk + d2
Landau , (5.67)

d2
Silk = Y 2

DG(tls)

∫ tls

0

tγ
6Y 2

DG(1 +R)

{
16

15
+

R2

(1 +R)

}
dt , (5.68)

d2
Landau =

σ2
t

6(1 +Rls)
, (5.69)

where tγ is the mean free time for photons and R = 3ρ̄B/4ρ̄γ = 3ΩBYDG/4Ωγ.

In order to evaluate the Silk damping, we have

tγ =
1

neσT c
(5.70)

where ne is the number density of electrons and σT is the Thomson cross section.

On the other hand

q

∫ rls

0

csdr = q

∫ tls

0

dt√
3(1 +R(t))aDG(t)

≡ qrSHls

=
q

aDG(tls)
· (aDG(tls)r

SH
ls ) =

q

aDG(tls)
· dH(tls) (5.71)
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where cs is the speed of sound, rSHls is the sound horizon radial coordinate and dH is the

horizon distance.

With all these approximations, the transfers functions are simplified to the following expres-

sions:

F(q) =
1

3
δγq(tls) +

a2
DG(tls)Ψ̇q(tls)

3q2tls
, (5.72)

G(q) = −q δuγq(tls)

(1 + 3F (tls))aDG(tls)
+
aDG(tls)Ψ̇q(tls)

q
, (5.73)

where Aq(tls) = Ro
qT (κ). Then, wee replaced the GR solutions and we get

F(q) =
Ro
q

5

[
3T (qdT/aDG(tls))Rls − (1 +Rls)

−1/4e−q
2d2D/a

2
DG(tls)

× S(qdT/aDG(tls)) cos (qdH/aDG(tls) + ∆(qdT/aDG(tls)))] , (5.74)

G(q) =

√
3Ro

q

5(1 +Rls)3/4
e−q

2d2D/a
2
DG(tls)

× S(qdT/aDG(tls)) sin (qdH/aDG(tls) + ∆(qdT/aDG(tls))) , (5.75)

where κ = qdT/als (defined in eq. (4.130)) and

dT (tls) ≡ c

√
2aDG(tls)

aEQHEQ

= c
aDG(tls)

√
ΩR

H0ΩM

= c
aDG(tls)

100h

√
C(C + 1) (5.76)

The final consideration that we must include is that due to the reionization of hydrogen at

zreion ∼ 10 by ultraviolet light coming from the first generation of massive stars, photons

of the CMB have a probability of being scattered 1− exp(−τreion). CMB has two contribu-

tions. The non-scattered photons provide the first contribution, where we have to correct by

a factor given by exp(−τreion). The scattered photons provide the second contribution, but

the reionization occurs at z � zL affecting only low ls. We are not interested in this effect,

and therefore we will not include it. Measurements shows that in GR exp(−2τreion) ≈ 0.8.
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On the other hand, we will use a standard parametrization of R0
q given by

|R0
q|2 = N2q−3

(
q/R0

κR

)ns−1

, (5.77)

where ns could vary with the wave number. It is usual to take κR = 0.05 Mpc−1.

Note that dA(tls) = rlsaDG(tls) is the angular diameter distance of the last scattering surface.

dA(tls) = caDG(tls)

∫ t0

tls

dt′

aDG(t′)
= c

aDG(t0)

1 + zls

∫ t0

tls

dt′

aDG(t′)
= c

1

1 + zls

∫ t0

tls

dt′

YDG(t′)
(5.78)

= c
1

1 + zls

∫ 1

Yls

dY ′

YDG(Y ′)

dt

dY ′
=

dL(tls)

(1 + zls)2
(5.79)

This is consistent with the luminosity distance definition[54]. Then, when we set q = βl/rls

we get

|R0
βl/rls
|2 = N2

(
βl

rls

)−3(
βl

κRrls

)ns−1

= N2

(
βl

rls

)−3(
βlaDG(tls)

κRrlsaDG(tls)

)ns−1

= N2

(
βl

rls

)−3(
βlaDG(tls)

κRdA(tls)

)ns−1

≡ N2

(
βl

rls

)−3(
βl

lR

)ns−1

Using a similar computations for the other distances, the final form of the form factors are

given by

F(q) =
Ro
q

5

[
3T (βl/lT )Rls − (1 +Rls)

−1/4e−β
2l2/l2DS(βl/lT ) cos (βl/lH + ∆(βl/lT ))

]
,(5.80)

G(q) =

√
3Ro

q

5(1 +Rls)3/4
e−β

2l2/l2DS(βl/lT ) sin (βl/lH + ∆(βl/lT )) , (5.81)

where

lR =
κRdA(tls)

aDG(tls)
, lH =

dA(tls)

dH(tls)
, lT =

dA(tls)

dT (tls)
, lD =

dA(tls)

dD(tls)
. (5.82)

To summarize, for reasonably large values of l (say l > 150), CMB multipoles are given by
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l(l + 1)CS
TT,l

2π
=

4πT 2
0 l

3 exp(−2τreion)

r3
ls

∫ ∞
1

βdβ√
β2 − 1

×

[(
F

(
lβ

rls

)
+ F̃

(
lβ

rls

))2

+
β2 − 1

β2

(
G

(
lβ

rls

)
+ G̃

(
lβ

rls

))2
]
.(5.83)

Numerical solutions and other considerations to the delta sector need to be included to

compute the solution for the perturbations; however, this is not the aim of this Thesis. It is

remarkable the structure of eq. (5.83), where the delta sector contributes additively inside

the integral. If we set all delta sector equal to zero, we recover the result directly for scalar

temperature-temperature multipole coefficients in GR given by Weinberg[62].

5.3 Summary and Conclusions

We studied the propagation of photons from the moment of the last scattering until reaching

us in a perturbed FLRW universe. We did not consider angular deflections in our analysis

which is in agreement with our choice of working in the synchronous gauge. When studying

temperature fluctuations we can split them into three independent terms: an early term

which only depends on the moment of the last scattering tls. An ISW term that includes

the evolution of gravitational fields from the last scattering to the present and a late-term

which depends on the actual value for those fields. We compute the gauge transformations

which leaves gi0 = 0, and we found that those three terms are separately gauge invariants.

This is a very important test for DG because those fluctuations are physical. In order to

compute the scalar contribution to the multipole temperature expansion, we only consider

the early term (5.22) in our analysis because it has the greatest contribution compared with

the other two, where the late-term (5.23) only contribute to the first ls, and the ISW term

(5.24) was not considered because we have not studied solutions valid in all the time after

the last scattering moment tls. After computing the multipole coefficients we found that

DG extends solutions in a way that the delta sector acts additively, so the limit to GR is

naturally recovered when setting all delta fields equal to zero. Moreover, the sharp transition

from opaque to transparent Universe is relaxed to be a gaussian. Finally, we recall that the

delta sector can be obtained numerically with GR solutions as an external force but this

work will be reported in a forthcoming publication.



Chapter 6

Discussion and conclusions

This Thesis was divided in two parts. In the first part we study the minimal geometric

deformation (MGD) approach in order to extend isotropic solutions to anisotropic configu-

rations, which are more likely to pass astrophysical tests. The crucial point of this approach

is the linearity of Einstein’s equation when deforming Schwarzschild metric in the temporal

and radial component, allowing to get exact solutions to deformations which are not per-

turbations of GR. We presented a detailed guideline of how to find anisotropic solutions for

Durgapal-Fuloria stars and a possibly way of detection of anisotropic distributions.

By the other side, we studied the cosmological scenario of Delta Gravity (DG), a theory which

extend General Relativity by a δ̃ symmetry[55] in a way that new fields are added to GR, and

induce modifications of the metric that particles follow. We presented and solved the cosmo-

logical perturbations of DG in the synchronous gauge following Weinberg’s prescription[62].

We found that DG extend gauge symmetries, however we can fix consistently those degrees

of freedom. After that, we analysed the temperature fluctuations coming from the moment

of last scattering to the present and presented a formula for the scalar contribution to the

temperature multipole coefficients of the CMB, where we found that DG affects additively,

which could have an observational effect that could be compared with Plank results and give

a physical meaning for the so-called delta matter.

With the full scalar expression for the CMB Power Spectrum coefficients, we can find the

shape of the spectrum. In order to achieve it, we have to determine the best cosmological

parameters that can describe the observational spectrum given by Planck [38]. The deter-

mination of the cosmological parameters could be demanding (from a computational point

of view), but if we constraints the cosmological parameters with the SNe-Ia analysis [57]
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the determination of the CMB Power Spectrum in DG could be more comfortable. In the

context of the controversy about the H0 value [34] and other problems as the curvature mea-

surements [36] or the possibility of a Universe with less Dark Energy [46], this work could

provide an alternative to solve the today cosmological puzzle. Future work in this line is

being carried out in collaboration with Marco San Mart́ın which will include the numerical

analysis of the solutions presented in this Thesis.

The perturbation theory and the temperature fluctuations of the CMB are included in the

article Cosmological Fluctuations in Delta Gravity, written with Jorge Alfaro and Marco San

Mart́ın.

The numerical analysis, and the fit of the CMB with SNe-Ia is part of the article CMB and

SNe constraints in Delta Gravity, also written with Jorge Alfaro and Marco San Mart́ın.

Both articles are in preparation to be submitted in coming days.

Before finishing, we have to point out some aspects of this work:

• Despite both parts of this Thesis are not correlated, both shared some similar consid-

erations.

– Both MGD and DG include modifications on the metric of a non-perturbative

nature.

– This modification of the metric allow both theories to have physical solutions. In

MGD we get anisotropic configurations and in DG we could provide a solution of

the actual controversy about the Hubble constant H0 (or HDG 0 in DG).

– In MGD we can not get solutions before applying a mimic condition. While in

DG we need to fix the harmonic gauge to reduce the system in a FLRW Universe

or fix a gauge to drop new coordinate system when studying test particles.

• The fundamentals of DG still need to be study, in special the quantum theory. For

now, we can interpret DG as an effective theory that interpolates successfully the early

with the late behaviour of the Universe. The advantage of DG is that it modifies GR

in a subtle way that preserves all tests of Special Relativity and GR in the local solar

system[52, 53].

• In principle, due the non-linearity of Einstein’s equations MGD is only applicable in

particular backgrounds and could not be applied to the cosmological FLRW metric,
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unless we only consider deformations of the temporal component of the metric. We

studied anisotropic solution for Durgapal-Fuloria stars so our motivations was to de-

form the radial component of Schwarzschild background. In the cosmological case, we

require an isotropic and homogeneous universe so deformation in spacial coordinate are

not allowed, nevertheless, we could explore deformations in the temporal component

and see its implications. This is a future approach that definitively we need to explore.

• Despite DG adds new fields to the theory, is thermodynamic who establish the interpre-

tation of physical quantities over mathematical symbols. So the hypothesis of applying

MGD to FLRW has the advantage of we are not outside of GR, then interpretations

of GR are consistent with thermodynamics.





Chapter 7

Afterword

Personally, I enjoyed so much my stay in the doctorate. I learned a lot about Gravitation

and Cosmology yet I feel so represented with the Newton quote of the beginning of this

manuscript: “I do not know what I may appear to the world, but to myself, I seem to have

been only like a boy playing on the seashore, and diverting myself in now and then finding

a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all

undiscovered before me.” So I thank again Jorge Alfaro for being my advisor and for letting

me play in this seashore with beautiful pebbles and shells.
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Appendix A

A.1 R and R̃ 6= 0

Up to now, we showed the way to solved the complete system in both radiation and matter

era. However for the second era we use R and R̃ to be equal to zero, which is no true while

going deeper on this era. So we need to add this consideration to the solutions (4.127). We

only need to focus on GR solutions because delta sector is obtained using those solutions as

an external force. Lets consider again the system (4.116)-(4.119) in the matter era without

setting R = 0

d

dt

(
a2Ψq

)
= −4πGρ̄Da

2δDq, (A.1)

δ̇Dq = −Ψq, (A.2)

d

dt

(
(1 +R)δuγq

a

)
= − 1

3a
δγq, (A.3)

d

dt

(
δuνq
a

)
= − 1

3a
δνq. (A.4)

where R ≡ 3ρ̄B/4ρ̄R ∝ a. Inspection of system show that Dark Matter δDq is decoupled with

the gravitational field Ψ̇q which solutions are given by (4.126) and (4.127), and this one acts

as a forcing term for photons. The particular solution is

δ(1)
γq =

3q2t2(1 + 3R)Ro
q

5a2(t2q2/a2 + 2R)
, δu(1)

γq = −
3t3q2Ro

q

5a2(t2q2/a2 + 2R)
. (A.5)
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To this particular solution we need to add the solution of the homogeneous version of eqs

(A.3)-(A.4).

δ̇(2)
γq =

q2

a2
δu(2)

γq ,
d

dt

(
t2/3(1 +R)δu(2)

γq

)
= −1

3
t−2/3δ(2)

γq (A.6)

or, equivalently
d

dt

(
t−2/3(1 +R)a2 d

dt
δ(2)
γq

)
+
q2

3
t−2/3δ(2)

γq = 0 (A.7)

Using the fact that in the matter era R ∝ a ∝ t2/3 there are a general solution of this system

given as a linear combination of

F

(
1

4
− 1

4

√
1− 16η,

1

4
+

1

4

√
1− 16η,

1

2
,−R

)
,

√
RF

(
3

4
− 1

4

√
1− 16η,

3

4
+

1

4

√
1− 16η,

3

2
,−R

)
,

where F is the Gauss hypergeometric function, and η is

η ≡ 3q2t2

4a2R

which is time-independent during the matter era. In order to get an insight about the

behaviour of those solutions, let’s consider that the wavelength of these perturbations are

moderately long, in the sense that η � 1. Before using this condition, eq. (A.7) has an

exact solution when R� 1

δ(2)
γq = cqcos(

√
3qt/a) + dqsin(

√
3qt/a)

δu(2)
γq =

a√
3q

[
−cqsin(

√
3qt/a) + dqcos(

√
3qt/a)

]
To this, we need to add the particular solution (A.6), which in the limit R � q2t2/a2 (or,

equivalently η � 1)

δ(1)
γq =

3(1 + 3R)Ro
q

5
, δu(1)

γq = −
3tRo

q

5
, (A.8)

We can evaluate the constants cq and dq by requiring that qt/a� 1 (which also implies R�
1), the total photon density perturbation δ

(1)
γq + δ

(2)
γq must approach to δD → 9q2tRo

q/10a2.

This give us
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cq = −
3Ro

q

5
dq = 0 . (A.9)

so that, while R� 1

δ(2)
γq = −

3Ro
q

5
cos(
√

3qt/a) (A.10)

Eventually R becomes non-negligible, but under the assumption η � 1 one can solve the

homogeneous equation A.7 using WKB approximation. In the limit qt/a � 1 the density

fluctuation will oscillate rapidly with phase

φ ≡
∫ t

0

qdt

a
√

3(1 +R)
=

√
3qt

a
√
R

log
(√

R +
√

1 +R
)
. (A.11)

Using φ as the independent variable eq. (A.7) becomes

d2

dφ2
δγq +

1

2

(
d log(1 +R)

dφ

)
d

dφ
δγq + δγq = 0 . (A.12)

If we try a solution of the form Ae±iφ. With A varying slowly with respect to φ, we get a

solution

δ(2±)
γq ∝ (1 +R)−1/4exp(±iφ) . (A.13)

We can see that the linear combination of these solutions the merge smoothly with the

result of R � 1 is obtained by replacing the argument of the cosine in (A.10) with φ, and

multiplying with (1 + R)−1/4. Adding the inhomogeneous solution (A.8), the total photon

and baryon density perturbations for moderately long wavelength in the matter dominated

era are

δγq = δBq =
3Ro

q

5

[
1 + 3R− (1 +R)−1/4cos(φ)

]
(A.14)

And the velocity potential

δuγq =
3tRo

q

5

[
−1 +

a√
3qt(1 +R)3/4

sin(φ)

]
(A.15)
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The solutions (A.14) and (A.15) apply only up to the time of last scattering. After that

moment R becomes larger than one and we should use the full solutions given by the Gauss

hypergeometric functions.

A.2 Landau Damping

In the analysis we assume that the transition of a opaque to transparent Universe was in-

stantaneous, but we know that the transition took some finite interval of time, over which

the form factors must be averaged.

Since the probability of last scattering is a sharply peaked function of time, we can approxi-

mate it to a gaussian: the probability that last scattering occurs between a time t and t+dt

will take the form

P (t)dt =
exp(−(t− tls)2/2σ2

t )

σt
√

2π
dt , (A.16)

so in the sinusoidal solutions of photon density and velocity perturbations we need to make

the replacement: cos
(∫ tls

0
ωdt+ ∆

)
sin
(∫ tls

0
ωdt+ ∆

) →
∫ ∞
−∞

P (t)dt

 cos
(∫ t

0
ωdt+ ∆

)
sin
(∫ t

0
ωdt+ ∆

)  , (A.17)

where ω = q/aDG
√

3(1 +R). We can do those integral expanding the argument of sines and

cosines to first order in t− tls:∫ t

0

ωdt '
∫ tls

0

ωdt+ ωls(t− tls)

then the integrals (A.17) can be now done

∫ ∞
−∞

P (t)dt

 cos
(∫ t

0
ωdt+ ∆

)
sin
(∫ t

0
ωdt+ ∆

)  ' exp

(
−ω

2
lsσ

2
t

2

) cos
(∫ tls

0
ωdt+ ∆

)
sin
(∫ tls

0
ωdt+ ∆

)  . (A.18)

Thus, the whole effect of this averaging is to introduce an additional damping factor exp(−ω2
lsσ

2
t /2)

in the sines and cosines of the form factor. Both Silk and Landau damping are proportional

to q2, so we can write
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∫ tls

0

Γdt+
ω2
lsσ

2
t

2
= q2 d2

D

a2
DG(tls)

, (A.19)

where dD is the damping length defined by

d2
D = d2

Silk + d2
Landau ,

where

d2
Silk = a2

DG(tls)

∫ tls

0

tγ
6a2

DG(1 +R)

[
16

15
+

R2

1 +R

]
, (A.20)

d2
Landau =

σ2
t

6(1 +Rls)
. (A.21)

The evaluation of the damping length is outside of this Thesis. But is a part of a future

publication in preparation.
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