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Summary

One of the fundamental problems of theoretical physics has become the search for a quan-

tum theory of gravitation. This is because General Relativity when quantized renders

a non-renormalizable theory. In this thesis, we offer a possible solution to this problem.

We present a model of quantum gravity, whose principal characteristic is that it is finite

in vacuum. This means that it does not even need to be renormalized since there are

no divergences. We called this model Delta Gravity, which is a model of gravity with

two symmetric tensors, based on a general procedure to modify, in this case, General

Relativity. In Cosmology, it shows accelerated expansion without a cosmological con-

stant. One of the main features of Delta Gravity is that, at the quantum level, it lives

on shell for the original field and at one loop only, two facts that are crucial to proof the

finiteness of the model. As one might expect, not everything can be good news as this

model has some shortcomings. One of these is that the model has ghosts. The other is

that it is finite only in vacuum, therefore it does not include matter, which is not the

best of approximations, but we hope it to be one small step towards the long sought final

dreamed theory of quantum gravity.
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Introduction

The past century has been the scenario for two major revolutions in physics, the quantum

theory and relativity, by relativity I mean the special and general theory. If we look at

the history of physics tracing back to the days of Kepler, many of the most striking ad-

vances in theoretical physics have derived from the effort of finding a common theoretical

framework for two theories which were apparently disconnected or, even more, in conflict

with each other. This has always resulted in predicting new physical phenomena. For

example, combining Keplerian orbits and Galilean physics led to Newtonian mechanics

and its most celebrated three laws of motion. Maxwell’s electromagnetism and Galilean

relativity led to special relativity and the concept that time and space are relative. Spe-

cial relativity and Newtonian gravity led to the General Theory of Relativity, giving rise

to a geometrical interpretation of Gravity. Special Relativity and Quantum Mechanics

led to Quantum Field Theory, which brought as a consequence the prediction of the ex-

istence of antimatter, soon confirmed by experimental observations.

As far as we know, there are four fundamental forces that govern the natural world:

the electromagnetic force, the weak and strong nuclear forces, and Gravity. Gravity was

the first to be explored and described by Newton’s Universal law of gravitation, then

Maxwell unified electric and magnetic effects in his four celebrated equations. Maxwell

equations are classical, this is, not quantum, and since the beginning of the twenty century

the quantum revolution made it through to stay, physicists began to look for a quantum

version of electromagnetism. This was finally accomplished by Feynman, Schwinger,

Tomonaga, and Dyson in the late forties, in a theory called QED (for Quantum Electro-

dynamics). Then, Enrico Fermi proposed a theory describing the weak interaction, but

this theory had the problem of not being renormalizable.

In the late sixties, Glashow, Weinberg and Salam provided the correct description

of the weak nuclear force and unified with the electromagnetic one in their electroweak
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theory. Also, in the late sixties and early seventies, the theory for describing the strong

nuclear force was derived and was called QCD (for Quantum Chromodynamics). So far,

these three quantum theories are Quantum Field Theories and conform what is known

as ’The Standard Model’. But, what has happened with our understanding of Gravity?

The Gravitational interaction is described by Einstein’s General Theory of Relativity, also

known as ”geometrodynamics”. This last name is good because the source of gravity,

which is mass, which in turn as special relativity tell us is equivalent to energy pro-

duce the bending or curvature of spacetime so that the gravitational field manifest itself

through the curvature of spacetime.

GR is a well established classical theory [1]. For example it has predicted the bending

of light rays as they pass near a large mass (of the size of the Sun, for instance), the

precession of the perihelion of Mercury, the gravitational redshift of light, and the expan-

sion of the Universe. However, there are some more recent observations that suggest GR

may be modified by a more encompassing theory to explain certain ’huge’ effects as dark

matter [2] and dark energy [3]. All in all, GR contains singularities [4], which are places

in spacetime where the theory predicts infinite mass and therefore infinite curvature, and

the theory breaks down. These singularities are expected to happen inside black holes

and near the Big Bang, where the whole Universe was very small. In order to understand

what happens in these scenarios, we need a quantum theory of gravity. But these aspects

are not the only ones for having such a desire, for as we have already pointed out, the

unification of GR with Quantum Theory may predict a huge amount of new physical

phenomena and an understanding of them. To illustrate this point a little more, we can

take as an example the discovery in the mid-seventies of black hole radiation by Hawking

[5]. This result tempts us to suppose that it has exposed a small corner of a broad new

area of fundamental physics in which gravity, quantum field theory, and thermodynamics

are closely interwoven.

The understanding of a complete and correct theory of quantum gravity may help us

to overcome other difficulties such as the ultraviolet divergencies that plague the renor-

malizable quantum field theories of the other three interactions. These divergencies may

well be the result of the assumption that spacetime is, on all scales, a continuum. In

this respect, it is important to notice that one of the current candidates for the long

sought theory, the so-called Loop Quantum Gravity (LQG) [6], predicts the quantization

of spacetime.
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The principal problem with the attempt to quantize gravity is that the coupling con-

stant, Newton’s gravitational constant, has dimensions of energy to the power of minus

two. What this actually means is that, when conventional field quantization methods

based on the weak-field perturbation expansion are applied to General Relativity, it ren-

ders a non-renormalizable theory, so that the perturbative approach does not work. This

may mean that either we have to search for a non-perturbative formulation of quantum

gravity or, as some people suggest, it may mean that GR is, as the Fermi theory was for

the weak interaction, an effective theory and that it is not of fundamental character, so

that we still have to find the correct classical theory to replace GR for a renormalizable

theory when quantized.

Another difficult issue which I think is good to point out is the apparent incompati-

bility of GR and Quantum Theory in the treatment of space-time and dynamical objects.

In GR, space-time is dynamical, in quantum theory is a fixed background in which the

dynamical objects, the quantum fields, act. On the other hand, in quantum theory, all

dynamical objects are quantized but in GR space-time is dynamical, so we reach to a

possible conclusion for the resulting theory: should space-time be quantized? Should the

theory be background independent? One could say that at least for the former that these

effects should manifest at the order of the Planck length, 10−33cm, and that therefore

the effects of quantum gravity are important only at this scale, but there is an argument

that contradicts this point. Since gravity couples to everything because everything has

energy and with the same strength, it also interacts with itself and so interactions of,

say, photons with the gravitational field will be of the same importance as interactions

of gravitons with a gravity background or field and so these effects will manifest at all

scales [7].

Since the 1930’s to these days, many paths have been followed to quantize the gravi-

tational interaction. There have been the covariant approach [8], the canonical approach

[9], sum over histories, supergravity [10], twistor theory [11], non-commutative geometry

[12], loop quantum gravity [6], and string theory [13] [14], to name a few. Most methods

are by now quite involved, and none has been accepted as the correct and final answer to

the problem of quantum gravity. But all these efforts have been sparked by the problem

of non-renormalizability of quantum GR. As Feynman put it once over a period (the

1950’s) of his working life that he devoted to quantum gravity: ”the consequences of
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quantum gravity might be a ’piece of cake’ to work out, after all, gravity is really weak”

Following the spectacular success of perturbative QED, he figured that there would be

essentially no need to work out anything beyond first order [15]. To this comment we

must add the fact that, if quantum GR is truncated to a certain number of loops in the

perturbative regime, then it can be made renormalizable, because it would involve a finite

number of counterterms [16].

In this thesis, we present a quantum gravity field theory model that we called Delta

Gravity. We use the standard techniques of quantization used in conventional quantum

field theory, this is, we base our analysis on weak quantum fluctuations of the field over

a background metric space so that it is a covariant approach. The new and important

ingredient is that, in contrast to quantum GR, this model only lives at one loop order

in perturbation expansion. It is a natural and almost unique extension of GR that has

two tensor fields. These is the graviton field gµν which transforms as a two covariant

tensor under general coordinate transformations (GCT), plus g̃µν , which transforms as a

two covariant tensor under general coordinate transformations and under an additional

symmetry. The classical aspects of the model were explored in [17], where it is shown that

δ̃GR preserves the classical equations of the former metric gµν . The equations of motion

for both fields are second order, the newtonian limit is compatible with experiments, the

equivalence principle is satisfied and, in Cosmology, accelerated expansion of the universe

is obtained without introducing a cosmological constant. This last feature is also quite

appealing, because not having a cosmological constant avoids the huge contradiction be-

tween its observational and theoretical predictions. In the present work, we show that

all delta theories live at one loop.

Our model is not only renormalizable but, the divergent part of the effective action

turns out to be twice of what was found in by ’t Hooft and Veltman [8], which is propor-

tional to a linear combination of the square of the Ricci tensor and scalar curvature. As

the model lives at one loop, this is the exact effective action. Since the equation for the

original field is preserved, this means the quantum corrections of the model are On-Shell

in the gµν fields, so that also the Ricci tensor and thus the Ricci scalar vanish resulting

in that the divergent part of the effective action vanishes. This implies that in our model

the effective action at one loop is exact and finite in vacuum so that it does not need to

be renormalized.

4



The problem that this model has is the apparently inevitable appearance of ghosts.

Due to them, it may not be unitarity or stable. This in turn implies difficulties with

the quantization of the model, but in [18] [19] [20] [21] [22], phantom fields are used to

explain the accelerated expansion of the universe as an alternative to the cosmological

constant and quintessence, a feature that our model [17] seems to introduce in a natural

way. It would be possible that our ghosts could be related to phantom fields in δ̃GR. This

connection may be far reaching because the phantom idea has gained great popularity as

an alternative to the cosmological constant. The present model could provide an arena to

study the quantum properties of a phantom field, since the model has a finite quantum

effective action. Moreover, the advantage of being a gauge-type model maintains open

the possibility of fixing a gauge in which the model is unitary or impose a condition to

restrict the physical Hilbert space in such a way that the model defined on this subspace

is unitary. On the other hand, as [21] mentions, a choice could be made of having either

ghosts or instabilities. There the author explains that, in order to save unitarity, we are

forced to choose instabilities that would imply having a Hamiltonian not bounded from

below.

Naturally, a theory of gravitation without matter is incomplete, but it serves as a

motivation for future works where the research on this type of models can lead us to

more realistic results. A possible solution is to use δ̃ Supergravity models that contain

matter fields [10] and could cure the phantom instability. Another possibility is to use

the model we present here and add to it δ̃ matter fields.

In Chapter 1 we give the definition of the δ̃ transformation, we present the general

coordinate transformations and their corresponding extensions, we define the new gauge

transformations, the generalizations of the covariant derivative, and the generalization of

the affine geometry. In Chapter 2, we show the general form of the invariant action for

general δ̃ theories, we present and demonstrate the invariance of δ̃ Gravity action, and

give the general form of the classical equations of motion for general fields. In Chapter

3, we compute the effective action for a generic δ̃ model and show that all of them live

at one loop. Chapter 4 shows how the gauge fixing and the corresponding Faddeev-

Popov Lagrangian for the model are found using the BRST formalism. Chapter 5 is

the most important chapter of this work, here we apply what was seen in the previous

chapters to the particular case of the Einstein-Hilbert theory. We show the classical

equations of motion for the two fields and give solutions for the particular case of the
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Schwarzschild metric. We apply the background field method (BFM), we present the

relevant quadratic total Lagrangian. We also calculate the divergent part of the effec-

tive action at one loop using an algorithm developed in [23]. In Chapter 6, using the

gauge fixing of the previous chapter, we explore the Hamiltonian formalism, redefine the

fields and the creation and annihilation operators, and we see the existence of ghosts. In

Chapter 7, we analyze the form of the finite quantum corrections to the effective action

and we show the modification of the equations of motion due to the simplest type of cor-

rections [24] [25] [26] [27]. Finally in Chapter 8, we present the conclusions of this thesis.

In Appendix A, we give a review of the Background Field Method following [29].

Finally, in Appendix B, we give a brief review of the algorithm developed in [23] for

the computation of the divergent part of the Effective Action at one loop and we indicate

the values of the parameters used in our case.

Motivated by simplicity, we will use cosmological constant Λ = 0.
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Chapter 1

δ̃ Transformation

In this work, we will study a modification of models that consists in the application of

a variation that we will define as δ̃. As a variation it will have all properties of a usual

variation such as:

δ̃(AB) = δ̃(A)B + Aδ̃(B),

δ̃δA = δδ̃A,

δ̃(Φ,µ) = (δ̃Φ),µ. (1.1)

The particular point with this variation is that when applied to a field (function,

tensor, etc.) it will give a new element that we define as δ̃ fields which is an entire new

independent object from the original:

δ̃(Φ) = Φ̃, (1.2)

and to indicate this, is that we call this variation ’delta tilde’ δ̃.

We take throughout our work the convention that a tilde tensor is equal to the δ̃

transformation of the original tensor associated to it when all its indexes are covariant.

We raise and lower indexes using the metric g.

In this form, we will have:

S̃µνα... ≡ δ̃ (Sµνα...) , (1.3)

7



and, for example:

δ̃ (Sµνα...) = δ̃(gµρSρνα...),

= δ̃(gµρ)Sρνα... + gµρδ̃ (Sρνα...) . (1.4)

It is known that δ(gµν) = −δ(gαβ)gµαgνβ, so:

δ̃ (Sµνα...) = −g̃µρSρνα... + S̃µνα.... (1.5)

1.1 General Coordinate Transformation

With the previous notation in mind, we can work out the general transformations δ̃ for

any tensor with all its indexes covariant. (For mixed indices, please see (1.5).) We begin

by considering general coordinate transformations or diffeomorphism in their infinitesimal

form:

x′µ = xµ − ξµ0 (x),

δxµ = −ξµ0 (x). (1.6)

Where δ is the general coordinate transformation. Now, we define:

ξµ1 (x) ≡ δ̃ξµ0 (x). (1.7)

Now we see some examples:

I) A scalar Φ(x):

Φ′(x′) = Φ(x),

δΦ(x) = ξµ0 Φ,µ. (1.8)

Noting that δ̃ commutes with δ, we can read the transformation rule for Φ̃ = δ̃Φ:

δΦ̃(x) = ξµ1 Φ,µ +ξµ0 Φ̃,µ . (1.9)
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II) A vector Vµ(x):

δVµ(x) = ξβ0Vµ,β + ξα0,µVα. (1.10)

Therefore, using (1.5), our new transformation will be:

δṼµ(x) = ξβ1Vµ,β + ξα1,µVα + ξβ0 Ṽµ,β + ξα0,µṼα. (1.11)

III) Rank two covariant tensor Mµν :

δMµν(x) = ξρ0Mµν,ρ + ξβ0,νMµβ + ξβ0,µMνβ, (1.12)

and for M̃µν ,

δM̃µν(x) = ξρ1Mµν,ρ + ξβ1,νMµβ + ξβ1,µMνβ + ξρ0M̃µν,ρ + ξβ0,νM̃µβ + ξβ0,µM̃νβ. (1.13)

We can define the new general coordinate transformations so that δ0 is the transfor-

mation in ξ0 and δ1 in ξ1. This new transformation is the basis of this type of model.

1.2 Symmetry, Algebra and Gauge

1.2.1 Gauge Transformations

In gravitation we have a model with two fields. The first is just the usual gravitational

field gµν(x), and a second is g̃µν(x), which corresponds to the δ̃ variation of the first. We

will have two gauge transformations associated to a general coordinate transformation,

given by (1.12) and (1.13):

δgµν(x) = gµρξ
ρ
0,ν + gνρξ

ρ
0,µ + gµν,ρξ

ρ
0 , (1.14)

δg̃µν(x) = gµρξ
ρ
1,ν + gνρξ

ρ
1,µ + gµν,ρξ

ρ
1 + g̃µρξ

ρ
0,ν + g̃νρξ

ρ
0,µ + g̃µν,ρξ

ρ
0 , (1.15)

where ξµ0 (x) and ξµ1 (x) are infinitesimal contravariant vectors of the gauge transfor-

mations. Studying the algebra of these transformations, we see:
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[δξ0 , δξ0 ]gµν(x) = gµρζ
ρ
0,ν + gνρζ

ρ
0,µ + gµν,ρζ

ρ
0 , (1.16)

with:

ζλ0 = ξ̄λ0,ρξ
ρ
0 − ξλ0,ρξ̄

ρ
0 , (1.17)

and:

[δξ, δξ]g̃µν(x) = gµρζ
ρ
1,ν + gνρζ

ρ
1,µ + gµν,ρζ

ρ
1 + g̃µρζ

ρ
0,ν + g̃νρζ

ρ
0,µ + g̃µν,ρζ

ρ
0 = δζ g̃µν(x), (1.18)

where ζ0 is as before and:

ζλ1 = ξ̄λ0,ρξ
ρ
1 + ξ̄λ1,ρξ

ρ
0 − ξλ0,ρξ̄

ρ
1 − ξλ1,ρξ̄

ρ
0 . (1.19)

It can be seen from the above equations that both transformations form a closed al-

gebra.

1.2.2 Covariant Differentiation

First, it is good to note that, in this thesis, we always use torsion equal to zero: T ρµν = 0

so that,

Γ α
µν =

1

2
gαβ(∂νgβµ + ∂µgνβ − ∂βgµν). (1.20)

As it is usual, we define the covariant derivative as:

DνAα = Aα;ν = Aα,ν − Γ λ
αν Aλ, (1.21)

where Aα is a covariant vector. Now we generalize the definition of the covariant

derivative when it acts on ’tilde’ tensors e.g:

∇νÃα = δ̃(DνAα) = Ãα,ν − Γ λ
αν Ãλ − δ̃(Γ λ

αν )Aλ, (1.22)
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where Ãα = δ̃Aα, and we reserve the D notation for the usual covariant derivative

and ∇ for the generalized one so that:

∇νÃα = DνÃα − δ̃(Γ λ
αν )Aλ. (1.23)

Where:

δ̃(Γ λ
αν ) =

1

2
gλρ (Dν g̃ρα +Dαg̃νρ −Dρg̃αν) , (1.24)

further, the infinitesimal transformation of the modified connection is:

δ(δ̃Γ ε
µν ) = ∇µ∇νξ

ε
1 +Rε

νγµξ
γ
1 + δ̃(Rε

νγµ)ξγ0 , (1.25)

with:

δ̃(Rε
νγµ) = Dγ

[
δ̃(Γ ε

µν )
]
−Dµ

[
δ̃(Γ ε

γν )
]
. (1.26)

As DνAα is a two covariant tensor, ∇νÃα is a tilde tensor of rank two and trans-

forms according to equation (1.13). This definition of covariant derivative will be used in

Chapter 5. We notice that an analogous type of generalization of covariant derivative

was used in [30].

1.2.3 Affine Geometry

We know that the Riemann curvature and the torsion tensors give us useful pieces of in-

formation about the geometry of the manifold that we are studying. In particular, they

provide a link between the properties of the space in question with the commutation of

the covariant derivatives defined on it. What we find for our modified theory of gravity

is an almost predictable generalization of the standard results known for the usual theory.

First we cite the elementary result true for a Aα:

[Dµ, Dν ]Aα = −Rρ
αµνAρ − T ρνµ(DρAα), (1.27)
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where Rρ
αµν is the Riemann Tensor given by [23]:

Rα
βµν = ∂µΓ α

νβ − ∂νΓ α
µβ + Γ α

µγ Γ γ
νβ − Γ α

νγ Γ γ
µβ , (1.28)

with the Ricci Tensor Rµν = Rα
µαν , the Ricci scalar R = gµνRµν and:

T ρνµ = Γ ρ
νµ − Γ ρ

µν (1.29)

is the torsion tensor. Now, we have a new ingredient that comes with Ãα:

[∇µ,∇ν ]Ãα = −Rρ
αµνÃρ − δ̃(Rρ

αµν)Aρ − T ρνµ(∇ρÃα)− δ̃(T ρνµ)(DρAα). (1.30)

Where:

δ̃(T ρνµ) = δ̃(Γ ρ
νµ )− δ̃(Γ ρ

µν ) (1.31)

In this thesis, we always use δ̃(T ρµν) = 0.

Now that we have established the notation and the definitions, we can start to look

for the structure of the modified models. In the next chapter, we will define the new

invariant action and find the classical equations of motion.
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Chapter 2

Modified Model

As the general coordinate transformations were extended, we can look for an invariant

action. We start by considering a model based on a given action S0[φI ] where φI are

generic fields, then we add to it a piece that is equal to a δ̃ variation with respect to the

fields, and we let δ̃φJ = φ̃J , so that we have:

S[φ, φ̃] = S0[φ] + κ2

∫
d4x

δS0

δφI(x)
[φ]φ̃I(x), (2.1)

with κ2 an arbitrary constant and the indexes I can represent any kind of indexes.

For more details of the definition of δ̃, please see Appendix A of [17]. This new defined

action shows the standard structure used to define any modified element or function for

δ̃ type models, for example the gauge fixing and Faddeev Popov. Next, we verify that

this form of action is indeed the correct one for δ̃ Gravity and so is invariant to the new

general coordinate transformation.

2.1 The Modified Model’s Invariance

In this thesis, we will investigate the δ̃ Gravity action, obtained by the procedure sketched

above:

S[g, g̃] =

∫
ddx
√
−g
(
− 1

2κ
R

)
+ κ2

∫ (
Rµν − 1

2
gµνR

)√
−gg̃µνddx. (2.2)

Now we must verify that (2.2) is invariant under the following transformations:
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δgµν(x) = gµρξ
ρ
0,ν + gνρξ

ρ
0,µ + gµν,ρξ

ρ
0 = ξ0µ;ν + ξ0ν;µ,

δg̃µν(x) = ξ1µ;ν + ξ1ν;µ + g̃µρξ
ρ
0,ν + g̃νρξ

ρ
0,µ + g̃µν,ρξ

ρ
0 .

We can see that (2.2) is obviously invariant under transformations generated by ξρ0 ,

since these are general coordinate transformations and we declared g̃µν to be a two co-

variant tensor. Under transformations generated by ξρ1(δ1), gµν does not change, so we

have:

δ1S(g, g̃) = κ2

∫ (
Rµν − 1

2
gµνR

)√
−g(δ1g̃µν)d

dx,

= κ2

∫ (
Rµν − 1

2
gµνR

)√
−g(ξ1µ;ν + ξ1ν;µ)ddx,

= −2κ2

∫ (
Rµν − 1

2
gµνR

)
;ν

√
−gξ1µd

dx = 0. (2.3)

2.2 Classical Equation

Now that we know that our action is invariant, we can start to study the model. To

begin with, we will analyze the classical equations of motion. When varying (2.1) with

respect to φ̃I , we obtain the classical equation for φI :

δS0

δφI(x)
[φ] = 0, (2.4)

and when varying with respect to φI , we obtain the equation for φ̃I :

δS0

δφI(y)
[φ] + κ2

∫
d4x

δ2S0

δφI(y)δφJ(x)
[φ]φ̃J(x) = 0. (2.5)

Simplifying this equation using (2.4), we obtain:

∫
d4x

δ2S0

δφI(y)δφJ(x)
[φ]φ̃J(x) = 0, (2.6)

where we notice that δ2S0

δφJδφI
[φ] is a differential operator acting on φ̃J . φ̃J belongs to

the kernel of this differential operator. It turns out that the kernel is not zero, a fact that

14



can be clearly seen in this thesis, for the case of gravitation, in equation (5.2) and below.

Having studied the classical model, we can begin to look for the quantum aspects of

it. In the next chapter we will compute the quantum corrections using a path integral

approach.
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Chapter 3

Quantum Modified Model

In this chapter, we derive the exact effective action for a generic δ̃ model and apply the

result to the Einstein-Hilbert action in Chapter 5. We saw that the classical action for

a δ̃ model is (2.1). This in turn implies that we now have two fields to be integrated in

the generating functional of Green functions:

Z(j, j̃) = eiW (j,j̃) =

∫
DφDφ̃ei

(
S0+

∫
dNx

δS0
δφI

φ̃I+
∫
dNx(jI(x)φI(x)+j̃I(x)φ̃I(x))

)
. (3.1)

We can readily appreciate that, because of the linearity of the exponent on φ̃J , what

we have is the integral representation of a Dirac delta function, so that our modified model

once integrated over φ̃J , gives a model with a constraint making the original model live

on shell.

Z(j, j̃) =

∫
Dφei(S0+

∫
dNxjI(x)φI(x))δ

(
δS0

δφI(x)
+ j̃I(x)

)
. (3.2)

A first glance at equation (3.2) could lead us to believe that this model is purely

classical. But we can see by doing a short and simple analysis that this is not so. For

this, we follow [31]. (See also [32].)

Let ϕI solve the classical equation of motion:

δS0

δφI(x)
|ϕI + j̃I(x) = 0. (3.3)

We have:

16



δ

(
δS0

δφI(x)
+ j̃I(x)

)
=
−1

det

(
δ2S0

δφI(x)δφJ(y)
|ϕI
)
δ(φI − ϕI). (3.4)

Therefore:

Z(j, j̃) =

∫
Dφei(S0+

∫
dNxjI(x)φI(x))δ

(
δS0

δφI(x)
+ j̃I(x)

)
,

= ei(S0(ϕ)+
∫
dNxjI(x)ϕI(x))

−1

det

(
δ2S0

δφI(x)δφJ(y)
|ϕI
)
. (3.5)

Notice that ϕ is a functional of j̃. The generating functional of connected Green

functions is:

W (j, j̃) = S0(ϕ) +

∫
dNxjI(x)ϕI(x) + iTr

(
log

(
δ2S0

δφI(x)δφJ(y)
|ϕI
))

. (3.6)

Define:

ΦI(x) =
δW

δjI(x)
,

= ϕI(x)

Φ̃I(x) =
δW

δj̃I(x)
.

The effective action is defined by:

Γ(Φ, Φ̃) = W (j, j̃)−
∫
dNx

{
jI(x)ΦI(x) + j̃I(x)Φ̃I(x)

}
.

We get, using equations (3.3) and (3.6):

Γ(Φ, Φ̃) = S0(Φ) +

∫
dNx

δS0

δΦI(x)
Φ̃I(x) + iTr

(
log

(
δ2S0

δΦI(x)δΦJ(y)

))
. (3.7)

This is the exact effective action for δ̃ theories. In this proof, it is assumed that all

the relevant steps for fixing the gauge have been made in (3.1), so S0 includes the Gauge

Fixing and Faddeev-Popov Lagrangian, which will be the matter of the next chapter.

Comparing equation (16.42) of [31] with equation (3.7), we see that the one-loop con-

tribution to the effective action of δ theories is exact and the δ̃ modified model lives only

17



to one loop because higher corrections simply do not exist. Finally it is twice the one

loop contribution of the original theory from which the δ̃ model was derived. This results

from having doubled the number of degrees of freedom. We also see that this term does

not depend on the φ̃I fields.

We see from equation (3.7) that the equations of motion for the original field ΦI(x)

do not receive quantum corrections:

δ

δΦ̃I(z)
Γ(Φ, Φ̃) = 0,

δS0

δΦI(z)
= 0. (3.8)

On the other side, when varying with respect to φI , one obtains that the equations

of motion for the new field φ̃I do receive quantum corrections:

δ

δΦI(x)
Γ(Φ, Φ̃) = 0,∫

dNx
δ2S0

δΦI(z)δΦJ(x)
Φ̃J(x) + i

δ

δΦI(z)
Tr

(
log

(
δ2S0

δΦI(x)δΦJ(y)

))
= 0. (3.9)

In conclusion, the quantum corrections behave as a source that only affects the equa-

tions of the new field, while those of the original field remain unchanged. This is clearly

seen when we compare (3.8) and (3.9) with (2.4) and (2.6).

In general, Tr
(

log
(

δ2S0

δΦI(x)δΦJ (y)

))
could be divergent and needs to be renormalized

(see [30]). From equation (3.7), we see that the δ̃ model will be renormalizable if the orig-

inal theory is renormalizable. But, due to equation (3.8), originally non-renormalizable

theories could be finite or renormalizable in their δ̃ version. This term can be calcu-

lated in many ways, for example by Zeta function regularization (see, for instance, [33]),

perturbation theory (Feynman diagrams), etc. For gravitation, the calculation of this

term is quite difficult for any of the above methods, so we will use an alternative method

developed in [23].

In the present work, the δ̃ Gravity model contains two dynamical fields, gµν and g̃µν ,

both of which are important to describe the gravitational field in this approach. (see

[17]). So, we must consider the effective action of the model for the two fields. We saw

that gµν always satisfies the classical equations. This is the meaning of equation (3.2).

18



However, the equation of motion for g̃µν do receive quantum corrections. Moreover, One

Particle Irreducible Graphs containing gµν external legs are non trivial and subjected to

Quantum effects.
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Chapter 4

Gauge Fixing and Faddeev-Popov

Lagrangian via BRST Formalism

We start by using the background field method (See Appendix A) in which each field

is separated into a classical background g, g̃ and a quantum part h, h̃:

gµν → gµν + hµν g̃µν → g̃µν + h̃µν (4.1)

Now, we give the BRST transformations δ̄ of our model:

ξµ0 (x) = λcµ0(x),

ξµ1 (x) = λcµ1(x), (4.2)

where λ is a Grassmann constant and cµ0 , cµ1 are the two ghosts of our model. Starting

from the gauge transformations for our quantum fields hµν and h̃µν [34], we obtain to

zeroth order in h and h̃:

δ̄hµν = c0µ;ν + c0ν;µ, (4.3)

δ̄h̃µν = c1µ;ν + c1ν;µ + g̃µν;λc
λ
0 + g̃µλc

λ
0;ν + g̃νλc

λ
0;µ, (4.4)

and we also have:

δ̄cµ0 = cρ0c
µ
0,ρ,

δ̄cµ1 = cρ0c
µ
1,ρ + cρ1c

µ
0,ρ,

δ̄c̄µ0 = ibµ0(x),

δ̄c̄µ1 = ibµ1(x), (4.5)
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for the corresponding anti-ghosts c̄ and where the b’s are the auxiliary Nakanishi-

Lautrup fields which satisfy:

δ̄bµ0,1 = 0. (4.6)

It has been verified that these transformations are nilpotent. Now, we choose for our

gauge fixing term:

GF = −
√
−gC

2

2
− δ̃

(
κ2

√
−gC

2

2

)
. (4.7)

We see that this is a good choice for our gauge fixing since it is invariant under both

transformations δ0 and δ1 (see 2.1), where [8] [23]:

C2 = gαβCαCβ,

Cµ = Dνh
ν
µ −

1

2
Dµh

ν
ν . (4.8)

In this way, we have:

GF = −
√
−g
[(

1 +
κ2

2
gαβ g̃αβ

) C2

2
+ κ2δ̃

(
gµρCµCρ

2

)]
,

= −
√
−g
[(

1 +
κ2

2
gαβ g̃αβ

) CµCµ

2
+ κ2

(
C̃µC

µ − g̃µβC
µCβ

2

)]
, (4.9)

where:

C̃µ = δ̃Cµ = δ̃

[
Dνh

ν
µ −

1

2
Dµh

ν
ν

]
= gνρ

[
∇ν h̃ρµ −

1

2
∇µh̃ρν

]
− g̃νρ

[
Dνhρµ −

1

2
Dµhρν

]
.(4.10)

This can be written in the form:

GF = −
√
−gHµC

µ, (4.11)

with:

Hµ =

[(
1 +

κ2

2
g̃αα

) Cµ
2

+ κ2

(
C̃µ − g̃µβ

Cβ

2

)]
. (4.12)
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Having established the form of the gauge-fixing term, we can now by a standard

procedure (the BRST method) find the associated Faddeev-Popov Lagrangian. Following

[28], now we do:

LGF+FP = −iδ̄(P ), (4.13)

where P in our case is:

P = c̄µ0Hµ + c̄µ1Cµ + β1c̄
µ
1b0µ + β2c̄

µ
0b1µ, (4.14)

where the β’s are arbitrary constants to be fixed shortly, so we have:

LGF+FP = −i(ibµ0Hµ + ibµ1Cµ + i(β1 + β2)bµ1b0µ − c̄µ0(δ̄Hµ)− c̄µ1(δ̄Cµ)), (4.15)

and so:

LGF = bµ0Hµ + bµ1Cµ + (β1 + β2)bµ1b0µ, (4.16)

LFP = i(c̄µ0(δ̄Hµ) + c̄µ1(δ̄Cµ)). (4.17)

Now, for the gauge fixing part, we can use the equations of motion for the auxiliary

fields to make them disappear,

∂LGF

∂bµ1
= Cµ + (β1 + β2)b0µ = 0 −→ b0µ = − Cµ

(β1 + β2)
,

∂LGF

∂bµ0
= Hµ + (β1 + β2)b1µ = 0 −→ b1µ = − Hµ

(β1 + β2)
, (4.18)

substituting in LGF we get:

LGF = − CµHµ

(β1 + β2)
− CµHµ

(β1 + β2)
+

(β1 + β2)CµHµ

(β1 + β2)2
= − CµHµ

(β1 + β2)
, (4.19)

so we see we recover our initial gauge fixing if we set (β1 + β2) = 1. Now, for the

Faddeev-Popov Lagrangian, we have:

LFP = i
(
c̄µ0(δ̄Hµ) + c̄µ1(δ̄Cµ)

)
. (4.20)
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It is well known that [8] [23]:

δ̄Cµ = DνD
νc0µ +Rµνc

ν
0, (4.21)

and using:

δ̄hνρ = Dνc0ρ +Dρc0ν ,

δ̄h̃νρ = ∇νc1ρ +∇ρc1ν , (4.22)

we get:

δ̄Hµ =

[(
1 +

κ2

2
g̃αα

) δ̄Cµ
2

+ κ2

(
δ̄C̃µ − g̃µβ

δ̄Cβ

2

)]
,

δ̄C̃µ = ∇ν∇νc1µ +Rµνc
ν
1 − gρν δ̃(Rα

ρνµ)c0α − g̃νρ[DνDρc0µ + c0σR
σ
ρµν ]. (4.23)

So, evaluating in (4.20), we will obtain (5.14).

In the next chapter, we will study δ̃ Gravity. We will see that the divergent part of

the quantum corrections to the effective action give a null contribution to the equations

of motion for pure gravity and without a cosmological constant, which means that under

these conditions we have a finite model of gravity.
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Chapter 5

δ̃ Gravity

Until now, we have studied δ̃ models in general. We found the invariant action given by

(2.1), with the classical equations of motion (2.4) and (2.6). Then, we demonstrated that

δ̃ models live only to one loop and the effective action is given by (3.7). In this chapter,

we apply these results to gravity. In the first part, we will present the classical equations

of motion for both fields and show the solutions in two cases. Then we will apply the

Background Field Method (BFM) to obtain the quadratic Lagrangians and finally we

calculate the divergent part of the effective action for δ̃ Gravity.

5.1 Classical Equations of Motion and Solutions

Now we are ready to study the modifications to gravity. In this case, we have that

φI → gµν and φ̃I → g̃µν . So, using (2.1), we obtain:

L0[gµν ] =
√
−g
(
− 1

2κ
R

)
,

L[gµν , g̃µν ] =
√
−g
[
− 1

2κ
R + κ2G

µν g̃µν

]
. (5.1)

If we vary this action, we obtain the equations of motion:

Gµν = 0,

F (µν)(αβ)ρλDρDλg̃αβ = 0, (5.2)

with:
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F (µν)(αβ)ρλ = P ((ρµ)(αβ))gνλ + P ((ρν)(αβ))gµλ − P ((µν)(αβ))gρλ − P ((ρλ)(αβ))gµν ,

P ((αβ)(µν)) =
1

4

(
gαµgβν + gανgβµ − gαβgµν

)
. (5.3)

Where (µν) tells us that the µ and ν are in a totally symmetric combination. An

important thing to notice is that both equations are of second order in derivatives, which

is needed to preserve causality.

One particular solution to equations (5.2) is the following:

For the vacuum, we have for example the case of Schwarzschild:

gµν =


−
(
1− α

r

)
0 0 0

0 1
1−α

r
0 0

0 0 r2 0

0 0 0 r2 sin(θ)

 , (5.4)

which has a solution for g̃αβ of the form:

g̃µν =


−
(
1− 2α+β

r

)
0 0 0

0
1+β

r

(1−α
r )

2 0 0

0 0 r2 0

0 0 0 r2 sin(θ)

 . (5.5)

Here it as been imposed that gµν and g̃µν approach Minkowski space when r → ∞,

and α and β are determined by boundary conditions.

5.2 Quadratic Lagrangians

We proceed to calculate the quadratic Lagrangians for δ̃ Gravity and Faddeev-Popov.

These expressions are needed to obtain the one-loop corrections of the model. For this,

we use the Background Field Method (See Appendix A). That is gµν → gµν + hµν and

g̃µν → g̃µν + h̃µν , this is:

L0[gµν + hµν ] =

√
−g

2κ

(
−R̄− 1

2
C2

)
,

L[gµν + hµν ] =

√
−g

2κ

(
−R̄− CµHµ + κ2Ḡ

µν g̃µν
)
, (5.6)

25



with R̄ = R[g + h] and Ḡµν = Gµν [g + h]. We have included the original gauge fixing

Cµ = hνµ;ν− 1
2
hνν;µ and the new part Hµ = 1

2

(
1 + κ2

2
g̃αα
)
Cµ+κ2

(
C̃µ − 1

2
g̃µρC

ρ
)

. When we

calculate the quadratic part in the quantum gravitational fields, hµν and h̃µν , we obtain:

Lquad =
1

2

√
−g~hT(αβ)P

((αβ)(µν))

([
K

(γε)
(µν)

](λη)

∇λ∇η +
[
W

(γε)
(µν)

])
~h(γε), (5.7)

and:

~h(αβ) =

(
hαβ

h̃αβ

)
(5.8)

[
K

(γε)
(µν)

](λη)
=

1

2κ
gλη

( (
1 + κ2

2
g̃σσ
)
δγεµν + κ2P

−1
((µν)(σρ))

δ̃(P ((σρ)(γε))) κ2δ
γε
µν

κ2δ
γε
µν 0

)
−
κ2

2κ
g̃ληδγεµν

(
1 0

0 0

)
(5.9)

[
W

(γε)
(µν)

]
=

1

κ

 (
1 + κ2

2
g̃σσ
)
X

(γε)
(µν)

+ κ2δ̃(X
(γε)
(µν)

) + κ2P
−1
((µν)(σρ))

δ̃(P ((σρ)(αβ)))X
(γε)
(αβ)

κ2X
(γε)
(µν)

κ2X
(γε)
(µν)

0

 (5.10)

Where:

X
(γε)
(µν)

=
1

2

(
R γ ε
µ ν +R ε γ

µ ν +
1

2

(
δγµR

ε
ν + δεµR

γ
ν + δγνR

ε
µ + δενR

γ
µ

)
− δγεRµν − δµνRγε −

1

2
R
(
δγµδ

ε
ν + δεµδ

γ
ν − δµνδγε

))
(5.11)

where P ((αβ)(µν)) is defined in (5.3) and δγεµν is the symmetrized Kronecker delta. More-

over, the covariant derivative works on ~h(γε) vector like:

∇λ
~h(γε) = ∂λ~h(γε) −

[
Γ β
λγ

]
~h(βε) −

[
Γ β
λε

]
~h(γβ), (5.12)

with:

[
Γ β
λγ

]
=

(
Γ β
λγ 0

δ̃(Γ β
λγ ) Γ β

λγ

)
, (5.13)

And using the BRST method, we obtain the Faddeev-Popov Lagrangian:

LFP = ~̄cTµ
√
−g
([
Kµλ
FP

](ρν)

∇ρ∇ν +
[
W µλ
FP

])
~cλ, (5.14)

Where:

~cλ =

(
c0λ

c1λ

)
(5.15)

[
Kµλ
FP

](ρν)
= igνρ

(
1
2

(
1 + κ2

2
g̃σσ
)
gµλ − κ2

2
g̃µλ κ2gµλ

gµλ 0

)
− iκ2g̃νρgµλ

(
1 0

0 0

)
(5.16)

[
Wµλ
FP

]
= i

 1
2

(
1 + κ2

2
g̃σσ
)
Rµλ − κ2g̃αβRµαλβ − κ2

2
g̃µαRλα − gαβgµγ δ̃

(
Rλαβγ

)
κ2Rµλ

Rµλ 0

 (5.17)
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with:

∇λ~cµ = ∂λ~cµ −
[
Γ β
λµ

]
~cβ (5.18)

5.3 Divergent Part of the Effective Action

In Chapter 3, we demonstrated that the quantum corrections to the effective action do

not depend on the tilde fields, in this case g̃µν . On the other side, Renormalization The-

ory tells us that its divergent corrections can only be local terms. So, by power counting

and invariance of the Background Field Effective Action under general coordinate trans-

formations, we know that the divergent part to L loops is [8] [35]:

∆SLdiv ∝
∫
d4x
√
−gRL+1, (5.19)

where RL+1 is any scalar contraction of (L+ 1) Riemann tensors. As our model lives

only to one loop,

LdivQ =
√
−g(a1R

2 + a2RαβR
αβ). (5.20)

We do not use RαβγλR
αβγλ because we have the topological identity in four dimensions:

√
−g
(
RαβγλR

αβγλ − 4RαβR
αβ +R

)
= Total derivative. (5.21)

To calculate the divergent part of the Effective Action in our model (i.e. a1 and a2 in

(5.20)), we made a FORM program [36] to implement the algorithm developed in [23],

obtaining in our case (See Appendix B):

LdivQ,grav =
√
−g~c

ε

(
7

12
R2 +

7

6
RαβR

αβ

)
,

LdivQ,ghost = −2×
√
−g~c

ε

(
17

60
R2 +

7

30
RαβR

αβ

)
,

LdivQ =
√
−g~c

ε

(
1

60
R2 +

7

10
RαβR

αβ

)
, (5.22)

with ε = 8π2(N − 4). When we compare with the usual result in gravitation [8] [23],

we can see that we obtain twice the divergent term of General Relativity. Divergences
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also double in Yang-Mills [30].

Moreover, since Einstein’s equations of motion are exactly valid at the quantum level,

(
δΓ(g, g̃)

δg̃µν

)
= Rµν = 0, (5.23)

where Γ(g, g̃) is the Effective Action in the Background Field Method. It follows that

the contribution of (5.22) to the equation of motion vanishes:

~c
[√
−g
ε

(
1

2
gµν

(
1

60
R2 +

7

10
RαβR

αβ

)
+

1

30
R
δR

δgµν
+

7

10
Rαβ

δRαβ

δgµν
+

7

10
Rαβ

δRαβ
δgµν

)]
Rαβ=0

= 0(5.24)

Therefore, δ̃ Gravity is a finite model of gravitation if we do not have matter and a

cosmological constant. The finiteness of our model implies that Newton’s Constant does

not run at all, neither with time nor energy scale, which would be supported by the very

stringent experimental bounds set on its change [37] [38]. We must notice that this model

is finite only in four dimensions because we need (5.21). Moreover, in more dimensions

there could appear more terms in (5.20) that contains Rµ1µ2...µN with N the dimension

of space, that give a non-zero contribution to the equations of motion.

In spite of these apparent successes, there seems to be a problem with this model,

namely is the possible existence of ghosts. This issue will be dealt with in the next chapter.
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Chapter 6

Ghosts

In this chapter, we discuss the fact that our model has ghosts, as well as the lost of uni-

tarity due to them. In order to proceed with this endeavor, we first write the quadratic

Lagrangian (5.7) for a non-interacting model (this is, with the backgrounds both equal to

the Minkowski metric tensor) and calculate from it the canonical conjugate momenta to

the quantum fields. It is important to notice that, for the Lagrangian (5.7), a gauge has

been chosen. Thus, it is possible to show, that under these conditions and in this gauge,

the quantum fields obey the wave equation and an expansion in plane waves is possible

where the Fourier coefficients are promoted to creation and annihilation operators much

in the same way as can be done for the electromagnetic potential. We use the canonical

commutation relations for fields and momenta to work out the corresponding canonical

commutation relations for the creation and annihilation operators. We also show first

the Hamiltonian in terms of fields and momenta and then in terms of annihilation and

creation operators.

To study the existence of ghosts in the model we will study small perturbations to

flat space. This is done by taking expression (5.7) and putting the backgrounds equal to

the Minkowski metric gµν = ηµν and g̃µν = ηµν , thus obtaining:

S[h, h̃] = − 1

2κ

∫
d4xP ((αβ)(µν))

(
(1− κ2)

2
∂ρhαβ∂

ρhµν + κ2∂ρh̃αβ∂
ρhµν

)
, (6.1)

where now:

P ((αβ)(µν)) =
1

4

(
ηαµηβν + ηανηβµ − ηαβηµν

)
, (6.2)

and the equations of motion for the fields are:
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∂2hµν = 0,

∂2h̃µν = 0. (6.3)

With ∂2 = ηρλ∂ρ∂λ. This corresponds to the wave equation with energy Ep = |p|.
Here we notice that in order to obtain these equations, we have made use of a particular

gauge fixing term (4.11) in the Lagrangian (5.7).

It is well known that for a diffeomorfism-invariant Lagrangian, the canonical Hamil-

tonian is zero. This is so in delta-gravity as well as in General Relativity: the total

Hamiltonian is a linear combination of the first-class constraints (See [9]). After gauge

fixing, the Hamiltonian is:

H =

∫
d3x

(
2κ

κ2
P−1

((αβ)(µν))

(
Π̃αβΠµν − (1− κ2)

2κ2
Π̃αβΠ̃µν

))
(6.4)

+

∫
d3x

(
κ2

2κ
P ((αβ)(µν))

(
∂ih̃αβ∂ihµν +

(1− κ2)

2κ2
∂ihαβ∂ihµν

))
,

with:

P−1
((αβ)(µν)) = ηαµηβν + ηανηβµ − ηαβηµν = 4P((αβ)(µν)), (6.5)

and where the conjugate momenta are:

Πµν =
δL
δḣµν

=
1

2κ
P ((αβ)(µν))

(
(1− κ2)ḣαβ + κ2

˙̃hαβ

)
, (6.6)

Π̃µν =
δL

δ ˙̃hµν

=
κ2

2κ
P ((αβ)(µν))ḣαβ. (6.7)

We can write our fields h y h̃ the following way:

hµν(x, t) =

∫
d3p√

(2π)32Ep

[
χ

(AB)
(µν) (p)a(AB)(p)eip·x + χ

(AB)
(µν) (p)a+

(AB)(p)e−ip·x
]
|p0=Ep

h̃µν(x, t) =

∫
d3p√

(2π)32Ep

[
χ

(AB)
(µν) (p)ã(AB)(p)eip·x + χ

(AB)
(µν) (p)ã+

(AB)(p)e−ip·x
]
|p0=Ep(6.8)
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where χ
(AB)
(µν) (p) is a polarization tensor and a(AB)(p) and ã(AB)(p) are promoted to

annihilation operators when we quantize it. a+
(AB)(p) and ã+

(AB)(p) correspond to the

creation operators. A and B are indices of polarization that work like Lorentz indices,

this is, they go from 0 to 3 and are moved up and down with ηAB. As these indices are

presented symmetrically, we will have ten polarization tensors, enough to make a com-

plete basis. For quantization of the model, we must impose the canonical commutation

relations, the only non vanishing commutators are:

[hµν(t,x),Παβ(t,y)] = [h̃µν(t,x), Π̃αβ(t,y)] = iδαβµν δ
3(x− y). (6.9)

When expressed using (6.8) the non-vanishing commutators are:

[aAB(p), ã+
CD(p′)] = [ãAB(p), a+

CD(p′)] =
4κ

κ2

δABCDδ
3(p− p′), (6.10)

[ãAB(p), ã+
CD(p′)] = −4κ(1− κ2)

κ2
2

δABCDδ
3(p− p′). (6.11)

There is a slight subtlety in calculating the above commutators. Basically, the ex-

pression that appears at one stage of the calculus is:

∑
ABCD

χ
(AB)
(µν) P

(αβ)
(γε) χ

(γε)
CD =

∑
ABCD

χ
(AB)
(µν)

1

2
δ

(αβ)
(γε) χ

(γε)
CD −

1

4
ηαβχ

(AB)
(µν) Tr(χ), (6.12)

and since we have the completeness relation:

∑
ABCD

χ
(AB)
(µν) χ

(αβ)
(CD)δ

(CD)
(AB) = δ

(αβ)
(µν) , (6.13)

we must impose Tr(χ) = 0, which in turn means that Tr(h) = Tr(h̃) = 0. This

can always be done, because the gauge fixing being used does not fix the gauge freedom

entirely, and this further condition can be imposed (see [39]).

The Hamiltonian expressed in terms of creation and annihilation operators is:

H =

∫
d3p

4κ
Ep

(
(1− κ2)a+

ABa
AB + κ2a

+
ABã

AB + κ2ã
+
ABa

AB
)
, (6.14)

31



where we have subtracted an infinite constant. Looking at this Hamiltonian, we

notice that it has cross-products of operators, which obscures its physical interpretation.

Something analogous happens when we observe the commutators (6.10) and (6.11), and so

it is difficult to define their action over states. Because of this, we redefine our annihilation

(and therefore also the creation) operators, for which we return to our action (6.1),

defining:

hµν = Ah̄1
µν +Bh̄2

µν ,

h̃µν = Ch̄1
µν +Dh̄2

µν , (6.15)

where A, B, C and D are real constants, so that the new fields, h̄1 and h̄2, are real

fields. When replacing this in (6.1), we obtain:

S[h̄1, h̄2] =
1

2κ

∫
d4xP ((αβ)(µν))

(
A

2
(A− κ2A+ 2κ2C)h̄1αβ∂

2h̄1µν +
B

2
(B − κ2B + 2κ2D)h̄2αβ∂

2h̄2µν

)
+P ((αβ)(µν))(AB − κ2AB + κ2AD + κ2BC)h̄1αβ∂

2h̄2µν . (6.16)

With the objective of decoupling the new fields, we make the last term in (6.16) null.

It can be demonstrated that imposing the above criteria, it is inevitable that one (and

only one) of two fields will be a ghost. We make the choice of h̄2 as the corresponding

ghost. Taking the above considerations plus the condition that (6.16) to have the usual

form of an action with real fields, we impose that the coefficients of the first and second

terms in it are 1
2

and −1
2
, respectively. This means:

A = B,

C =
1− (1− κ2)B2

2κ2B
,

D = −1 + (1− κ2)B2

2κ2B
, (6.17)

where B is left as an arbitrary real constant. Here we make the point that, if we had

chosen h̄1 as the ghost, then the real constants change such that C ↔ D.

Thus, the action we are finally left with is:

S[h̄1, h̄2] =
1

2κ

∫
d4xP ((αβ)(µν))

(
1

2
h̄1
αβ∂

2h̄1
µν −

1

2
h̄2
αβ∂

2h̄2
µν

)
. (6.18)
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Following this same line of reasoning, we can find the annihilation operators for h̄1

and h̄2:

b1
AB(~p) =

1 +B2(1− κ2)

2B
aAB(~p) + κ2BãAB(~p), (6.19)

b2
AB(~p) =

1−B2(1− κ2)

2B
aAB(~p)− κ2BãAB(~p), (6.20)

where we have used (6.15). It can be verified that the only non vanishing commutators

are now:

[b1(AB)(~p), b1+
CD(~p′)] = 4κδABCDδ

3(~p− ~p′), (6.21)

[b2(AB)(~p), b2+
CD(~p′)] = −4κδABCDδ

3(~p− ~p′). (6.22)

These commutators indicate that b1 and b2 have a vanishing inner product and that b2

is the annihilation operator for the ghost. On the other hand, the Hamiltonian expressed

in terms of these operators is:

H =

∫
d3p

4κ
Ep(b1+

ABb
1AB − b2+

ABb
2AB). (6.23)

Due to the existence of the ghost, it is possible that this model will not be unitary. To

analyze this in greater depth, it is necessary to do a more profound study of the S-Matrix,

but to do this for gravitation is a colossal task that would take us beyond the original

scope of this work. On the other side, the existence of ghost or phantom fields has been

proposed by some authors to explain the accelerated expansion of the universe [18] [19]

[20] [21] [22], a feature that our model presents [17]. The problem with these models

is that, when they are quantized, either there is a loss of unitarity or there is negative

energy, which means loss of stability. Looking at (6.18), we find that the propagators of

h̄1 and h̄2 are, respectively:

−2κP−1
((αβ)(µν))

i

p2 − iε
, (6.24)

2κP−1
((αβ)(µν))

i

p2 ± iε
, (6.25)
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where the sign ± in the phantom propagator, h̄2, will decide whether unitarity and

negative energy solutions or nonunitary and positive energy solutions will be present in

the model [21].

The advantage that our model has against other models that use scalar fields for the

phantoms is that, being a gauge model, the possibility remains, open of fixing a gauge in

which the model is unitary, keeping the model’s good attributes, as in the BRST canon-

ical quantization [40].

It is important to indicate, that the existence of ghosts is a general feature of all delta

theories and not only subscribed to Delta Gravity, as can clearly be seen in [30] (see there

Appendix B, where the hamiltonian of the model is not bounded by below).

The fact that our model has ghosts permits us to avoid a no go theorem [41][42] on

the non possibility of having models with more than one consistent interacting gravitons

(spin two fields). Thus, in our case, we have a model with two interacting gravitons, but

with a hamiltonian not bounded by below (instability) as exhibited by (6.23).

On the other hand, as a possible solution to the case of instability, we may consider δ̃

Supergravity, which may solve the unboundedness from below of the Hamiltonian. The

last argument comes from the fact that in supersymmetry one defines the Hamiltonian

as the square of an Hermitian charge, making it positive definite [43] [44].

Having explained the problem that our model has, now we discuss the new physics

that our model might predict. For this, we will analyze the type of some finite quan-

tum corrections and how the simplest of these affect the equations of motion of the model.

34



Chapter 7

Finite Quantum Corrections

The finite quantum corrections to our modified model of gravity can be separated into

two groups. The first are the non-local terms, which are characterized by the presence of

a logarithm, in the form [27]:

√
−gRµν ln

(
∇2

µ2

)
Rµν

√
−gR ln

(
∇2

µ2

)
R (7.1)

where ∇2 = gαβ∇α∇β, ∇β being the covariant derivative. There are no terms like the

above ones but quadratic in the Riemann tensor because these terms always occur like:

1

ε
+ ln

(
∇2

µ2

)
, (7.2)

and it is known that the terms that appear with the pole are purely Ricci tensors

and Ricci scalars [8] [23] (see eq. (5.22) too), which in turn is due to (5.21). Now, when

looking at the quantum corrections and Eq. (5.23), we need to care about the variations

of (7.1) with respect to gµν . Taking this into consideration, for the non-local terms we

have:
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δ
(√
−g
)
Rµν ln

(
∇2

µ2

)
Rµν = 0,

√
−gRµνδ

(
ln

(
∇2

µ2

)
Rµν

)
= 0,

√
−gδ(Rµν) ln

(
∇2

µ2

)
Rµν = , 0

δ
(√
−g
)
R ln

(
∇2

µ2

)
R = 0,

√
−gRδ

(
ln

(
∇2

µ2

)
R

)
= 0,

√
−gδ(R) ln

(
∇2

µ2

)
R = 0, (7.3)

because our model lives on shell, i.e. Rµν ≡ 0 and R ≡ 0. So, we see that the only

relevant quantum corrections will come from the second group, that is, from the local

terms that correspond to a series expansion in powers of the curvature tensor. The linear

term is basically R, which corresponds to the original action, and the quadratic terms

when taking into account their contribution is null due to (5.21). The next terms to

consider are cubic in the Riemann tensor. In principle, any power of the curvature tensor

will appear, but we now want to discuss only the cubic ones because they are the simpler

to be dealt with [24]. The most general form of these corrections is:

LfinQ =
√
−g
(
c1 RµνλσR

αβλσRµναβ + c2 R
µν
λσR

λβ
µα Rασνβ + c3 RµνR

µαβγRναβγ + c4 RRµνλκR
µνλκ

)
. (7.4)

This type of corrections will affect the equations of motion for g̃µν . So, using (3.9),

we obtain:

F (µν)(αβ)ρλDρDλg̃αβ = − 1

κ2

(
M (µν) + c1N

(µν) + c2B
(µν) + 3 {Dρ , Dσ}E[σµ][νρ]

)
, (7.5)

with:

M (µν) =
1

2

(
DαD

νA(αµ) +DαD
µA(αν) −DαD

αA(µν) − gµνDαDβA
(αβ)
)
, (7.6)

A(µν) = c3R
µαβγRν

αβγ + c4g
µνRαβγεRαβγε, (7.7)

N (µν) =
1

2
gµνRρελσR

λσαβR ρε
αβ + 3RρελσR

νερ
α Rαµλσ, (7.8)

B(µν) =
1

2
gµνRρελσR

ραλβR σε
α β + 3RρελσR

νσρ
βR

µεβλ, (7.9)

E[σµ][νρ] = c1R
σµ
αβR

αβνρ +
1

2
c2

(
Rν σ

α βR
ρβαµ −Rρ σ

α βR
νβαµ

)
, (7.10)
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where [µν] means that µ and ν are in a antisymmetric combination, and F (µν)(αβ)ρλ

was defined in (5.3). Obviously, if we do not have quantum corrections, i.e: c1 = c2 =

c3 = c4 = 0, (7.5) is transformed in (5.2). It is possible to demonstrate that one solution

to (5.2) is g̃µν = gµν , a fact that is necessary so that the predictions of the original theory

of Einstein-Hilbert are still fulfilled in vacuum. This means, the solution of (7.5) must

come to be small perturbations to gµν .

δ̃ Gravity will provide finite answers for the constants ci. Due to the general structure

of the finite quantum corrections, they will be relevant only at very short distances and

strong curvatures. So the natural scenario to test the predictions of the model is the

inflationary epoch of the Universe. The computation of the ci and the phenomenological

implications of Quantum δ̃ Gravity will be discussed elsewhere.
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Chapter 8

Conclusions

We have shown, following [30], that the δ̃ transformation, applied to any theory, pro-

duces physical models that live only at one loop. This is achieved introducing new fields

that generate a new constraint through a functional Dirac’s delta inside the path integral

(3.2). We have seen that the original symmetries are generalized when we apply the δ̃

transformation. Moreover, the modified model is invariant under the generalized sym-

metries.

Now, going to δ̃ Gravity, we calculated the divergent part of the action to one loop

and we obtained twice the well-known result of [8]. We see that this factor of two appears

also in [30]. The divergent part at one loop is zero in the absence of matter and on shell,

so δ̃ Gravity is a finite quantum model in four-dimensional space-time. This in turn

implies that Newton’s Gravitational Constant does not run with scale, which agrees with

the very stringent experimental bounds that restrict its variation [37] [38].

We have shown that perturbing around the Minkowski vacuum and using a particular

Lorentz-invariant gauge, we can redefine the gravitational fields in such a way that the

free part of the action is decoupled. In this redefinition, it is seen that one of the new

fields is a ghost. In spite of that, this may bring unitary or unstable problems (nega-

tive energies), these ghosts (phantoms) can explain at a classical level the accelerated

expansion of the universe [17]. Scalar phantoms have been introduced in order to explain

Dark Energy in [18] and discussed in many papers, for instance, [19] [20] [21] [22]. This

connection may be far reaching, because the phantom idea has gained great popularity

as an alternative to the cosmological constant.The present model could provide an arena

to study the quantum properties of a phantom field, since the model has a finite quan-
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tum effective action. In this respect, the advantage of the present model is that, being

a gauge model, it could give us the possibility to solve the problem of lack of unitarity

using standard techniques of gauge theories as the BRST method. This is something

that needs to be studied further but goes beyond the original scope of this work.

We want to point out that Supergravity with matter is finite at the one-loop level

[10]. According to the general argument developed in this thesis, δ̃ Supergravity will be a

one-loop model that has a strong possibility to be a finite quantum model of gravity plus

matter, and it may also solve the instability of negative energies since in supersymmetry

one has a Hermitian charge whose square is equal to the Hamiltonian operator meaning

that the Hamiltonian is positive definite [43] [44].

Finally, we have shown that the contribution of quadratic local and non-local loga-

rithmic terms is zero due to the on-shell condition of the modified model. We have also

shown how the cubic corrections in the Riemann tensor affect the equation of motion

(7.5). Given the general form of the quantum corrections in quantum δ̃ Gravity, they

might be important during the inflationary epoch of the Universe.
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Appendix A: Background Field

Method

The Background Field Method (BFM) is a mechanism used to calculate the effective

action at any order of perturbation theory without losing explicit gauge invariance. This

simplifies the calculations and the comprehension of the model. The importance of the ef-

fective action is due to the fact that it contains all the quantum information of the theory

and that from it all One-Particle-Irreducible (1PI) Feynman diagrams can be computed.

Stringing them together, we can compute all connected Feynman diagrams in a more

efficient manner [29] and from them the S-matrix can be calculated.

Next we calculate the effective action Γ for a general model using the BFM. One

begins by defining the generating functional of disconnected diagrams Z[J ]:

Z[J ] =

∫
Dϕei(S[ϕ]+J ·ϕ), (8.1)

where S is the action of the system and where we will be using the notation J · ϕ ≡∫
Jϕd4x. In the background field method, we identify ϕ→ ϕ+φ inside the action, where

φ is an arbitrary background. So now we have:

Ẑ[J, φ] =

∫
Dϕei(S[ϕ+φ]+J ·ϕ). (8.2)

Now the generating functional of connected diagrams W [J ] is:

W [J ] = −i lnZ[J ], (8.3)

so we define:

Ŵ [J, φ] = −i ln Ẑ[J, φ], (8.4)
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and

ϕ̄ =
δW

δJ
, (8.5)

so here

ϕ̂ =
δŴ

δJ
, (8.6)

with all these definitions it is possible to give the formula for the usual Effective

Action:

Γ[ϕ̄] = W [J ]− J · ϕ̄, (8.7)

and the background field effective action:

Γ̂[ϕ̂, φ] = Ŵ [J, φ]− J · ϕ̂, (8.8)

now we do the shift ϕ→ ϕ− φ so that:

Ẑ[J, φ] = Z[J ]e−iJ ·φ, (8.9)

from which it follows (after taking logarithms):

Ŵ [J, φ] = W [J ]− J · φ, (8.10)

taking now the functional derivative with respect to J :

ϕ̂ = ϕ̄− φ, (8.11)

but now we can appreciate that:

Γ̂[ϕ̂, φ] = W [J ]− J · φ− J · ϕ̂,

= W [J ]− J · φ− J · (ϕ̄− φ),

= W [J ]− J · ϕ̄,

Γ̂[ϕ̂, φ] = Γ[ϕ̂+ φ]. (8.12)
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In particular if we take ϕ̂ = 0, we have:

Γ̂[0, φ] = Γ[φ]. (8.13)

This means that the Effective Action of the theory Γ can be computed from the back-

ground field Effective Action Γ̂ by taking the quantum field to zero and with the presence

of the background φ. Since the derivatives of the Effective Action with respect to the

fields generate the 1PI diagrams, the last equation means that if we treat φ perturbatively

what we will have will be diagrams with external legs corresponding to the background

field φ and with internal lines corresponding to the quantum field ϕ.

And so, to study the quantum effects it only suffices to do an expansion in the quantum

fields in the action S or in the lagrangian L using the identification of the Background

Field Method. This means:

φI → φI + ϕI ,

φ̃I → φ̃I + ϕ̃I , (8.14)

We use (8.14) in δ̃ Gravity, where gµν → gµν + hµν and g̃µν → g̃µν + h̃µν .
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Appendix B: Divergent Part of the

Effective Action at One Loop.

As was mentioned in Chapter 3 there are various ways to calculate the divergent part

of the effective action at one loop, but they are quite complicated. So, we have resolved

to follow an algorithm developed in [23].

The effective action Γ to one loop can be written as:

Γ[φ] = S[φ] +
i

2
~Tr lnD +O(~2), (8.15)

where:

D j
i =

δ2S

δφiδφj
[φ], (8.16)

is a differential operator depending on the background field φi. Its most general form

is:

D j
i = Kµ1µ2...µL j

i ∇µ1∇µ2 . . .∇µL + S
µ1µ2...µL−1 j

i∇µ1∇µ2 . . .∇µL−1

+ W
µ1µ2...µL−2 j

i∇µ1∇µ2 . . .∇µL−2
+N

µ1µ2...µL−3 j
i∇µ1∇µ2 . . .∇µL−3

+ M
µ1µ2...µL−4 j

i∇µ1∇µ2 . . .∇µL−4
+ . . . (8.17)

where K,S,W,N,M are parameters which must be specify for each model and ∇µ is

a covariant derivative:

∇αT
β j
i = ∂αT

β j
i + Γ β

αγ T
γ j
i + ω k

α iT
β j
k − ω

j
α kT

β k
i , (8.18)

∇µΦi = ∂µΦi + ω j
µ iΦj, (8.19)
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here:

Γ α
µν =

1

2
gαβ(∂µgνβ + ∂νgµβ − ∂βgµν), (8.20)

and ω j
µ i is a general connection that ensures the object in question to transform in

the right way depending on which model we are considering (scalar-Yang Mills, vectorial,

tensorial, etc). The computation of the divergent part of Effective Action at one loop is

done through a lengthy and cumbersome calculation that consist in the sum of a finite

number of one loop divergent Feynman diagrams, the details are given in [23] and the

result by equation (30) in the same reference. This last result is too large to show here,

but it depends on the parameters involved in D j
i (8.17). So basically, what we need is

the quadratic part of the lagrangian of the model to obtain the divergent part of the

effective action.

In δ̃ Gravity, we have:

φi → ~h(αβ), (8.21)

where ~h is defined in (5.8). As the covariant derivative acting on ~h is given by (5.12)

this means i→ (αβ):

ω j
µ i → −

(
[Γ ρ
µα ]δνβ + [Γ ρ

µβ ]δνα
)
, (8.22)

where [Γ ρ
µα ] is given by equation (5.13). The other relevant parameters in our model

are given by:

L = 2

Kµ1µ2...µL j
i given by (5.9).

S
µ1µ2...µL−1 j

i = 0.

W
µ1µ2...µL−2 j

i given by (5.10).

On the other side, to the Faddeev-Popov ghosts we have:
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φi → ~cα, (8.23)

where ~cα is defined by (5.15) and the Covariant Derivative (5.18) says us that:

ω j
µ i → −[Γ ρ

µα ], (8.24)

Finally, the other parameters are given by:

L = 2

Kµ1µ2...µL j
i given by (5.16).

S
µ1µ2...µL−1 j

i = 0.

W
µ1µ2...µL−2 j

i given by (5.17).
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