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“The most beautiful experience we

can have is the mysterious. It is the

fundamental emotion that stands at

the cradle of true art and true

science. Whoever does not know it

and can no longer wonder, no

longer marvel, is as good as dead,

and his eyes are dimmed”

– Albert Einstein (1879–1955)
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ABSTRACT

In this report a complete investigation line developed in [1–4] was reviewed, which shows

an influence of cosmological parameters (Λ or non-relativistic matter) in the propagation

of gravitational waves. This influence is caused by a coordinate transformation between a

frame located in the source of a gravitational wave and a cosmological observer.

In order to delve in this line, the main work of this report was to develop a generalization

of this effect considering an arbitrary perfect fluid as a background in the Universe. The

metrics, coordinate transformations and their linearized forms were found in order to study

the effect of other components not studied before, as radiation.

Finally, a numerical analysis of the solutions considering realistic models was done, using

the timing residual effect in the pulsars observations as an indicator of the cosmological

influences in the propagation of gravitational waves measured from Earth. The results of

this analysis imply a potential measurement (5.3σ for ΛCDM model) of a peak in the timing

residual due to cosmological influence in the propagation of gravitational waves.

Keywords: General Relativity, Gravitational Waves, Expanding Universe,

ΛCDM Model, Pulsar Timing Array.
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NOTATION AND CONVENTIONS

In the development of this report, natural units will be used (i.e. c = G = ~ = 1) ex-

cept where is indicated; with c as the speed of light in vacuum, G as Newton Universal

Gravitation constant and ~ as reduced Planck constant.

In general, latin indices (e.g. i, j, k, . . .) will correspond to the three-dimensional spatial

coordinates and they will take the values 1, 2 or 3 (x, y or z)

On the other hand, greeks indices (e.g. µ, ν, . . .) will correspond to the four-dimensional

spacetime coordinates and they will take the values 0, 1, 2 o 3 (t, x, y o z). The component

x0 will be generally considered as the temporal coordinate of the system.

Additionally, we will use the Einstein summation convention: The appearance of two re-

peated indices implies the sum in these indices. For example, pµpµ = ∑
µ p

µpµ.

A metric of spacetime will be denoted by gµν and the spacetime interval will defined as

ds2 = gµνdxµdxν . The metric of Minkowski flat spacetime will be ηαβ ≡ diag(−1, 1, 1, 1).

Some abbreviations used:

GR: General Relativity

EFE: Einstein Field Equations

ΛCDM: Cosmological Constant + Cold Dark Matter

FLRW: Friedmann–Lemaître–Robertson–Walker

SdS: Schwarzschild–de Sitter

SSD: Spherically Symmetric + Dust

SSDR: Spherically Symmetric + Dust + Radiation

SSωi: Spherically Symmetric + perfect fluid with equation of state pi = ωiρi

GW: Gravitational Wave

PTA: Pulsar Timing Array
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INTRODUCTION

At present, mankind has two main pillars on which to base its study on the laws that govern

the fundamental behavior of nature. On the one hand, the Quantum Theory, which de-

scribes with a high degree of precision three of the four fundamental forces known to date

(Weak Nuclear Interaction, Electromagnetic Interaction and Strong Nuclear Interaction).

On the other hand, the Theory of General Relativity (GR) describes the behavior of the

bodies that are affected by the fourth fundamental force: The gravitational interaction.

Both models are mathematically self-consistent and have a high degree of acceptance in

the scientific community. However, they are incompatible with each other: Gravitation, as

we know it, could not be described in terms of a renormalizable Quantum Field Theory [5].

Due to the numerous and precise experimental verifications at quantum scale, it is consid-

ered that GR is a consistent model but that describes gravity from a classic perspective.

Nevertheless, GR still has a great predictive power and provides the framework of many as-

trophysical events. In that sense, one of the most transcendental observations of last century

was the measurement of accelerated expansion of the Universe [6]. The standard cosmo-

logical model (ΛCDM) is the simplest one that provides the well measured properties of

the cosmos. This model assumes the validity of GR but it requires an extra component: The

addition of a constant, Λ, into GR field equations. Once this is done, ΛCDM parameters

can be fitted within cosmological observations in order to obtain experimental values [7].

The cosmological constant arises as a necessity to obtain accelerated expansion and its

nature is currently unknown. That problem is known as the Dark Energy mystery and no

complete theory can explain it satisfactorily yet [8]. Until now, the only way of measure

Λ is from cosmological observations, but the extremely large distances involved implies a

lower precision than other astronomical observations.

On the other hand, in the last years one of the most astonishing predictions of GR has gained

attention: The discovery and measurement of Gravitational Waves (GW) [9]: Ripples in
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spacetime caused by astronomical perturbations propagates through the Universe and now

can be observed. Then, it is natural to ask ourselves if the accelerated expansion of the

Universe could affect the propagation of GW. An investigation line2, developed in [1–3],

has shown that the propagation of Gravitational Waves in an expanding Universe not only

is influenced by cosmological constant but also it could serve for local measure of Λ at

galactic scale.

The core of this proposal is based on fixing a coordinate transformation between the GW

source and a cosmological observer (e.g. the Earth). It is in this transformation that the

influence of Λ appears explicitly in the propagation of GW. In [4], this phenomenon is

studied with the addition of non-relativistic matter (i.e. a perfect fluid with no pressure)

in the Universe. Thus, in this report we will study a generalization of this situation for a

perfect fluid with arbitrary equation of state pi = ωiρi, and it will be analyzed numerically

for the case in which the radiation density (ωi = 1/3) is not negligible.

For this, in Chapter 1, foundations of GR will be reviewed. We will derive the Friedmann

equations of standard cosmology and the relevant spacetime metrics that will be used later.

Then, we will discuss the linearized version of GR and the gravitational wave solution.

In Chapter 2, we will review the work of Espriu et al. from the beginning. We will find the

coordinate transformation in each case (only Λ, only Dust, Λ + Dust and the generalization

for an arbitrary fluid), the respective linearized equations and the relevance of coordinate

transformation in gravitational wave solutions.

Later, in Chapter 3, we will show a setup consisting in a GW source far from Earth and

a nearby pulsar. Thus, we will find that the previous equations can be used in the mea-

surements of Timing Residual under this configuration, numerical analysis of equations

included. Then, we will use a pulsar catalog to find a reasonable and realistic example

showing the potential of this results.

Finally, in Chapter 4, the main conclusions of this report will be indicated and we will

present ideas for future work based in this investigation line.
2It should be noted that several works are being realized about the propagation of GW in non-vacuum back-
ground with the aim to studying the nature of Dark Matter and Dark Energy [10–12].
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1. EINSTEIN’S THEORY OF GENERAL RELATIVITY

Denominated by part of the scientific community as the most beautiful of all existing phys-

ical theories [13], the Theory of General Relativity –developed by Albert Einstein between

1905 and 1915– definitively changed the way we understand the nature of space and time.

This model enjoys great acceptance, not only for its conceptual simplicity, but also through-

out history has been verified experimentally with great accuracy: Through the precession

of Mercury perihelion [14], the deflection of light in a solar eclipse [15], the development

of GPS [16] and lately the detection of gravitational waves [9].

Next, theory foundations and main equations that will guide the work of this report will be

shown in the appendixes . A detailed development of General Relativity can be found in

classic textbooks as [17] and [18], which serve as references for this chapter.

1.1. Foundations and Field Equations

In 1905 Albert Einstein published the Special Theory of Relativity [19], which quickly

gained scientific acceptance due to various experimental verifications. However, this model

does not consider the presence of gravitational interaction: Only applies to inertial frames.

In order to generalize Special Relativity, Einstein postulated the Principle of Equivalence

(an accelerating reference frame is identical to an equivalent gravitational field in small

enough regions of space) and the Principle of General Covariance (equations must be

covariant, preserving their form under general coordinate transformations) [20].

To take advantage of the Principle of Covariance we must know how to transform our

equations under general transformations of coordinates. Thus, a good idea is to use a

mathematical object called tensor. If we consider a general transformation x′ → x, then a

tensor m times covariant and n times contravariant transforms as

T
i′1...i

′
n

j′1...j
′
m

= ∂xi
′
1

∂xi1
. . .

∂xi
′
n

∂xin
∂xj1

∂xj
′
1
. . .

∂xjm

∂xj′m
T i1...inj1...jm , (1.1)

1



so a tensorial equation will be generally covariant. Moreover, the Equivalence Principle

induces a relation between free falling and geodesic motion, so we can think spacetime as

a curved manifold equipped with a metric tensor gµν , that satisfies

gµν = gνµ gµ′ν′ = ∂xρ

∂xµ′
∂xσ

∂xν′
gρσ gµλgλν = δµν . (1.2)

From the study of curved differential manifolds, we can find that the only free-divergence

tensor constructed with gµν and its first and second derivatives is the Einstein tensor defined

as

Gµν ≡ Rµν −
1
2Rgµν , (1.3)

where Rµν is the Ricci tensor and R is the scalar curvature. On the other hand, conserva-

tion of energy and momentum implies that the divergence of stress-energy tensor is zero,

T µν;ν = 0. Einstein conjectured thatGµν ∝ Tµν and to find the proportionality constant one

can use the Newtonian limit, where the field equations must reduce to ∇2φ = 4πGρ (φ is

the Newtonian gravitational potential and ρ is the density of matter). After this procedure,

we obtain the Einstein Field Equations (EFE):

Rµν −
1
2Rgµν = κTµν , (1.4)

where κ = 8πG
c4 . We can note that, if it is added a term proportional to gµν into (1.3), it

also satisfies (1.4). The proportionality constant of this term is known as the cosmological

constant Λ. Thus, it is possible to find a generalized EFE of the form

Rµν −
1
2Rgµν + Λgµν = κTµν . (1.5)

This expression comprise a set of ten Partial Differential Equations and describe the gravi-

tational interaction. Therefore, Einstein Field Equations tell us how spacetime is curved by

the presence of matter/energy and how matter/energy moves through spacetime.
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1.2. Schwarzschild and SdS spacetimes

The first exact solution of (1.4) was found by Karl Schwarzschild in 1916 [21]. Let us

consider the following assumptions for a spacetime metric:

(i) Static: gµν is not time dependent.

(ii) Spherically Symmetric: Angular terms of the form r2(dθ2 + sin2 θdφ2).

Thus, the most general metric that satisfies the previous conditions is given by

gµνdxµdxν = −A(r)dt2 +B(r)dr2 + r2[dθ2 + sin2(θ)dφ2], (1.6)

where A(r) and B(r) are unknown functions that depend only of r. In Appendix A it is

shown that for an asymptotically flat spacetime, the metric (1.6) becomes

ds2 = −
(

1− 2M
r

)
dt2 + dr2

1− 2M
r

+ r2dΩ2, (1.7)

where dΩ2 = dθ2 + sin2(θ)dφ2. This is the Schwarzschild metric and describes the

deformation of spacetime due to the presence of a spherical mass (e.g. a star or a Black

Hole) in an empty Universe.

It is also possible to obtain a similar metric for a de Sitter space, which means that the

Universe is expanding and gravitation is described by generalized Einstein Field Equations

(1.5) with Λ > 0. In Appendix B it is shown that, following the same steps as before, the

metric (1.6) becomes

ds2 = −
(

1− 2M
r
− Λ

3 r
2
)

dt2 + dr2

1− 2M
r
− Λ

3 r
2

+ r2dΩ2. (1.8)

This is the Schwarzschild–de Sitter (SdS) metric and describes the deformation of space-

time due to the presence of the same spherical mass but now in an expanding Universe with

a positive cosmological constant, a de Sitter space.

3



1.3. FLRW metric and Friedmann equations

Years later another EFE solution was found. The Friedmann-Lemaître-Robertson-Walker

(FLRW) metric was developed between 1922 and 1937 [22–25]. It represents an isotropic,

homogeneous and expanding Universe through the generic metric

gµνdxµdxν = −dT 2 + a2(T )
(

dR2

1− kR2 +R2dΩ2
)
, (1.9)

where k may be taken as {−1, 0, 1} for negative, zero or positive curvature respectively,

a(T ) is known as the scale factor and {T,R, θ, φ} are called comoving coordinates.

Latest measurements of cosmological parameters show that k is approximately zero [7], so

the Universe appears to be spatially flat. From this important consideration, the following

metric will be used and it will be denoted as FLRW metric

gµνdxµdxν = −dT 2 + a2(T )dl2, (1.10)

where dl2 is the three-dimensional spacial line element. In order to use Einstein Field

Equations, we need an expression for Stress-Energy tensor. If we consider a perfect fluid

(i.e. a fluid that has not viscosity and it does not conduce heat) the Stress-Energy tensor

takes the following form

Tµν = (ρ+ p)UµUν + pgµν , (1.11)

where ρ is the rest energy density, p is the isotropic pressure and Uµ is a four-velocity of

the fluid. Moreover, it is common to use a equation of state that relate pressure and density

by

pi = ωiρi, (1.12)

where ωi is some constant.
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In Appendix C it is shown that, for a Universe filled by a perfect fluid with density ρi and

pressure pi in a FLRW spacetime described by (1.10), the Einstein Field Equations give

(
ȧ

a

)2
= κ

3 (ρi + ρΛ) (1.13a)(
ä

a

)
= κ

(
ρΛ

3 −
ρi
6 −

pi
2

)
, (1.13b)

where ρΛ ≡ Λ
κ

and a dot over quantities means derivative respect of time. These are known

as the 1st and 2nd Friedmann Equations respectively. From taking derivative of (1.13a)

with respect to T (comoving time, do not confuse with the trace of Stress-Energy tensor)

and replacing into (1.13b), it follows that

κ

3 ρ̇i = 2
(
ȧ

a

) [
äa− ȧ2

a2

]
= 2

(
ȧ

a

) [
κ
(
ρΛ

3 −
ρi
6 −

pi
2

)
− κ

3 (ρi + ρΛ)
]

ρ̇i = −3
(
ȧ

a

)
(pi + ρi) .

Using equation of state (1.12), last expression becomes

dρi
dT = −ρi

[
3(ωi + 1)

(
ȧ

a

)]
→ dρi

ρi
= −3(ωi + 1)da

a
.

After integration we obtain

ρi
ρ0

=
(
a(T )
a0

)−3(ωi+1)

, (1.14)

where ρ0 = ρ(T0) and a0 = a(T0) are integration constants. Replacing the last expression

into (1.13a) provides us a solution of scale factor for the case in which one fluid (Λ → 0)

with equation of state (1.12) is present,

a(T ) = a0

(
T

T0

) 2
3(ωi+1)

. (1.15)

5



Combining (1.14) with (1.15) we obtain the general form of density in terms of T

ρi = 4
3(ωi + 1)2κT 2 , (1.16)

where we used

ρ0 = 4
3(ωi + 1)2κT 2

0
. (1.17)

Another important solution is found by demanding no material content in the Universe (i.e.

ρi = 0) and Λ 6= 0. Solving (1.13a), the scale factor becomes

a(T ) = exp
√Λ

3 ∆T
, (1.18)

with ∆T = T −T0 and a0 = 1. The FLRW metric with this scale factor describes de Sitter

spacetime and, therefore, the same physical situation as SdS metric for a large r.

It is considered that (1.13a) and (1.13b) are the basis of standard cosmology. Currently, the

most accepted model is ΛCDM: Λ 6= 0 and Cold Dark Matter. The effective energy density

in ΛCDM model is commonly given by

ρeff = ρΛ + ρd + ρr = ρΛ + ρd0

[
a0

a(T )

]3

+ ρr0

[
a0

a(T )

]4

, (1.19)

where ρd0 is the density of non-relativistic matter (i.e. Cold Dark Matter and baryonic

matter, ωd = 0) at T0 and ρr0 is radiation density (ωr = 1/3) at T0.

1.4. Linearized Gravity and Gravitational Waves

EFE have two interesting features: They show that spacetime curvature is dynamic, but

also its behavior is highly non-linear. In order to simplify calculations, we can consider the

case where a flat spacetime is perturbed. Thus, the metric can be written as

gµν = ηµν + hµν , (1.20)

6



with |hµν | � 1. In Appendix D it is shown that linearized EFE can be written as

�h̄µν = −2Ληµν − 2κTµν , (1.21)

where we introduced the trace-reversed metric perturbation given by

h̄µν ≡ hµν −
1
2ηµνh hµν = h̄µν −

1
2ηµν h̄ h̄ = −h, (1.22)

and where it was chosen the Lorenz Gauge, which demands

∂βh̄
βα = 0. (1.23)

The set of equations (1.21) describes the effects due to a weak gravitational field and it is

called linearized gravity. As discussed in [1, 4], the perturbation hµν can be decomposed

into a gravitational wave contribution h(GW)
µν and a background part h(bg)

µν which will have

contributions due to Λ and others fluid components of Universe involved (dust or radiation).

As they do not interact between each other, we can write the metric as

gµν = ηµν + h(GW)
µν + h(Λ)

µν + h(fluid)
µν , (1.24)

where each contribution satisfies from (1.21)

�h̄(GW)
µν = 0 (1.25)

�h̄(Λ)
µν = −2Ληµν �h̄(fluid)

µν = −2κTµν . (1.26)

In the next sections, we will consider only expansions up to order
√

Λ +∑
i ρi, where ρi

will be the density of a particular component. Thus, we will concentrate only in (1.25),

which is an homogeneous wave equation, whose general solution is an harmonic wave,

reason why it is called the Gravitational Wave (GW) solution. In Cartesian coordinates

7



the metric perturbation takes the following form

h̄(GW)
µν = Aµν exp(ikαxα), (1.27)

where Aµν are constant components of some tensor and kα ≡ (Ω,k), with Ω as the angular

frequency of GW and k as its wave vector. From (1.25) and (1.27) we can note that

�h̄αβ = ηµν∂µ∂ν h̄αβ = −ηµνkµkν h̄αβ = 0 ↔ ηµνkµkν = 0 → Ω2 = |k|2. (1.28)

Last expression shows that the dispersion relation of GW is equal to 1, which means that

GW propagates at the speed of light. Furthermore, from Lorenz gauge conditions, it follows

Aαβkβ = 0, (1.29)

which is a restriction on the amplitude Aαβ . Nevertheless, the amplitude is not fully re-

stricted because there is still a gauge freedom (see Appendix D). It is common to use the

Transverse-Traceless (TT) gauge, where Aαα = 0 and AαβUβ = 0, with Uβ as some fixed

four-velocity. In this gauge h̄µν = hµν and it can be shown [26] that

Aαβ =



0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0


, (1.30)

where A+ and A× indicates the polarizations of GW. If r, t are the spherical coordinates in

which gravitational waves are described from the source, then at a distance large enough

–but small compared to cosmological distances– the metric perturbation hµν will be [2, 4]

h(GW)
µν = 1

r

(
Eµν cos[Ω(t− r)] +Dµν sin[Ω(t− r)]

)
, (1.31)

where Eµν and Dµν are of the same form that (1.30) because they belong to TT gauge.
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2. GRAVITATIONAL WAVES IN AN EXPANDING UNIVERSE

From the previous chapter, it is clear that a linearized version of Einstein Field Equation

allows a radiative solution in form of Gravitational Waves. The simplest and standard way

to study GW is using the coordinates that emerge from the GW source (i.e. t, r) in vacuum.

In this chapter, it will be shown that a specific coordinate transformation will produce

changes in the propagation of gravitational waves in a non-empty background (e.g. in the

case where Λ, dust or any perfect fluid is present), which will be useful in cosmology.

2.1. Appropriated coordinate systems

Let us consider the following situation: Two super-massive Black Holes are orbiting around

a common center of mass and slowly approaching to each other. When they merge, an

amount of gravitational radiation is released in all directions.

An appropriate coordinate system to measure the perturbation of spacetime metric from the

GW source is the set {t, r, θ, φ}, that represent a spherically symmetric spacetime seen from

the source. These coordinates are the same used in (1.31) and, for example, in a vacuum

background the geometry of spacetime will be given by Schwarzschild metric (1.7).

On the other hand, it is important to remind that an accelerated expansion of the Universe

is measured from Earth, which means that an observer in Earth is a cosmological observer.

Thus, it is natural to use FLRW comoving coordinates {T,R, θ, φ} and the metric

ds2 = −dT 2 + a2(T )
(
dR2 +R2dΩ2

)
, (2.1)

to describe the perturbation in spacetime due to a GW as seen from Earth. If we are able to

find the two metrics that describe the same physical scenario, then the transformation

{t, r, θ, φ} → {T,R, θ, φ}

will provide us the form of h(GW)
µν as seen from Earth using (1.31).

9



2.2. New metrics and the respectively coordinate transformations

From previous discussion, it is clear that in a vacuum background the geometry of space-

time as seen from the GW source will be Schwarzschild metric. Next, we will consider

other background options and derive the respective metrics and coordinate transformations.

Only Λ is present: SdS Case

This is the case where a gravitational wave propagates through a de Sitter spacetime, which

is described by the Schwarzschild-de Sitter metric (1.8). As far from the GW source, the

term corresponding to the mass of Black Hole is not relevant, so we can use the restricted

SdS metric

ds2 = −
(

1− Λ
3 r

2
)

dt2 + dr2

1− Λ
3 r

2
+ r2dΩ2. (2.2)

Otherwise, the FLRW metric for the same physical situation is given by (2.1), with scale

factor given by

a(T ) = exp
√Λ

3 T
. (2.3)

From (1.2), it follows that metric transform as second rank tensor

gµ′ν′ = ∂Xµ

∂xµ′
∂Xν

∂xν′
gµν . (2.4)

Thus, for the temporal and radial coordinates

gTT =
(
∂t

∂T

)2
gtt +

(
∂r

∂T

)2
grr (2.5)

gRR =
(
∂t

∂R

)2
gtt +

(
∂r

∂R

)2
grr, (2.6)
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and for angular coordinates we simply get

r2dΩ2 → a2(T )R2dΩ2. (2.7)

From (2.5) and (2.6) it follows that

−1 = −
(
∂t

∂T

)2 (
1− Λ

3 r
2
)

+
R

√
Λ
3 exp

√Λ
3 T

2 (
1− Λ

3 r
2
)−1

(2.8)

exp
2
√

Λ
3 T

 = −
(
∂t

∂R

)2 (
1− Λ

3 r
2
)

+ exp
√Λ

3 T
2 (

1− Λ
3 r

2
)−1

. (2.9)

Thereby,

∂t

∂T
= 1

1− Λ
3R

2 exp
(

2
√

Λ
3T
) (2.10)

∂t

∂R
=

R
3

√
3
Λ exp

(
2
√

Λ
3T
)

1− Λ
3R

2 exp
(

2
√

Λ
3T
) . (2.11)

Integrating both equations follows that

t(T,R) = H(T,R) + T + f(R) (2.12)

t(T,R) = H(T,R) + g(T ), (2.13)

where f(R) and g(T ) are arbitrary functions of R and T respectively, and

H(T,R) = −1
2

√
3
Λ ln

1− Λ
3R

2 exp
2
√

Λ
3 T

+ constant. (2.14)
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From (2.12) y (2.13) we note that f(R) = 0 and so g(T ) = T . Then, the solution will be,

up to addition by a constant,

t(T,R) = H(T,R) + T. (2.15)

Therefore, the coordinate transformation between SdS and FLRW spacetimes are

r(T,R) = a(T )R (2.16a)

t(T,R) = T −
√

Λ
3 ln

√
1− Λ

3 a(T )2R2. (2.16b)

These transformations agree with those presented in [1, 4].

Only Dust is present: SSD Case

Now we will consider a different background, which it is called the matter-dominated era.

In this scenario, only non-relativistic matter is present in the Universe, which is denoted as

dust. Dust is pressureless, so the equation of state reads p = 0 and then ωd = 0. From

(1.15) and (1.16) we obtain for this case

a(T ) = a0

(
T

T0

) 2
3

ρd = 4
3κT 2 , (2.17)

where ρd is the dust density at T . We are looking for a coordinate system where dust is

described in a spherically symmetric static coordinates with origin coinciding with GW

source. In first place, we note that angular coordinates transform as before

r2 dΩ2 → a(T )2R2 dΩ2.

From (2.4) and the requirement that metric must be diagonal (i.e. grt = gtr) it follows that

0 = ∂T

∂t

∂T

∂r
gTT + ∂R

∂t

∂R

∂r
gRR, (2.18)
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and by explicitly calculating the partial derivatives we obtain

∂R

∂t
= −2

3
r ∂T
∂t

a0T0

(
T

T0

)5/3 (2.19)

∂R

∂r
= 1
a(T ) −

2
3

r ∂T
∂r

a0T0

(
T

T0

)5/3 . (2.20)

From (2.18) we find

∂T

∂r
= a(T )2

∂T
∂t

∂R

∂t

∂R

∂r
= 2

9
2r2 ∂T

∂r
− 3rT
T 2 . (2.21)

Thus,

∂T

∂r
= −6Tr

9T 2 − 4r2 (2.22)

To find the new components of the metric, let us use another consequence of (1.2)

gtt =
(
∂T

∂t

)2
gTT +

(
∂R

∂t

)2
gRR (2.23)

grr =
(
∂T

∂r

)2
gTT +

(
∂R

∂r

)2
gRR, (2.24)

and (2.19), (2.20), (2.22), following that

gtt = −
(
∂T

∂t

)2
[
T 2 − 4r2

9T 2

]
(2.25)

grr = 9T 2

T 2 − 4r2 . (2.26)

From (2.17), we note that

∂T

∂t
= ∂T

∂ρd

∂ρd
∂t

= −ρ
−3/2
d√
3κ

∂ρd
∂t

, (2.27)
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and as

T =
√

4
3κρd

, (2.28)

the equations (2.25) and (2.26) can be expressed in terms of ρd

gtt = −
(
∂ρd
∂t

)2


1− κρdr

2

3
3κρ3

d

 grr =
(

1− κρdr
2

3

)−1
, (2.29)

so the new spherically symmetric metric is of the form

ds2 = −(∂tρd)2

3κρ3
d

[
1− κρdr

2

3

]
dt2 + dr2

1− κρdr2

3

+ r2 dΩ2. (2.30)

However, using (2.17) y (2.22) we get

∂ρd
∂r

= κρ2
dr

1− κρd

3 r
2 . (2.31)

Defining ρ̃d ≡ κρd, last expression becomes

∂ρ̃d
∂r

= ρ̃2
dr

1− ρ̃d

3 r
2 . (2.32)

From (2.32), it can be formed conveniently the next expression

∂

∂r

[
6 + r2ρ̃d

ρ̃
1/3
d

]
= 0 (2.33)

Thereby,

6 + r2ρ̃d

ρ̃
1/3
d

= C(t), (2.34)

where C(t) is constant respect to r but not with respect to t.
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Due to dimensional analysis, we note that in natural units [ρ̃d] = L−2 and, hence, [C(t)] =

L2/3. As there is no other parameter involved apart of t and, besides, in natural units

[t] = L, then we can set C(t) = At2/3, where A is an arbitrary constant.

Moreover, it is expected that at a later stage dust will be diluted homogeneously. This

implies that for t→∞, the metric (2.30) is almost Minkowskian. Therefore,

lim
t→∞(ρd→0)

(∂tρd)2

3κρ3
d

= 1. (2.35)

Then, (2.34) becomes

6 + r2κρd
(κρd)1/3 = At2/3. (2.36)

Taking time derivative of last equation and solving for ∂t(κρd)

∂t(κρd) = − (κρd)4/3

1− κρd

3 r
2
A

3t1/3 . (2.37)

Squaring, dividing by 3κρ3
d and replacing the previous results it follows that

(∂tκρd)2

3κρ3
d

= κ2A3

27(1− κρd

3 r
2)(6 + r2κρd)

. (2.38)

Applying the limit ρd → 0 and canceling all the κ2 we can find the value of A in the

Minkowskian limit,

lim
t→∞(ρd→0)

(∂tρd)2

3κρ3
d

= A3

27 · 6 = 1 → A = 3 3
√

6. (2.39)

Replacing last expression into (2.38) gives

(∂tρd)2

3κρ3
d

= 1
(1− κρd

3 r
2)(1 + κρd

6 r
2) . (2.40)
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Therefore, the spherically symmetric spacetime which represent the same physical situation

as (2.1) with the scale factor (2.17) is given by

ds2 = − dt2
(1− κρd

3 r
2)(1 + κρd

6 r
2) + dr2

1− κρd

3 r
2 + r2dΩ2 (2.41)

and it will be denoted as the SSD metric. From (2.17) and defining ρd0 ≡ 4
3κT 2

0
the scale

factor is

a(T ) = a0

(
ρd0

ρd

)1/3
. (2.42)

Thus, using (2.36) we can finally find the coordinate transformation (t, r) → (T,R) in

terms of ρd and ρd0:

t =

[
6 + (κρd0)2/3(κρd)1/3R2

]3/2
9
√

2κρd
(2.43a)

r = a0 3

√
ρd0

ρd
R. (2.43b)

Equations (2.41) and (2.43) absolutely agree with the results of [4].

A kind of generalization: SSωi Case

One of the main objectives of this report is to find a generalization of the previous cases in

order to study the propagation of gravitational waves in a unknown background that could

be useful for other models of gravitation that requires another kind of components.

Starting from (1.15) and (1.16), we can find that for an arbitrary perfect fluid with equation

of state pi = ωiρi (ωi 6= −1), the scale factor and the energy density are given by

a(T ) = a0

(
T

T0

) 2
3(ωi+1)

ρi = 4
3(ωi + 1)2κT 2 . (2.44)

Thus, the physical scenario is a Universe filled by this fluid, so the geometry of spacetime

is given by FLRW metric (2.1) with scale factor (2.44). We are looking for a spherically

16



symmetric metric, analogous to Schwarzschild in the case of vacuum, but now with a back-

ground filled only by the fluid.

As before, we note that angular coordinates transformation are trivial

r2 dΩ2 → a(T )2R2 dΩ2,

so, at the moment, we have


T (t, r) = unknown function

R(t, r) = r
a(T ) .

(2.45)

Following the same steps as before, using

gµ′ν′ = ∂Xµ

∂xµ′
∂Xν

∂xν ′
gµν (2.46)

and the requirement that new metric must be diagonal, we obtain the relation

0 = ∂T

∂t

∂T

∂r
gTT + ∂R

∂t

∂R

∂r
gRR. (2.47)

Partial derivatives read

∂R

∂r
= −1

3
2r ∂T

∂r
− 3T (ωi + 1)

a(T )(ωi + 1)T (2.48)

∂R

∂t
= −2

3
r ∂T
∂t

a(T )(ωi + 1)T . (2.49)

From (2.47) we find that

∂T

∂r
= a(T )2

∂T
∂t

∂R

∂t

∂R

∂r
. (2.50)

17



Solving for ∂T
∂r

from last equation gives

∂T

∂r
= 6rT (ωi + 1)

4r2 − 9(ωi + 1)2T 2 . (2.51)

To find the components of new metric let us use (2.46)

gtt =
(
∂T

∂t

)2
gTT +

(
∂R

∂t

)2
gRR

grr =
(
∂T

∂r

)2
gTT +

(
∂R

∂r

)2
gRR,

added to (2.49), (2.48) and (2.51),

gtt = −
(
∂T

∂t

)2
[

9(ωi + 1)2T 2 − 4r2

9(ωi + 1)2T 2

]
(2.52)

grr = 9(ωi + 1)2T 2

9(ωi + 1)2T 2 − 4r2 . (2.53)

Definition of density in (2.44) implies that

∂ρi
∂t

= ∂ρi
∂T

∂T

∂t
T = 2

3(ωi + 1)

√
3
κρi

(2.54)

Hence, the equations (2.52) and (2.53) now are expressed in terms of ρi,

gtt = −
(
∂ρi
∂t

)2


1− κρir

2

3
3κρ3

i (ωi + 1)2

 grr =
(

1− κρir
2

3

)−1
. (2.55)

New metric reads

ds2 = − (∂tρi)2

3κρ3
i (ωi + 1)2

[
1− κρir

2

3

]
dt2 + dr2

1− κρir2

3

+ r2 dΩ2. (2.56)
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Moreover, using (2.44) and (2.51) we get

∂ρi
∂r

= (ωi + 1)κρ2
i r

1− κρi

3 r
2 . (2.57)

If we properly define ρ̃i ≡ κρi, last expression becomes

∂ρ̃i
∂r

= (ωi + 1)ρ̃2
i r

1− ρ̃i

3 r
2 . (2.58)

As in the case of dust, it can be noticed that from (2.58) it follows

∂

∂r

[
c+ r2ρ̃i
ρ̃ni

]
= 0, (2.59)

where c and n are unknown constants that we suppose exist due to previous cases. Let us

find them

∂

∂r

[
c+ r2ρ̃i
ρ̃ni

]
= ρ̃i

−(1+n)
[
2rρ̃i2 −

(
cn+ (n− 1)r2ρ̃i

) ∂ρ̃i
∂r

]

= ρ̃i
−(1+n)

[
2rρ̃i2 − 3(cn+ (n− 1)r2ρ̃i) ρ̃ir(ωi + 1)

3− r2ρ̃i

]

= ρ̃i
−(1+n)

3− r2ρ̃i

[
2rρ̃i2(3− r2ρ̃i)− 3(cn+ (n− 1)r2ρ̃i)rρi(ωi + 1)

]

= ρ̃i
−(1+n)

3− r2ρ̃i

[
rρ̃i

2{6− 3cn(ωi + 1)} − r3ρ̃i
3{2 + 3(n− 1)(ωi + 1)}

]
= 0.

As r is a independent variable, we can find a system of equations

6− 3cn(ωi + 1) = 0 (2.60)

2 + 3(n− 1)(ωi + 1) = 0, (2.61)

whose solution is given by

c = 6
3ωi + 1 n = 3ωi + 1

3(ωi + 1) . (2.62)
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Therefore,
c+ r2ρ̃i
ρ̃ni

= F (t), (2.63)

where F (t) is a function only with respect to r. By the same dimensional analysis realized

in previous section, we note that in natural units [ρ̃i] = L−2 and thereby [F (t)] = L2n. As

there is no other parameter involved apart from t and also as [t] = L in natural units, then

we set F (t) = At2n, with A as a dimensionless arbitrary constant.

For any fluid we can expect that at later stage it will be diluted homogeneously, which

implies that for t→∞ the metric (2.56) is almost flat. Then,

lim
t→∞(ρi→0)

(∂tρi)2

3κρ3
i (ωi + 1)2 = 1. (2.64)

On the other hand, (2.63) can be written as

c+ r2κρi
(κρi)n

= At2n. (2.65)

Taking derivative with respect to t and solving for ∂tρi,

∂ρi
∂t

= − 2nAt2n−1(κρi)nρi
κρinr2 − r2κρi + cn

. (2.66)

Squaring, dividing by 3κρ3
i and replacing the previous results it follows that

(∂tρi)2

3κρ3
i (ωi + 1)2 = 4n2A1/n(κr2ρi + c) 2n−1

n

3(ωi + 1)2[(n− 1)κr2ρi + cn] . (2.67)

Applying the limit ρi → 0 we can set the value of A

lim
t→∞(ρi→0)

(∂tρi)2

3κρ3
i (ωi + 1)2 = 4n2A1/nc

2n−1
n

3(ωi + 1)2(cn)2 = 1 → A = c
(3

4

)n
(ωi + 1)2n. (2.68)
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Replacing the last equation into (2.67) gives us

(∂tρi)2

3κρ3
i (ωi + 1)2 =

4(nc)2
[

(4/3)n(r2κρi+c)(ωi+1)−2n(κρi)−n

c

] 2n−1
n (κρi)2n−1(9/16)n(ωi + 1)4n−2

3(κρir2(n− 1) + cn)2

=
(cn)2

(
r2κρi

c
+ 1

) 2n−1
n

(κρir2(n− 1) + cn)2

=

(
1 + κρir

2

c

) 2n−1
n(

1− κρir2(1−n)
cn

)2 but
2n− 1
n

= 3ωi − 1
3ωi − 1

1− n
cn

= 1
3

= 1(
1 + κρir2(3ωi+1)

6

) 1−3ωi
1+3ωi

(
1− κρir2

3

)2
.

Finally, the spherically symmetric spacetime has the following structure:

ds2 = − dt2(
1− κρir

2

3

)(
1 + κρir

2(3ωi + 1)
6

) 1−3ωi
1+3ωi

+ dr2

1− κρir
2

3

+ r2dΩ2. (2.69)

Using (2.44) and (1.17), scale factor becomes a(T ) =
(
ρd0
ρi

)1/3(ωi+1)
. Finally, from (2.54)

we can find the coordinate transformation in terms of ρi y ρ0:

t =

[
c+R2(κρ0)

2
3(ωi+1) (κρi)

3ωi+1
3(ωi+1)

] 1
2n

(
A

1
2n

)√
κρi

(2.70a)

r =
(
ρ0

ρi

) 1
3(ωi+1)

R. (2.70b)

Therefore, the metric (2.69) is solution of EFE (1.4) with an arbitrary fluid as background

and (2.70) provide us the coordinate transformation with FLRW metric.
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2.3. Linearized equations

From the discussion in section 1.4, and due to Gravitational Waves are a solution of lin-

earized Einstein Field Equations (1.21), it will be necessary to linearize the metrics and

coordinate transformations obtained in the previous section.

SdS spacetime

Directly from the restricted SdS metric (2.2) we can note that for Λr2 � 1 the linearized

SdS spacetime will be

ds2 = −
(

1− Λ
3 r

2
)

dt2 +
(

1 + Λ
3 r

2
)

dr2 + r2dΩ2. (2.71)

Moreover, from (1.18) we can expand the scale factor at second order

a(T ) = a0

1 + ∆T
√

Λ
3 + ∆T 2 Λ

6

R +O
(
Λ2
)
. (2.72)

Thereby, we can find the linearized coordinate transformations from (2.16a) and (2.16b)

t(T,R) = T + a2
0

R2

2

√
Λ
3 +R2∆T Λ

3

+O
(
Λ2
)

(2.73a)

r(T,R) = a0

1 + ∆T
√

Λ
3 + ∆T 2 Λ

6

R +O
(
Λ2
)
. (2.73b)

Even more, from (2.72), it is possible to find a linearized FLRW metric

ds2 = −dT 2 + a2
0

1 + 2
√

Λ
3 ∆T + 2Λ

3 ∆T 2

[dR2 +R2dΩ2
]

+O
(
Λ2
)
. (2.74)

Hence, the equations (2.71), (2.73a) and (2.73b) will be useful in the discussion of GW

propagation.
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SSωi spacetime

The geometry of a spacetime filled by a perfect fluid with equation of state (1.12) is given

by (2.69). For κρir2 � 1 the Taylor series expansion becomes

ds2 = −
[
1 + κρir

2

6 (3ωi + 1)
]

dt2 +
[
1 + κρir

2

3

]
dr2 + r2dΩ2. (2.75)

Furthermore, the correspondingly coordinate transformations between this metric and FLRW

are of the form

t =

[
c+R2(κρ0)

2
3(ωi+1) (κρi)

3ωi+1
3(ωi+1)

] 1
2n

(
A

1
2n

)√
κρi

(2.76a)

r =
(
ρ0

ρi

) 1
3(ωi+1)

R, (2.76b)

where

c = 6
3ωi + 1 n = 3ωi + 1

3(ωi + 1) →
1

2n = 3(ωi + 1)
2(3ωi + 1) (2.77)

A = c
(3

4

)n
(ωi + 1)2n → A

1
2n = A =

√
3
4

( 6
3ωi + 1

) 3(ωi+1)
2(3ωi+1)

(ωi + 1). (2.78)

We can easily linearize r coordinate in terms of ∆T = T − T0 using (2.44)

r = R

(
ρ0

ρi

) 1
3(ωi+1)

= R
(
T

T0

) 2
3(ωi+1)

= R

(
1 + ∆T

T0

) 2
3(ωi+1)

= R

(
1 + 2

3(ωi + 1)T0
∆T − 3ωi + 1

9(ωi + 1)2T 2
0

∆T 2
)

+O
(
∆T 3

)
T0 = 1

(ωi + 1)

√
4

3κρ0

= R

(
1 + ∆T

√
κρ0

3 −
∆T 2

12 (3ωi + 1)κρ0

)
+O

(
∆T 3

)
. (2.79)
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On the other hand, for t in (2.70a) firstly we have to expand κρir2 � 1 and then linearize

in terms of ∆T , obtaining

t ≈ T0 + R2

3(ωi + 1)
1
T0

+
[
1− R2

3(ωi + 1)
3ωi − 1

3(ωi + 1)T 2
0

]
∆T + . . . T0 = 1

(ωi + 1)

√
4

3κρ0

≈ T + R2

2

√
κρ0

3 + R2

12 (1− 3ωi)κρ0∆T + . . . (2.80)

Thus, the linearized coordinate transformation between FLRW and SSωi spacetimes for an

arbitrary perfect fluid with equation of state pi = ωiρi are given by

t = T + R2

2

√
κρ0

3 + R2

12 (1− 3ωi)κρ0∆T +O
(
(κρ0)2

)
(2.81a)

r = R

(
1 + ∆T

√
κρ0

3 −
∆T 2

12 (1 + 3ωi)κρ0

)
+O

(
(κρ0)2

)
. (2.81b)

These will be the relevant expressions for GW analysis in chapter 3. It can be noted that at

first order, the coordinate transformation has the same functional behavior of SdS transfor-

mations (2.16).

SSD spacetime

If in the SSωi spacetime we set ωi = 0 the solutions for a SSD spacetime should be repro-

duced. The equation (2.75), by setting ωi = 0, becomes

ds2 = −
(

1 + κρdr
2

6

)
dt2 +

(
1 + κρdr

2

3

)
dr2 + r2dΩ2. (2.82)

Additionally, the coordinate transformations (2.81a) and (2.81b), by setting ωi = 0, become

t = T + R2

2

√
κρd0

3 + R2

12 κρd0∆T +O
(
(κρ0)2

)
(2.83a)

r = R

(
1 + ∆T

√
κρd0

3 − ∆T 2

12 κρd0

)
+O

(
(κρ0)2

)
. (2.83b)
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These results are important because they perfectly agree with the metric and linearized co-

ordinate transformation between FLRW and SSD spacetime found in [4], so it confirms that

the generalization works, at least for this case. In fact, one can note that the generalization

also “works” for the case ωi = −1, because it gives the same functional behavior that SdS

linear equations (2.71), (2.73a) and (2.73b). Nevertheless, starting the demonstration we

have assumed that ωi 6= −1, reason why we do not consider this case as a validation.

Full ΛCDM spacetime

Next, we will consider a composite spacetime. It will be filled by Dark Energy (due to a

cosmological constant contribution, ωi = −1), non-relativistic matter (baryonic and Dark

Matter, ωi = 0) and radiation (photons and neutrinos, ωi = 1/3). This spacetime is the

basis of ΛCDM model and modern cosmology.

First of all, it is necessary to obtain a full scale factor for the FLRW spacetime, which will

be the solution of 1st Friedmann Equation

(
ȧ

a

)2
= κ

3 (ρd + ρΛ + ρr) = κ

3

ρd0

(
a0

a(T )

)3

+ ρr0

(
a0

a(T )

)4

+ ρΛ

 . (2.84)

It is difficult to find an analytical solution. However, we can solve it by a series method, at

least up to first order in ∆T . Let us use the convention a0 = 1 and the ansatz

a(T ) = 1 + ε∆T +O
(
(∆T )2

)
. (2.85)

Inserting last expression into (2.84) gives

ε2

(1 + ε∆T )2 = κ

3

(
Λ
κ

+ ρd0

(1 + ε∆T )3 + ρr0
(1 + ε∆T )4

)
. (2.86)

Verifying the zero order at ∆T we find the relation

ε2 = κ

3

(
Λ
κ

+ ρd0 + ρr0

)
→ ε =

√
Λ + κρd0 + κρr0

3 . (2.87)
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Thus, the scale factor a first order in
√

Λ is of the form

a(T ) = 1 +
√

Λ + κρd0 + κρr0
3 ∆T +O(Λ). (2.88)

Actually, it is easy to show that for a effective energy density of the form

ρeff(T ) =
n∑
i=1

ρi(T ), (2.89)

where ρi(T ) are arbitrary functions of T and full scale factor at first order in ∆T is given

by

a(T ) = 1 + ∆T
√√√√κ

3

n∑
i=1

ρi0 ρi0 = ρi(T0). (2.90)

Then, we can take advantage of additivity under the square root in the scale factor. Let us

take root term as the leading term. Then, from (2.88), (2.81a) and (2.81b), it follows that

t = T + R2

2

√
Λ + κρr0 + κρd0

3 +O(Λ) (2.91a)

r = R

1 + ∆T
√

Λ + κρr0 + κρd0

3

+O(Λ). (2.91b)

These transformations show that limits for individual fluid are recovered for each respective

ωi: All they satisfy (2.81a) and (2.81b) by itself. Furthermore, from linear additivity of

metrics we can construct the full linearized spacetime metric of ΛCDM model

ds2 = −
[
1 + κρdr

2

6 + κρrr
2

3 − Λ
3 r

2
]

dt2 +
[
1 + κρdr

2

3 + κρrr
2

3 + Λ
3 r

2
]

dr2 + r2dΩ2.

(2.92)
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2.4. Relevance for Gravitational Waves

The only remaining piece is the connection between previously derived coordinate trans-

formations and propagation of GW. Using (2.91a) and (2.91b), the harmonic solution of

propagating GW (1.31) is expressed in the new coordinates as follows

h′
(GW)
µν = 1

R

1−R
√

Λ + κρr0 + κρd0

3

E ′µν cos [weffT − keffR]+D′µν sin [weffT − keffR]
,

(2.93)

where weff and keff are defined as

weff ≡ Ω
1−R

√
Λ + κρr0 + κρd0

3

 keff ≡ Ω
1− R

2

√
Λ + κρr0 + κρd0

3

 .
(2.94)

This result is important: Not only Doppler effect is reproduced in weff. Also wave number

is affected by Universe expansion, which is a phenomenon not considered previously [4].
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3. POSSIBLE MEASUREMENTS USING PTA

The main results of previous chapter, i.e. equations (2.93) and (2.94), show that perturba-

tions of spacetime due to gravitational waves, described from Earth using (T,R) coordi-

nates, carry cosmological information if the source is at a large distance enough.

In this chapter it will be shown that this information can be observationally measured. For

this, we will use the light coming from a pulsar1 and the shift in timing arrival of the pulse

due to a gravitational wave interaction. We will see this timing residual could be measured

by Pulsar Timing Array (PTA) projects in nearly future, so equations developed previously

configure potential scientific predictions.

3.1. One pulsar configuration

  

Ze

α L

P

GW Source

Earth

Pulsar

Mil
ky 
Wa
yAc

ce
le
ra
te
d 

Ex
pa
ns
io
n

FIGURE 3.1. Setup of the relative situation of a GW source (R = 0), Earth (Z =
Ze) and a nearby Pulsar located at P = (PX , PY , PZ) referred to the source. The
Z direction is chosen to be defined by the source-Earth axis. Polar and azimuthal
angles are α and β respectively, from Z axis. (Self-elaborated image).

Let us consider the set up in Figure 3.1 with a GW source, Earth and a nearby Pulsar.

The Earth-pulsar distance is L and the Earth-GW Source distance is Ze. Earth and pulsar
1From pulsating star: A magnetized rotating neutron star or white dwarf that emits a beam of radiation.
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are gravitationally bounded to Milky Way, so they do not feel Universe expansion. How-

ever, GW source and the system Earth-pulsar are not bounded, so they do feel accelerated

expansion and, therefore, the discussion and results of previous chapter can be applied.

The Pulsar emits light with a particular electromagnetic field. Denote the time-dependent

phase of this field at the pulsar as φ0. Then, the phase of the electromagnetic field measured

from Earth is given by

φ(T ) = φ0

[
T − L

c
− τ0(T )− τGW(T )

]
(3.1)

where c the speed of light2, τ0(T ) is the timing correction associated to the spacial motion

of the Earth respect to the Solar system (which will not be considered) and τGW(T ) is the

timing correction due to Gravitational Wave influence.

3.2. Timing residual due to GW for one pulsar

It can be shown [27, 28] that the last correction of (3.1) is given by,

τGW(T ) = −1
2 n̂

in̂jHij(T ) (3.2)

where n̂ = (− sinα cos β,− sinα cos β, cosα) is a unit vector pointing from Earth towards

the pulsar and Hij is the integral of the transverse-traceless metric perturbation along the

null geodesic in the path pulsar-Earth, which could be parametrized by

R(x) = P + L(1 + x)n̂ withx ∈ [−1, 0].

Under this parametrization, Hij(T ) takes the following form

Hij(T ) = L

c

∫ 0

−1
h′

(GW)
µν

(
T + L

c
x, |R(x)|

)
dx. (3.3)

2From now we will recover original units.
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Note that in our framework, GW source is far from Earth, then we can assume L
Ze
� 1 and

then

R(x) = P + L(1 + x)n̂ = (−xL sinα cos β,−xL sinα sin β, Ze + xL cosα)

|R(x)| = (Z2
e + 2xLZe cosα + x2L2)1/2 = Ze

(
1 + 2xL

Ze
cosα + x2L2

Z2
e

)1/2

≈ Ze

(
1 + 2xL

Ze
cosα

)1/2
≈ Ze

(
1 + xL

Ze
cosα

)
= Ze + xL cosα.

Thus, we have to evaluate h′(GW)
µν (T,R) from (2.93), with

T → Te + L

c
x R→ Ze + xL cosα,

where Te = Ze

c
. Now we can contract the equation (3.2) using (3.3). However, in the TT-

Lorenz gauge, for a GW propagating through the Z axis, the only non-zero values of E ′µν
and D′µν are in the X,Y components [1].

If, just for simplicity, we additionally assume that
∣∣∣E ′µν ∣∣∣ =

∣∣∣D′µν ∣∣∣ ≡ ε ∀µ, ν, then for

ΛCDM spacetime the timing residual is given by

τΛCDM
GW =− Lε

2c (sin2 α cos2 β + 2 sin2 α cos β sin β − sin2 α sin2 β)

×
∫ 0

−1

1−
√

Λ+κρd0+κρr0
3

[
Te + xL

c

]
Ze + xL cosα [cos Θ(x) + sin Θ(x)]dx, (3.4)

where

Θ(x) =Ω
1− Ze + xL cosα

c

√
Λ + κρd0 + κρr0

3

(Te + xL

c

)
(3.5)

− Ω
1− Ze + xL cosα

2c

√
Λ + κρd0 + κρr0

3

(Ze + xL cosα
c

)
. (3.6)
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If we consider the simple case of a GW propagating in the same plane of the pulsar emis-

sion, then β → 0 and τΛCDM
GW takes the form

τΛCDM
GW (α) = −Lε sin2 α

2c

∫ 0

−1

1−
√

Λ+κρd0+κρr0
3

[
Te + xL

c

]
Ze + xL cosα [cos Θ(x)+sin Θ(x)]dx, (3.7)

while the case of propagation of GW through Minkowski spacetime (Λ→ 0) reduces to

τMink
GW (α) = −Lε sin2 α

2c

∫ 0

−1

cos[Ω
(
Te + xL

c
− Ze+xL cosα

c

)
]

Ze + xL cosα dx. (3.8)

3.3. Numerical analysis of timing residual

To perform a numerical analysis we have to choice some reasonable values of the parame-

ters in (3.7) in order to visualize the τGW behavior.

The setup described in Figure 3.1 can be modeled with the following set of values

Parameters values
Ze 3× 1024 m ∼ 100000 kpc
Te Ze/c = 1016s ∼ 300 Myr
L 1019m ∼ 1000 ly
Ω 10−8 rad/s
ε 1.2× 109 m

TABLE 3.1. List of values considered for the parameters in the numerical analysis
of timing residual τGW. The same values will be used in all cases.

For the GW source, we choose a large distance Ze, but we can note that it is not a cos-

mological distance near to Big Bang. On the other hand, the distance between Earth and

pulsar is within the margin of a galactic scale. It can be seen that L� Ze, as required.

The angular frequency is of the expected order for future PTA projects, in particular, for

International Pulsar Timing Array. The same argument is used to fix ε, due to that it satisfies

|h| ∼ ε
R
∼ 10−15, where |h| is the expected accuracy of PTA projects [29].
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In the first place, we compare the results of Timing Residual in the Minkowski spacetime,

with different distances for the GW source.

Timing Residual Minkowski - Ze

τ G
W

 [s
]

-5e-08

0

5e-08

1e-07

1,5e-07

2e-07

2,5e-07

3e-07

α [rad]
0 0,5 1 1,5 2 2,5 3

Ze = 3 · 1024 m
Ze = 7 · 1024 m
Ze = 1024 m

FIGURE 3.2. Raw timing residual for flat spacetime, with different distances of the
GW source.

We can note that as the GW source moves away, the magnitude of the time residual de-

creases and vice versa. Varying now the angular frequency of the GW source we obtain.

Timing Residual Minkowski - Ω

τ G
W
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Ω = 1.5 · 10-8 rad/s
Ω = 3 · 10-9 rad/s

FIGURE 3.3. Raw timing residual for flat spacetime, with different angular fre-
quencies of the GW source.
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From the last two figures, we can notice a close relation between the properties of the GW

source and the behavior of the Timing Residual of the pulsar emission. Moreover, if we

now consider the SdS case (Λ 6= 0), the relation is even more evident.

Timing Residual SdS - Comparative

τ G
W
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Ze = 7 · 1024 m , Ω = 10-9 rad/s

FIGURE 3.4. Raw timing residual for SdS spacetime, with different angular fre-
quencies and distances of the GW source.

We can notice a notorious peak in the residual time. This peak will be observed in each case,

with great differences between the kind of components present in the respective Universe.

Timing Residual - Different Universes
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FIGURE 3.5. Raw timing residual for different spacetimes. The source–Earth dis-
tance Ze and the angular frequency Ω are fixed parameters, given by the table 3.1.
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In the last figure we used the appropriated limits of ΛCDM model in the equation (3.7). For

example, the SdS case means Λ 6= 0 and every other component equals to zero, the SSD

case means ρd0 6= 0 and every other component is zero and so on.

The figure 3.5 shows us that the composition of the Universe in the present affects the be-

havior of timing residual. We can notice that the angular position of the peak, in which the

timing residual is maximized, changes at each case. For instance, in the SdS case the peak

is located at ∼ 0.19 rad, while in the ΛCDM case the peak is located at ∼ 0.23 rad.

Even more, the amplitude of the time residuals increases in a non depreciable percentage

when we add matter into the effective density of the ΛCDM model. For example, the abso-

lute value of the peak in the case SdS reaches 3.2 · 10−7 s, while in the ΛCDM case reaches

4.3 · 10−7 s, which means a 34% of difference between both cases.

From the discussion in [3], the angular position of the enhancement in the peak of timing

residual that appears in the Figure 3.5 could be related with a stationary line of the wave in

which the phase of GW remains almost constant along the trajectory from pulsar to Earth.

Nevertheless, the nature of the peak and the influence of the cosmological parameters in

the behavior of the timing residual is not fully understood yet. We are not able to give a

complete qualitative explanation of the phenomenon due to the several factors involved in

the measurement of timing residual coming from pulsars. Actually, is one of the missing

pieces in the puzzle and it should be studied in the future research.
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3.4. Using pulsars catalog

In order to make an analysis of the possible signal shown in the previous figures, we will use

some pulsars from ATNF catalog [30]. As we know, pulsars are stable clocks whose periods

are known with great accuracy. Assuming a modest precision of σt = 9.6×10−7s ≈ 10−6s.

This value is not arbitrary, it is obtained by averaging the precision achieved of best pulsar

in International PTA project [2].

We can define a statistical significance of the timing residual, which tell us how good a

possible measurement could be if our hypothesis is correct, of the form

σ =

√√√√√ 1
NpNt

Np∑
i=1

Nt∑
j=1

(
τGW(Te, Li, αi, βi, Ze,Ω, ε,Λ)

σt

)2

, (3.9)

where index i running from 1 to Np (number of pulsars averaged) and j running from 1 to

Nt (number of observations). Assuming we perform measurements every 11 days through

3 years, then Nt = 101. The pulsars considered are shown in Table 3.2.

Pulsars from ATNF Catalogue φ Li
J0024-7204E −44.89◦ 4.69 kpc
J0024-7204D −44.88◦ 4.69 kpc
J0024-7204M −44.89◦ 4.69 kpc
J0024-7204G −44.89◦ 4.69 kpc
J0024-7204I −44.88◦ 4.69 kpc

TABLE 3.2. List of pulsars averaged for an hypothetical source at angular sep-
aration α. It is shown the data given in [30], where φ is the galactic latitude –
transformed to βi– and Li the distance between Earth and pulsar. We can note that
this set simplify the computation of σ because all pulsars are near each other.

We will keep α as a free parameter and suppose that an hypothetical GW source is located

at α radians between Earth and pulsars. Thus, the statistical significance for this set of

parameters is given by

σ(α) =

√√√√√ 1
5 · 101

5∑
i=1

101∑
j=1

(
τGW(βi)
σt

)2

(3.10)

35



For the case of Minkowski flat spacetime we obtain

Statistical Significance Minkowski spacetime

σ(
α)

0
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α [rad]
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FIGURE 3.6. σ(α) in Minkowski spacetime, no relevant signal observed.

If we consider now the other components we get the following plot

Statistical Significance - Different models
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 SdS
 SSD+Λ
 ΛCDM

FIGURE 3.7. σ(α) in different spacetimes. A huge peak is observed near 0.2 rad.
Green and blue curves are almost the same, due to SSD+Λ and ΛCDM models are
very close each other.
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It is clearly noted that a huge peak of 4.8σ is observed approximately in α = 0.19 rad in

the SdS case and a peak of 5.6σ is observed in α = 0.21 rad in the ΛCDM case, which

tell us that the composition of the Universe could be involved in the angular position of the

peak of the timing residual. We can note that as we incorporate elements into spacetime,

the angle of peak slightly increases. Also, it is very important to note that for a full ΛCDM

spacetime an hypothetical signal with significance of 5.3σ could be observed. However,

this could be a very idealized situation.

Thus, we can develop a more realistic simulation. In the figure 3.7, only a cluster of 5

pulsars were considered and all of them were averaged at the same angle α. However, in

the actual catalog, many pulsars are present at different angles (in the galactic coordinates).

We have considered 13 well distributed groups of 5 pulsars each (65 pulsar in total) and a

gravitational wave source located at galactic coordinates θS = 20◦ and φS = 15◦. Then,

we averaged them using the statistical significance given by

σk =

√√√√√ 1
5 · 101

5k∑
i=1

101∑
j=1

(
τGW(Li, αi, βi)

10−6

)2

(3.11)

and plot it as a function of the average angle of the group, σ̄k = ∑5k
i=1

αi

5 , as follows

Statistical Significance - Different models
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FIGURE 3.8. Statistical significance at different spacetimes using a more realistic
set of pulsars. A huge peak is observed again, but both points are referred to a
cluster of pulsar located near to the peak of maximum effect.
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The last plot shows a very similar behavior of the statistical significance to the figure 3.7.

There is a huge peak at certain angles for each kind of Universe (SdS or ΛCDM) and for

the rest of angles the significance goes to almost zero. This means that if a gravitational

wave signal is measured and a cluster of pulsars is located just at the angle in which the

effect of timing residual is maximized, the significance of the observation could reach 5.5σ

in the case of ΛCDM model. Obviously, this is a particular situation that not always could

happen, so we have to be cautious about the expectation of getting positive and powerful

results.

However, one can expect that eventually, if future PTA projects reach an enough accuracy

and the catalog of pulsars increases their number, a potential signal of timing residual due

to gravitational waves could be measured from Earth with a certain degree of statistical

significance.

Moreover, in our proposed physical scenario, no peak is observed in Minkowski spacetime.

Therefore, if a signal is measured, it could give us a notion of the cosmological components

of the Universe at the present using only local measurements methods, which is a new

approach of cosmological observations that should be considered in the future research.
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4. CONCLUSIONS AND OUTLOOK

A complete investigation line developed in [1–4] was reviewed. It was shown that there

is an influence of accelerated expansion of Universe in the propagation of Gravitational

Waves due to a coordinate transformation between the GW source coordinates and the

cosmological observer ones (i.e. GW described by an observer located in Earth).

The functional behavior of this influence was found and it was generalized for an arbitrary

perfect fluid as background of spacetime. A numerical analysis of the exact solutions ob-

tained was done, finding that a signal of this influence in a full ΛCDM spacetime could be

observed with a statistical significance of 5.5σ in a particular case.

These results are very impressive due to the conceptual simplicity of the hypothesis: Just

a coordinate transformation will give us a observational signal that could be measured in

the next years. Not only that, also it give us a powerful tool for doing local measurements

of cosmological parameters as Λ or the components of Universe (e.g. radiation or non-

relativistic matter). These results could mean an important and independent validation

of cosmological parameters that now are in dispute (as H0). Besides, it could imply a

resurgence in interest about PTA observations, which results should arrive in the next years.

As a natural extension of this investigation, it is proposed to do an exhaustive and rigorous

numerical analysis as it was done in [2] but considering others components of the Universe.

Furthermore, this work can be used to study if the same effects due to coordinates trans-

formation are present in other models of gravitation. For example, δ̃–Gravity, a model

presented in [31, 32], does not need a cosmological constant in order to obtain a acceler-

ated expansion of Universe [33, 34], but it needs a radiation component in the Universe

background that was not studied before. In this model it was found that the cosmological

constant is actually not always constant [35], therefore, from the work developed in this

report it could be studied the effects of GW for other forms of Λ. To do that, we have

to find the metrics that describes the geometry of spacetime from the GW source and the

respective coordinate transformation into a FLRW metric using, for instance, δ̃–Gravity

Field Equations.
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APPENDIX A. DERIVATION OF SCHWARZSCHILD METRIC

The most general metric that is static and spherically symmetric (conditions from section

1.2) is given by

gµνdxµdxν = −A(r)dt2 +B(r)dr2 + r2[dθ2 + sin2(θ)dφ2], (A.1)

where A(r) and B(r) are unknown functions that depend only of r. If we multiply the

Einstein Field Equations (1.4) by gµν and sum over follows that

gµνRµν −
1
2Rg

µνgµν = κgµνTµν → R− 2R = κT → R = −κT, (A.2)

where we used that R ≡ gµνRµν , from (1.2) δµµ = 4 and T ≡ T µµ is the trace of Stress-

Energy tensor. Thus, for a vacuum solution T = 0, then R = 0 and EFE now reads

Rµν = 0. (A.3)

When computing Ricci tensor components, using (A.1), we obtain

Rrr = −A
′′(r)

2A(r) + 1
4

(
A′(r)
A(r)

)[
B′(r)
B(r) + A′(r)

A(r)

]
+ 1
r

(
B′(r)
B(r)

)
(A.4)

Rtt = A′′(r)
2B(r) −

1
4

(
A′(r)
B(r)

)[
B′(r)
B(r) + A′(r)

A(r)

]
+ 1
r

(
A′(r)
B(r)

)
(A.5)

Rθθ = 1 + r

2B(r)

[
B′(r)
B(r) −

A′(r)
A(r)

]
− 1
B(r) (A.6)

Rφφ = sin2(θ)Rθθ (A.7)

From (A.3); Rrr = 0, Rtt = 0 and Rθθ = 0. It can be noted that

Rrr

B(r) + Rtt

A(r) = 1
rB(r)

(
B′(r)
B(r) + A′(r)

A(r)

)
!= 0, (A.8)
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then A(r)B′(r) +B(r)A′(r) = 0, so

d
dr

(
A(r)B(r)

)
= 0→ A(r)B(r) = C, (A.9)

with C a constant. If we now impose that the spacetime must be asymptotically flat (i.e

limr→∞ gµν = ηµν) it follows that C = 1. Thus, A(r) = [B(r)]−1. Replacing the last

expression into (A.6) gives

Rθθ = 1− r

B(r)
A′(r)
A(r) −

1
B(r) = 1− rA′(r)− A(r) = 1− d

dr

(
rA(r)

)
= 0. (A.10)

Integrating with respect to r, we obtain thatA(r) = 1+D
r

, withD a constant. At Newtonian

limit gtt ≈ −1− 2φ = −1 + 2M
r

. Comparing, can be inferred that D = −2M , where M is

the mass of gravitational source. Finally, the Schwarzschild metric is

gµνdxµdxν = −
(

1− 2M
r

)
dt2 + dr2

1− 2M
r

+ r2dΩ2, (A.11)

where dΩ2 = dθ2 + sin2(θ)dφ2.
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APPENDIX B. DERIVATION OF SDS METRIC

In a de Sitter spacetime we use the generalized Einstein Field Equations. Thus, following

the same steps as before, let multiply (1.5) by gµν and sum over components

R− 2R + 4Λ = κT → R = 4Λ− κT. (B.1)

Then, a vacuum solution requires that

Rµν = Λgµν . (B.2)

Conveniently we note that

Rrr

B(r) + Rtt

A(r) = Λgrr
B(r) + Λgtt

A(r) = Λ
(
B(r)
B(r) −

A(r)
A(r)

)
!= 0, (B.3)

and as components of Ricci tensor do not change, the same procedure as before can be

done. In particular, from last equation is clearly that again A(r) = [B(r)]−1. Then, from

(A.10) and (B.2) the θθ component of Ricci tensor must satisfy

Rθθ = 1− d
dr

(
rA(r)

)
= Λgθθ = Λr2. (B.4)

Integrating the last expression and applying the appropriate limits, we obtain

A(r) = 1− 2M
r
− Λ

3 r
2. (B.5)

Finally, the Schwarzschild-de Sitter metric (SdS) is given by

gµνdxµdxν = −
(

1− 2M
r
− Λ

3 r
2
)

dt2 + dr2

1− 2M
r
− Λ

3 r
2

+ r2dΩ2. (B.6)
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APPENDIX C. DERIVATION OF FRIEDMANN EQUATIONS

The components of Stress-Energy tensor for a perfect fluid in thermodynamic equilibrium

are given by

Tµν = (ρ+ p)UµUν + pgµν , (C.1)

where ρ is the rest energy density and p is the isotropic pressure. In the FLRW comov-

ing coordinates it holds that Uµ = Uµ = (−1, 0, 0, 0) due to normalization condition

gµνU
µUν = −1. Thus, in FLRW coordinates it follows that

[Tµν ] =



ρ 0 0 0

0 p a2 0 0

0 0 p a2 0

0 0 0 p a2


. (C.2)

Additionally, for several non-interacting fluid components we can define a equation of state

that relates pressure and energy density

pi = ωiρi, (C.3)

where i will label the fluid component and ωi is a constant which characterizes the type of

fluid. For example, ω = 0 corresponds to Dust and ω = 1/3 to Radiation.

For the metric given by (1.10), the components of Ricci Tensor and scalar curvature in

Cartesian coordinates (dl2 = dx2 + dy2 + dz2) are given by

R00 = −3 ä
a

Rii = aä+ 2ȧ2 Rij = 0 R = 6
[
ä

a
+
(
ȧ

a

)2]
(C.4)
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where a = a(T ) is the factor scale and a dot means derivative respect T . From Stress-

Energy tensor of perfect fluid (C.2) and the components of Ricci tensor (C.4) it follows

that the 00 component of generalized Einstein Field Equations (1.5) takes the form

R00 −
1
2g00R + Λg00 = κT00

−3 ä
a

+ 3
[
ä

a
+
(
ȧ

a

)2]
− Λ = κρi

(
ȧ

a

)2
= κρi + Λ

3 .

Defining ρΛ ≡ Λ
κ

, we obtain the 1st Friedmann Equation

(
ȧ

a

)2
= κ

3 (ρi + ρΛ) . (C.5)

For ii component of generalized EFE (1.5), it follows that

Rii −
1
2giiR + Λgii = κTii

aä+ 2ȧ2 − 3a2
[
ä

a
+
(
ȧ

a

)2]
+ Λa2 = κ pi a

2

−2äa− ȧ2 + Λa2 = κ pi a
2.

Dividing by a2 and using ρΛ we get

2
(
ä

a

)
+
(
ȧ

a

)2
= κ(ρΛ − pi).

When replacing (C.5) into last equation the 2nd Friedmann Equation is obtained

(
ä

a

)
= κ

(
ρΛ

3 −
ρi
6 −

pi
2

)
. (C.6)
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APPENDIX D. DERIVATION OF LINEARIZED EFE

In linearized Gravity we consider a little perturbation of flat spacetime given by

gµν = ηµν + hµν |hµν | � 1 (D.1)

From now we will consider only contributions at first order in hµν , which will imply that the

indices will be raised and lowered by means of the ηµν and ηµν respectively. For example,

hβα = ηβµhµα hαβ = ηαµhβµ = ηαµηβνhµν (D.2)

Let us start linearizing Christoffel symbols

Γµαβ ≡
1
2g

µν
(
∂αgβν + ∂βgνα − ∂νgαβ

)
= 1

2η
µν
(
∂αhβν + ∂βhνα − ∂νhαβ

)
+O

(
h2
)

= 1
2

(
∂αh

µ
β + ∂βh

µ
α − ηµν∂νhαβ

)
+O

(
h2
)

(D.3)

Therefore, linearizing Riemann curvature tensor gives

Rµνρσ ≡ gρλ

(
∂µΓλνσ − ∂νΓλµσ + ΓλµηΓηνσ − ΓλνηΓηµσ

)
= ηρλ

(
∂µΓλνσ − ∂νΓλµσ

)
+O

(
h2
)

= 1
2

(
∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ

)
+O

(
h2
)

(D.4)
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Next, linearizing Ricci tensor gives

Rµν ≡ gρσRρµσν = ηρσRρµσν +O
(
h2
)

= 1
2

(
∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh−�hµν

)
+O

(
h2
)
, (D.5)

where h ≡ ηαβhαβ is the trace of metric perturbation and � is the d’Alambertian operator

defined in flat Minkowski spacetime as � ≡ ηµν∂µ∂ν = −∂2
t + ∂2

x + ∂2
y + ∂2

z . The scalar

curvature also must be linearized

R ≡ gµνRµν = ηµνRµν +O
(
h2
)

(D.6)

= ∂µ∂νh
µν −�h+O

(
h2
)
. (D.7)

Thus, using the expressions in (D.5) and (D.7) into (1.3) give us a linearized version of

Einstein tensor

Gµν ≡ Rµν −
1
2Rgµν = Rµν −

1
2Rηµν +O

(
h2
)

= 1
2

(
∂µ∂αh

α
ν + ∂ν∂αh

α
µ − ∂µ∂νh−�hµν + ηµν(�h− ∂α∂βhαβ)

)
+O

(
h2
)
. (D.8)

If we introduce the trace-reversed metric perturbation

h̄µν ≡ hµν −
1
2ηµνh hµν = h̄µν −

1
2ηµν h̄ h̄ = −h, (D.9)

the linearized Einstein tensor becomes

Gµν = 1
2

(
∂µ∂αh̄

α
ν + ∂ν∂αh̄

α
µ −�h̄µν − ηµν∂α∂βh̄αβ

)
+O

(
h2
)
. (D.10)
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Thus, linearized EFE becomes

∂µ∂αh̄
α
ν + ∂ν∂αh̄

α
µ −�h̄µν − ηµν∂α∂βh̄αβ = 2κTµν +O

(
h2
)
. (D.11)

The last set of equations is linear in hµν but it is still difficult to solve. In order to simplify

even more (D.11) we can use a very important property: The gauge invariance. Let us

consider the most general coordinate transformation that leaves the field weak, it will be a

infinitesimal gauge transformation of the form

xα → x′
α = xα + ξα(xβ), (D.12)

where the functions ξα are small in the sense that |∂βξα| � 1. From (1.2), the transformed

metric components g′αβ can be written as

g′αβ = ηαβ + h′αβ +O
(
(∂ξ)2

)
, (D.13)

with h′αβ ≡ hαβ − ∂αξβ − ∂βξα and then
∣∣∣h′αβ∣∣∣ � 1. Using (D.9) and applying the gauge

transformation it follows that

h̄′αβ = h̄αβ − ∂αξβ − ∂βξα + ηαβ∂µξ
µ. (D.14)

We can note if ∂βh̄αβ = 0 the linearized EFE simplifies considerably. To impose these con-

ditions (they are four equations) we have to show that it is possible to find new coordinates

where conditions hold. Thus, for the new coordinates it follows that

∂βh̄′
βα = ∂βh̄

αβ + 1
2�ξ

α. (D.15)

It is evident that ∂βh̄′
βα = 0 implies a Poisson equation for ξα,

�ξα = −2∂βh̄αβ, (D.16)

50



whose solution always can be found. Therefore, linearized EFE is gauge invariant and we

can impose the previous conditions in order to simplify linearized EFE.

The set of four conditions

∂βh̄
βα = 0, (D.17)

are called the Lorenz Gauge. If we take a set of coordinates that satisfies the Lorenz gauge

conditions, from (D.10), the linearized Einstein Field Equations (1.5) will given by

�h̄µν = −2Ληµν − 2κTµν +O
(
h2
)
. (D.18)

We also can note that any set of coordinates ζα that satisfy

�ζα = 0, (D.19)

also satisfy the Poisson equation

�(ξα + ζα) = −2∂ββh̄αβ (D.20)

and instantaneously will satisfy gauge conditions. Therefore, the Lorenz gauge do not

completely fix the gauge. In fact, we will say that it is a class of gauges.
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