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Summary.

We present a model of the gravitational field based on two symmetric tensors, gµν and

g̃µν . Besides, we have a new matter fields given by φ̃I = δ̃φI , where φI are the original

matter fields. We call them δ̃ matter fields. This theory have a excellent properties in a

quantum level. It lives at one loop only, the classical equations of motion to the original

fields are conserved and it is finite quantum theory in the vacuum. We call this theory

δ̃ gravity. Then, we find that massive particles do not follow a geodesic while massless

particles trajectories are null geodesics of an effective metric. We analyze some cases to

study the effect of the new gravitational fields. In first place, we see the Schwarzschild

case, where we get a modified deflection of the light produced by the sun. In second

place, we see the Cosmological case, where we get an accelerated expansion of the Uni-

verse without dark energy. We obtain a different age of the universe and we obtain that a

Big-Rip is necessary to explain the expansion. Finally, we see the Non-Relativistic case,

where we obtain the Post-Newtonian limit. We do a little analysis in the Newtonian limit

to interpret the dark matter like δ̃ matter.
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Introduction.

We know that general relativity (GR) has been tested on scales larger than a millimeter

to the solar-system scale [1, 2]. Nevertheless, its quantization has proved to be difficult,

though. The theory is non-renormalizable, which prevents its unification with the other

forces of nature. Trying to make sense of quantum GR is the main physical motiva-

tion of string theories, Loop Quantum Gravity and others [3]-[10], but none has been

accepted as the correct and final answer to the problem of quantum gravity. Moreover,

recent discoveries in cosmology have revealed that most part of matter is in the form of

unknown matter, dark matter [11]-[19], and that the dynamics of the expansion of the

Universe is governed by a mysterious component that accelerates the expansion, dark

energy [20]-[22]. Although GR is able to accommodate both dark matter and dark en-

ergy, the interpretation of the dark sector in terms of fundamental theories of elementary

particles is problematic [23]. Although some candidates exists that could play the role

of dark matter, none have been detected yet . Also, an alternative explanation based on

the modification of the dynamics for small accelerations cannot be ruled out [24, 25].

In GR, dark energy can be explained if a small cosmological constant (Λ) is present.

In early times, this constant is irrelevant, but at the later stages of the evolution of the

Universe Λ will dominate the expansion, explaining the acceleration. Such small Λ is

very difficult to generate in quantum field theory (QFT) models, because Λ is the vac-

uum energy, which is usually very large [26].

One of the most important mysteries in cosmology and cosmic structure formation is

to understand the nature of dark energy in the context of a fundamental physical theory

[27, 28]. In recent years there has been various proposals to explain the observed accelera-

tion of the Universe. They include some additional fields in approaches like quintessence,

chameleon, vector dark energy or massive gravity; The addition of higher order terms in

the Einstein-Hilbert action, like f(R) theories and Gauss-Bonnet terms and finally the
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introduction of extra dimensions for a modification of gravity on large scales (See [29]).

Less widely explored, but interesting possibilities, are the search for non-trivial ultra-

violet fixed points in gravity (asymptotic safety [30]) and the notion of induced gravity

[31]-[34]. The first possibility uses exact renormalization-group techniques [35]-[38] to-

gether with lattice and numerical techniques such as Lorentzian triangulation analysis

[39]. Induced gravity proposes that gravitation is a residual force produced by other

interactions.

Recently, in [40, 41] a field theory model explores the emergence of geometry by the

spontaneous symmetry breaking of a larger symmetry where the metric is absent. Pre-

vious work in this direction can be found in [42]-[48].

In this paper, we present a model of gravitation that is very similar to classical GR,

but could make sense at the quantum level. In the construction, we consider two dif-

ferent points. The first is that GR is finite on shell at one loop in the vacuum [3], so

renormalization is not necessary at this level. The second is a type of gauge theories, δ̃

gauge theories (DGT), presented in [49, 50], which main properties are: (a) New kind

of fields are created, φ̃I , from the originals φI . (b) The classical equations of motion of

φI are satisfied in the full quantum theory. (c) The model lives at one loop. (d) The

action is obtained through the extension of the original gauge symmetry of the model,

introducing an extra symmetry that we call δ̃ symmetry, since it is formally obtained as

the variation of the original symmetry. When we apply this prescription to GR we obtain

δ̃ gravity. Quantization of δ̃ gravity is discussed in [51].

Here, we study the classical effects of δ̃ gravity. In first place, we will study the

Schwarzschild case outside the matter like a simple example. Then, we will use this

solution, in a Newtonian approximation, to calculate the deflection of light produced by

the sun with δ̃ gravity to compare this result with GR. This difference must be very

small to explain the experimental result and be agreed with GR outside the matter in

a solar system scale. The exact solution could be used in black holes. In second place,

we will study the cosmological case to explain the accelerate expansion of the universe

without dark matter. For this, we will assume that the Universe only has two kind of

components, non relativistic matter and radiation (massless particles), which satisfy a

fluid-like equation p = ωρ. In contrast to [52], where an approximation is discussed, in
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this work we find the exact solution of the equations corresponding to the above suppo-

sitions. This solution is used to fit the supernova data and we obtain a physical reason

for the accelerated expansion of the Universe within the model: the existence of massless

particles. If massless particles were absent, the expansion of the Universe would be the

same as in GR without a cosmological constant. The calculus done in [53] and here is

the same with the difference that we incorporate δ̃ matter, plus a delta gauge fixing, in

this work. For this, the final result is different, however the reason to explain the expan-

sion of the universe is the same. In the Conclusions we speculate on a possible physical

mechanism that could stop the accelerated expansion and prevent the appearance of a

Big Rip. Finally, we will study the Non-Relativistic case, where we obtain the Newtonian

and Post-Newtonian limit. We verify that, a Newtonian level, δ̃ gravity is very similar

to GR if δ̃ matter is negligible. This is coincident with the Schwarzschild result in a

solar system scale, however in a different scale, like the a galaxy scale δ̃ matter could

be important such that explain dark matter. We obtain a relation between the ordinary

density and δ̃ matter density.

We can say that the main properties of this model at the classical level are: (a) We can

be agree with GR, far from the sources. In particular, the causal structure of δ̃ gravity in

vacuum is the same as in general relativity. (b) The Schwarzschild solution suggest that

we have a new physics in black holes (c) When we study the evolution of the Universe,

it predicts acceleration without a cosmological constant or additional scalar fields. The

Universe ends in a Big Rip, similar to the scenario considered in [54]. (d) The scale factor

agrees with the standard cosmology at early times and show acceleration only at later

times. Therefore we expect that density perturbations should not have large corrections.

(e) δ̃ matter could explain dark matter in the galaxy scale.

It was noted in [50] that the Hamiltonian of delta models is not bounded from below.

Phantoms cosmological models [54]-[58] also have this property, although it is not clear

whether this problem will subsist or not in a diffeomorphism-invariant model as δ̃ gravity.

Phantom fields are used to explain the expansion of the Universe. So, even if it could be

said that our model works on similar grounds, the accelerated expansion of the Universe

is really produced by a reduced quantity of a radiation component in the Universe, not

by a phantom field.

It should be remarked that δ̃ gravity is not a metric model of gravity because massive
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particles do not move on geodesics. Only massless particles move on null geodesics of a

linear combination of both tensor fields.

On Chapter 1, we will introduce the δ̃ theories in general and their properties. We

will define the δ̃ variation to clarify the basic natation. We will introduce the new trans-

formation produced by the δ̃ variation. We focus in the general coordinate transformation

because the Einstein-Hilbert action is invariant under this transformation. Finally, we

define the modified action that represent δ̃ theories in general. This action is invariant

under our extended transformation. On Chapter 2, we will present the δ̃ gravity action

that it is invariant under extended general coordinate transformation. we will find the

equations of motion of this action. We will see that the Einstein’s equation are valid

yet and we will obtain a new equation to g̃µν . In this equations are defined two energy

momentum tensors, Tµν and T̃µν . Finally, we will find this tensor to the perfect fluid. On

Chapter 3, we will find the equation of motion to the free particle. We distingue the

massive case, where the equation is not a geodesic, and the massless case, where we have

a null geodesic with a effective metric. On Chapter 4, we will study the Schwarzschild

Case. We will solve the equation of motion of gµν and g̃µν with appropriate boundary

conditions. Then, we will use this solution to calculate the deflect of light by the sun.

On Chapter 5, we will study the cosmological case. This chapter is the most important

of this work. We will solve the equation to FRW metric and then, we will assume an

universe without dark energy, only have non-relativistic matter and radiation to explain

the accelerate expansion of the universe with δ̃ gravity, assuming that we have δ̃ matter.

We will see that the most relevant element is the fraction between radiation and non-

relativistic matter density in the present. Finally, on Chapter 6, we will introduce the

non-relativistic case, where we calculate the Newtonian and Post-Newtonian limit. We

will verify the Schwarzschild result and we will do an initial analysis to introduce the

possibility to explain dark matter with δ̃ gravity, using δ̃ matter.

On Appendix A, we will calculate some relations to the equations of motion to δ̃

gravity and show the variations of Tµν necessary to the perfect fluid. On Appendix B,

we will calculate the variation of δ̃Gµν to calculate the equation of motion of g̃µν and

demonstrate that this equation is δ̃ of Einstein’s equation. On Appendix C, we will

write the relation between gµν and g̃µν in term of the Vierbein eaµ and the Vierbein tilde

ẽaµ. We need this to develop the perfect fluid analysis. Finally, on Appendix D, we will

show how fix the gauge in gµν and g̃µν for all the case that we solve in this work. For
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this, we will use the extended harmonic gauge.

It is important to notice that we work with the δ̃ modification to General Relativity,

based on the Einstein-Hilbert theory. From now on, we will refer to this model as δ̃

Gravity.

For notation, we will use the Riemann Tensor:

Rα
βµν = ∂µΓ α

νβ − ∂νΓ α
µβ + Γ α

µγ Γ γ
νβ − Γ α

νγ Γ γ
µβ (1)

where the Ricci Tensor given by Rµν = Rα
µαν , the Ricci scalar R = gµνRµν and:

Γ α
µν =

1

2
gαβ(∂νgβµ + ∂µgνβ − ∂βgµν) (2)

is the usual Christoffel symbol. Finally, the covariant derivative is given by:

DνAµ ≡ Aµ;ν = Aµ,ν − Γ α
µν Aα (3)

So, it is defined with the usual metric gµν .
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Chapter 1

δ̃ Theories.

In this work we will analyze, in a classical level, a modified gravity theory named δ̃ Grav-

ity. But before, we need define the δ̃ Theories in general and their properties. For more

detail of this chapter, see [51].

1.1 δ̃ Variation.

These theories consist in the application of a variation that we will define as δ̃. As a

variation it will have all properties of an usual variation such as:

δ̃(AB) = δ̃(A)B + Aδ̃(B)

δ̃δA = δδ̃A

δ̃(Φ,µ) = (δ̃Φ),µ (1.1)

The particular point with this variation is that when applied to a field (function,

tensor, etc.) it will give a new elements that we define as δ̃ fields which is an entire new

independent object from the original Φ̃ = δ̃(Φ). In this moment, we use the convention

that a tilde tensor is equal to the δ̃ transformation of the original tensor associated to it

when all its indexes are covariant. So:

S̃µνα... ≡ δ̃ (Sµνα...) (1.2)

and we raise and lower indexes using the metric gµν . Therefore:
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δ̃ (Sµνα...) = δ̃(gµρSρνα...)

= δ̃(gµρ)Sρνα... + gµρδ̃ (Sρνα...)

= −g̃µρSρνα... + S̃µνα... (1.3)

Where we used that δ(gµν) = −δ(gαβ)gµαgνβ.

1.2 δ̃ Transformation.

With the previous notation in mind, we can define how transform the tilde element given

by (1.2). In general, if we have an element Φi that transform:

δ̄Φi = Λj
iΦj (1.4)

Then Φ̃i = δ̃Φi transform:

δ̄Φ̃i = Λ̃j
iΦj + Λj

i Φ̃j (1.5)

Where we used that δ̃δ̄Φi = δ̄δ̃Φi = δ̄Φ̃i. Now, we considerate general coordinate

transformations or diffeomorphism in its infinitesimal form:

x′µ = xµ − ξµ0 (x)

δ̄xµ = −ξµ0 (x) (1.6)

Where δ̄ is the general coordinate transformation from now. Defining:

ξµ1 (x) ≡ δ̃ξµ0 (x) (1.7)

and using (1.5), we can see how transform some element:

I) A scalar Φ:

δ̄Φ = ξµ0 Φ,µ (1.8)

δ̄Φ̃ = ξµ1 Φ,µ +ξµ0 Φ̃,µ (1.9)
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II) A vector Vµ:

δ̄Vµ = ξβ0Vµ,β + ξα0,µVα (1.10)

δ̄Ṽµ = ξβ1Vµ,β + ξα1,µVα + ξβ0 Ṽµ,β + ξα0,µṼα (1.11)

III) Rank two Covariant Tensor Mµν :

δ̄Mµν = ξρ0Mµν,ρ + ξβ0,νMµβ + ξβ0,µMνβ (1.12)

δ̄M̃µν = ξρ1Mµν,ρ + ξβ1,νMµβ + ξβ1,µMνβ + ξρ0M̃µν,ρ + ξβ0,νM̃µβ + ξβ0,µM̃νβ (1.13)

This new transformation is the basis of δ̃ theories. Particulary, in gravitation we have

a model with two fields. The first is just the usual gravitational field gµν and a second

one g̃µν . Then, we will have two gauge transformations associated to general coordinate

transformation, given by:

δ̄gµν = ξ0µ;ν + ξ0ν;µ (1.14)

δ̄g̃µν(x) = ξ1µ;ν + ξ1ν;µ + g̃µρξ
ρ
0,ν + g̃νρξ

ρ
0,µ + g̃µν,ρξ

ρ
0 (1.15)

where we used (1.12) and (1.13). Now, we can introduce the δ̃ theories.

1.3 Modified Action.

In the last section, the general coordinate transformations were extended. So, we can

look for an invariant action now. We start by considering a model which is based on a

given action S0[φI ] where φI are generic fields, then we add to it a piece which is equal

to an δ̃ variation with respect to the fields and we let δ̃φJ = φ̃J so that we have:

S[φ, φ̃] = S0[φ] + κ2

∫
d4x

δS0

δφI(x)
[φ]φ̃I(x) (1.16)

with κ2 an arbitrary constant and the indexes I can represent any kind of indexes.

This new action shows the standard structure which is used to define any modified ele-

ment or function for δ̃ type theories. In fact, this action is invariant under our extended

general coordinate transformations developed in section 1.2. For this, you can see [59].
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A first important property of this action is that the classical equations of the original

fields are preserved. We can see this when (1.16) is varied with respect to φ̃I . That is:

δS0

δφI(x)
[φ] = 0 (1.17)

Obviously, we have new equations when varied with respect to φI . This equations

give us φ̃I and they can be reduced to:

∫
d4x

δ2S0

δφI(y)δφJ(x)
[φ]φ̃J(x) = 0 (1.18)

Another important property of these theories is in quantum level. In [51] is demon-

strated that the effective action is

Γ(Φ, Φ̃) = S0(Φ) +

∫
dNx

δS0

δΦI(x)
Φ̃I(x) + iTr

(
log

(
δ2S0

δΦI(x)δΦJ(y)

))
(1.19)

This expression is exact because the δ̃ theories live only to one loop, so higher correc-

tions simply do not exist. Finally, if we compare equation (16.42) of [60] with equation

(1.19), we see that the one loop contribution is twice the original theory contribution.

In general, Tr
(

log
(

δ2S0

δΦI(x)δΦJ (y)

))
could be divergent and need to be renormalized (See

[61]). From equation (1.19), we see that δ̃ model will be renormalizable if the original

theory is renormalizable. But, originally non-renormalizable theories could be finite or

renormalizable in the δ̃ version of it. Particulary, gravity is non-renormalizable, but it is

known that is finite to one loop in the vacuum [3]. This means that δ̃ gravity is finite

in the vacuum and it could be renormalizable if we can control the infinities. This is

one important motivation to study δ̃ gravity in classical level like an effective theory and

apply it in phenomenology. In the next chapter, we will develop the dynamic of δ̃ gravity.
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Chapter 2

δ̃ Gravity.

Until now, we have studied δ̃ theories in general. We found the invariant action to an

extended general coordinate transformations, given by (1.16), with the classical equations

of motion (1.17) and (1.18). In this chapter, we will present the action of δ̃ gravity and

then we will study the equation of motion. Finally, we will analyze the effect in a perfect

fluid to apply in some particular cases in the next chapters.

2.1 Equations of Motion.

Now, we are ready to study the modifications to gravity. For this, let us consider the

Einstein-Hilbert Action:

S0 =

∫
d4x
√
−g
(
− R

2κ
+ LM

)
(2.1)

So, using (1.16), this action involves:

S =

∫
d4x
√
−g
(
− R

2κ
+ LM +

κ2

2κ

(
Gαβ − κTαβ

)
g̃αβ + κ2L̃M

)
(2.2)

Where κ = 8πG
c4

, g̃µν = δ̃gµν and:

T µν = − 2√
−g

δ

δgµν

[√
−gLM

]
(2.3)

L̃M = φ̃I
δLM
δφI

+ (∂µφ̃I)
δLM
δ(∂µφI)

(2.4)
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with φI and φ̃I = δ̃φI are the matter fields and δ̃ matter fields respectively. From this

action, we can obtain the equations of motion of gµν and g̃µν . It is easy to see that the

Einstein’s equation are valid yet. Beside, the equation to g̃µν is:

F (µν)(αβ)ρλDρDλg̃αβ +
1

2
Rαβ g̃αβg

µν +
1

2
Rg̃µν −Rµαg̃να −Rναg̃µα +

1

2
g̃ααG

µν

=
κ√
−g

δ

δgµν

[√
−g
(
Tαβ g̃αβ − 2L̃M

)]
(2.5)

with:

F (µν)(αβ)ρλ = P ((ρµ)(αβ))gνλ + P ((ρν)(αβ))gµλ − P ((µν)(αβ))gρλ − P ((ρλ)(αβ))gµν

P ((αβ)(µν)) =
1

4

(
gαµgβν + gανgβµ − gαβgµν

)
(2.6)

where (µν) denotes that the µ and ν are in a totally symmetric combination. An

important thing to notice is that both equations are of second order in derivatives which

is needed to preserve causality. To simplify this equation is useful rewrite:

1√
−g

δ

δgµν

[√
−g
(
Tαβ g̃αβ − 2L̃M

)]
= − 2√

−g
g̃αβ

δ2

δgµνδgαβ

[√
−gLM

]
− 2√
−g

δ

δgµν

[√
−gL̃M

]
= − 2√

−g
g̃αβ

δ

δgαβ

[
δ

δgµν

[√
−gLM

]]
− 2√
−g

δ

δgµν

[√
−gL̃M

]
=

1√
−g

g̃αβ
δ

δgαβ

[√
−gT µν

]
− 2√
−g

δ

δgµν

[√
−gL̃M

]
= g̃αβ

δT µν

δgαβ
+

1

2
g̃ααT

µν − 2√
−g

δ

δgµν

[√
−gL̃M

]
(2.7)

Where we used (2.3), (2.4) and:

− 2√
−g

δ

δgµν

[√
−gL̃M

]
= − 2√

−g
δ

δgµν

[√
−g
(
φ̃I
δLM
δφI

+ (∂αφ̃I)
δLM

δ(∂αφI)

)]
= φ̃I

∂

∂φI

[
− 2√
−g

δ

δgµν

[√
−gLM

]]
+(∂αφ̃I)

∂

∂(∂αφI)

[
− 2√
−g

δ

δgµν

[√
−gLM

]]
= φ̃I

∂T µν

∂φI
+ (∂αφ̃I)

∂T µν

∂(∂αφI)
(2.8)
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Therefore:

1√
−g

δ

δgµν

[√
−g
(
Tαβ g̃αβ − 2L̃M

)]
= g̃αβ

δT µν

δgαβ
+

1

2
g̃ααT

µν + φ̃I
∂T µν

∂φI
+ (∂αφ̃I)

∂T µν

∂(∂αφI)

= δ̃T µν +
1

2
g̃ααT

µν

= T̃ µν − g̃µαTαν − g̃ναTαµ +
1

2
g̃ααT

µν (2.9)

With T̃µν = δ̃Tµν , so T̃ µν = gµαgνβ δ̃Tαβ. In conclusion, we can say that the equations

of motion are simplified to (See Appendix A):

Gµν = κT µν (2.10)

F (µν)(αβ)ρλDρDλg̃αβ +
1

2
gµνRαβ g̃αβ −

1

2
g̃µνR = κT̃ µν (2.11)

Besides, it is possible to demonstrate that (See Appendix B):

δ̃ [Gµν ] = F
(αβ)ρλ
(µν) DρDλg̃αβ +

1

2
gµνR

αβ g̃αβ −
1

2
g̃µνR (2.12)

This means that (2.11)µν = δ̃ [(2.10)µν ].

On the other side, the action (1.16) is invariant under (1.14) and (1.15). These

transformations produce two conservation rules:

DνT
µν = 0 (2.13)

DνT̃
µν =

1

2
TαβDµg̃αβ −

1

2
T µβDβ g̃

α
α +Dβ(g̃βαT

αµ) (2.14)

It is easy to see that (2.14) is δ̃ (DνT
µν) = 0. In conclusion, the equations of our

model are (2.10), (2.11), (2.13) and (2.14).

2.2 Perfect Fluid.

To describe a perfect fluid, an usual action is [62]:

S0 =

∫
d4x
√
−g
(
− R

2κ
+ r(1 + ε(r)) + λ1(uaua + 1) + λ2Dα(rUα)

)
(2.15)
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Where r is the number of particles per unit volume in the mean frame of reference

of these particles, ε(r) is the internal energy density per unit mass of the fluid, ua is the

speed of the fluid in the local frame and λ1 and λ2 are Lagrange multipliers that ensure

the normalization of ua and conservation of mass, respectively. Finally, we have that

Uα = eaαua, where eaα is the Vierbein. From this action, we can see that the independent

variables are gµν , r, ua, λ1 and λ2. eaα depend of gµν . Therefore, our modified action in a

δ̃ theory is:

S =

∫
d4x
√
−g(− R

2κ
+ r(1 + ε(r)) + λ1(uaua + 1) + λ2Dα(rUα)

+
κ2

2κ

(
Gαβ − κTαβ

)
g̃αβ + κ2L̃M) (2.16)

L̃M = r̃(1 + ε(r) + rε′(r)) + λ̃1(uaua + 1) + 2λ1u
aũa + λ̃2Dα(rUα)

+λ2Dα(r̃Uα + rUα
T ) (2.17)

with r̃ = δ̃r, ε′(r) = ∂ε
∂r

(r), ũa = δ̃ua, U
α
T = eaαũa, λ̃1 = δ̃λ1 and λ̃2 = δ̃λ2 are new

Lagrange multipliers and:

Tµν = −1

2
λ2,αr

(
δανUµ + δαµUν

)
− (r(1 + ε(r)) + λ1(uaua + 1)− λ2,αrU

α)gµν (2.18)

Where we used (6.48), in the Appendix C. Then, we know that:

T̃µν = −1

4
λ2,βr

(
δβνU

αg̃µα + δβµU
αg̃να + 2gµνU

αg̃βα
)

− (r(1 + ε(r)) + λ1(uaua + 1)− λ2,ρrU
ρ) g̃µν

−1

2
λ̃2,αr

(
δανUµ + δαµUν

)
− 1

2
λ2,αr̃

(
δανUµ + δαµUν

)
− 1

2
λ2,αr

(
δανU

T
µ + δαµU

T
ν

)
−(r̃(1 + ε(r) + rε′(r)) + λ̃1(uaua + 1) + 2λ1u

aũa − λ̃2,αrU
α

−λ2,α(r̃Uα + rUα
T ))gµν (2.19)

Therefore, we have a modified action with ten independent variables: gµν , r, ua, λ1,

λ2, g̃µν , r̃, ũa, λ̃1 and λ̃2. So, we can solve (2.10) and (2.11) using (2.18) and (2.19) to

obtain gµν and g̃µν . Besides, we have equations of motion to r, ua, λ1, λ2, r̃, ũa, λ̃1 and

λ̃2. These equations can be reduced to:

13



uaua + 1 = 0 (2.20)

Dα(rUα) = 0 (2.21)

2λ1u
a − reaαλ2,α = 0 (2.22)

1 + ε(r) + rε′(r)− Uαλ2,α = 0 (2.23)

uaũa = 0 (2.24)

Dα

(
r̃Uα + rUα

T −
1

2
rg̃αβUβ +

1

2
rg̃ββU

α

)
= 0 (2.25)

2λ̃1u
a + 2λ1ũ

a − eaα
(

rλ̃2,α + r̃λ2,α −
1

2
g̃βαrλ2,β

)
= 0 (2.26)

r̃ (2ε′(r) + rε′′(r))− Uαλ̃2,α − Uα
T λ2,α +

1

2
Uβ g̃

αβλ2,α = 0 (2.27)

Now, we can use these equations to simplify (2.18) and (2.19), eliminating the La-

grange multipliers. The equations (2.22) and (2.23) can be rewrite like:

λ1 = −1

2
r (1 + ε(r) + rε′(r)) (2.28)

λ2,µ = − (1 + ε(r) + rε′(r))Uµ (2.29)

In the same form, (2.26) and (2.27) can be reduce to:

λ̃1 = −1

2
r̃
(
1 + ε(r) + 3rε′(r) + r2ε′′(r)

)
(2.30)

λ̃2,µ = −r̃ (2ε′(r) + rε′′(r))Uµ − (1 + ε(r) + rε′(r))

(
UT
µ +

1

2
g̃βµUβ

)
(2.31)

So, using these identities, we can reduce the energy-momentum tensors to:

Tµν = r2ε′(r)gµν + r (1 + ε(r) + rε′(r))UµUν (2.32)

T̃µν = r2ε′(r)g̃µν + rr̃ (2ε′(r) + rε′′(r)) gµν + r̃ (1 + ε(r) + 3rε′(r) + rε′′(r))UµUν

+r (1 + ε(r) + rε′(r))

(
1

2
(UνU

αg̃µα + UµU
αg̃να) + UT

µ Uν + UµU
T
ν

)
(2.33)

and survive the equations:
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UαUα + 1 = 0 (2.34)

Dα(rUα) = 0 (2.35)

(1 + ε(r) + rε′(r))UαDαUµ +
(
δαµ + UαUµ

)
(2ε′(r) + rε′′(r)) ∂αr = 0 (2.36)

UαUT
α = 0 (2.37)

Dα

(
r̃Uα + rUα

T −
1

2
rg̃αβUβ +

1

2
rg̃ββU

α

)
= 0 (2.38)

r̃ (2ε′(r) + rε′′(r))UαDαUµ + (1 + ε(r) + rε′(r))

(
Uα
T −

1

2
g̃αβUβ

)
DαUµ

+ (1 + ε(r) + rε′(r))UαDα

(
UT
µ +

1

2
g̃µβU

β

)
+

1

2
(1 + ε(r) + rε′(r))UαUβDµg̃αβ

+

((
Uα
T −

1

2
g̃αβUβ

)
Uµ + Uα

(
UT
µ +

1

2
g̃µβU

β

))
(2ε′(r) + rε′′(r)) ∂αr

+
(
δαµ + UαUµ

)
(r̃ (3ε′′(r) + rε′′′(r)) ∂αr + (2ε′(r) + rε′′(r)) ∂αr̃) = 0 (2.39)

These equations are related with the Bianchi identities (2.13) and (2.14). So, we have

a complete equations system. Finally, from (2.32) we can identify that ρ = r (1 + ε(r))

and p(ρ) = r2ε′(r). Therefore, the final expressions of the energy-momentum tensors are:

Tµν = p(ρ)gµν + (ρ+ p(ρ))UµUν (2.40)

T̃µν = p(ρ)g̃µν +
∂p

∂ρ
(ρ)ρ̃gµν +

(
ρ̃+

∂p

∂ρ
(ρ)ρ̃

)
UµUν

+ (ρ+ p(ρ))

(
1

2
(UνU

αg̃µα + UµU
αg̃να) + UT

µ Uν + UµU
T
ν

)
(2.41)

Now, we can use (2.40) and (2.41) to solve (2.10), (2.11), (2.13) and (2.14) in a perfect

fluid. In this work, we will see the cosmological and the Non-Relativistic case.
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Chapter 3

Test Particle.

In the last chapter, we found the equation of motion to δ̃ gravity. However, to describe

some phenomenology, we need analyze the trajectory of a particle. For this, we need find

the coupling of a test particle to the gravitational field. In this chapter, we will find this

coupling to massive and massless particle.

3.1 Massive Particles.

We know that, in the standard case, the test particle action is given by:

S0[ẋ, g] = −m
∫
dt
√
−gµν ẋµẋν (3.1)

with ẋµ = dxµ

dt
. In our model, the modified action is obtained according to (1.16). So,

the new test particle action is:

S[ẋ, g, g̃] = m

∫
dt

(
ḡµν ẋ

µẋν√
−gαβẋαẋβ

)
(3.2)

where ḡµν = gµν + κ2
2
g̃µν . If we very (3.2) with respect to xµ, we will obtain the

equation of motion for a massive test particle. That is:

ĝµν ẍ
ν + Γ̂µαβẋ

αẋβ =
κ2

4
K̃,µ (3.3)

with:

16



Γ̂µαβ =
1

2
(ĝµα,β + ĝβµ,α − ĝαβ,µ)

ĝαβ =
(

1 +
κ2

2
K̃
)
gαβ + κ2g̃αβ

K̃ = g̃αβẋ
αẋβ

and we fix gµν ẋ
µẋν = −1, after choosing t equal to the proper time. In conclusion, the

equation of motion of a free massive particle in our modified theory is more complicated

that the usual case, because it is not a standard geodesic.

3.2 Massless Particles.

The expression in (3.1) and (3.2) are useless for massless particles, because are null when

m = 0. To solve this problem, it is usual to start from the action:

S0[ẋ, g, v] =
1

2

∫
dt
(
vm2 − v−1gµν ẋ

µẋν
)

(3.4)

where v is a Lagrange multiplier. This action is invariant under reparametrizations:

x′µ(t′) = xµ(t)

v′(t′)dt′ = v(t)dt

t′ = t− ε(t) (3.5)

and the equation of motion for v is:

v = −
√
−gµν ẋµẋν

m
(3.6)

If we substitute (3.6) in (3.4), we recover (3.1). In other words, (3.4) is a good action

that include the massless case. To our theory, we must substitute (3.4) in (1.16) to obtain

the modified test particle action. That is:

S[ẋ, g, g̃, v, ṽ] =
1

2

∫
dt
(
vm2 − v−1 (gµν + κ2g̃µν) ẋ

µẋν + κ2ṽ
(
m2 + v−2gµν ẋ

µẋν
))

(3.7)
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This action is invariant under the reparametrization transformations (3.5) plus ṽ′(t′)dt′ =

ṽ(t)dt. So, (3.7) is the action that we need to generalize (3.2). Two Lagrange multiplier

are unnecessary, so we will eliminate one of them. The equation of motion for ṽ is:

ṽ =
m2 + v−2 (gµν + κ2g̃µν) ẋ

µẋν

2κ2v−3gαβẋαẋβ
(3.8)

If we now replace (3.8) in (3.7), we obtain the δ̃ Test Particle Action:

S[ẋ, g, g̃, v] =

∫
dt

(
m2v − (gµν + κ2g̃µν) ẋ

µẋν

4v
+

m2v3

4gαβẋαẋβ
(
m2 + κ2v

−2g̃µν ẋ
µẋν
))

(3.9)

The equation of motion for v is still given by (3.6). If we substitute it in (3.9), we

obtain (3.2). So, (3.9) is a good modified action to represent the trajectory of a particle

in the presence of a gravitational field, given by g and g̃, for the massive and massless

case. Evaluating m = 0 in (3.4) and (3.9), they respectively are:

S
(m=0)
0 [ẋ, g, v] = −1

2

∫
dtv−1gµν ẋ

µẋν (3.10)

S(m=0)[ẋ, g, g̃, v] = −1

4

∫
dtv−1gµν ẋ

µẋν (3.11)

with gµν = gµν + κ2g̃µν . The equation of motion for v implies that, in the usual and

modified case, a massless particle will move in a null-geodesic. In the usual case we have

gµν ẋ
µẋν = 0, but in our model the null-geodesic is gµν ẋ

µẋν = 0.

In conclusion, all these mean that, in our theory, the equation of motion of a free

massless particle is given by:

gµν ẍ
ν + Γµαβẋ

αẋβ = 0 (3.12)

gµν ẋ
µẋν = 0

with:

Γµαβ =
1

2
(gµα,β + gβµ,α − gαβ,µ)

To resume, we have analyze the δ̃ gravity. We obtained the equation of motion of

gµν and g̃µν , given by (2.10), (2.11), (2.13) and (2.14), and we know how solve them to a
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perfect fluid using (2.40) and (2.41). Then, we obtain how a test particle move when it is

coupled to gµν and g̃µν , given by (3.3) or (3.12) if we have a massive or massless particle

respectively.

In the next chapters, we will study some cases to apply δ̃ gravity. In first place, we

will see the Schwarzschild case and apply it to gravitational lensing. Then, we will see

the cosmological case to explain the accelerate expansion of the universe with δ̃ gravity,

but without dark energy. Finally, we will study the Non-Relativistic limit to reproduced

the Newtonian approximation and introduce an explanation to dark matter.
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Chapter 4

Schwarzschild Case.

In this chapter, we will study δ̃ gravity with a Schwarzschild metric. First, we will calcu-

late g̃µν with the correct boundary conditions to solve the differential equations and then

we will calculate the photon trajectory to find the light deflection by gravitational lensing.

4.1 Schwarzschild metric.

In first place, we need find the boundary condition. We must remember that, in this

case, gµν → ηµν to r → ∞ and g̃µν = δ̃gµν . Because δ̃ηµν = 0, it is natural to use that

g̃µν → 0 to r →∞.

Now, we can solve the equations of motion to Schwarzschild. In this case, the metric

is:

gµνdx
µdxν = −A(r)c2dt2 +B(r)dr2 + r2(dθ2 + sin2(θ)dφ2) (4.1)

For g̃µν , we can use a similar expression:

g̃µνdx
µdxν = −Ã(r)c2dt2 + B̃(r)dr2 + F̃ (r)r2(dθ2 + sin2(θ)dφ2) (4.2)

For simplify the equations, we will solve them outside the matter, this means in the

region where T̃µν = Tµν = 0. The solutions of our equations of motion (2.10) and (2.11)

are:
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A(r) = 1− 2µ

r
(4.3)

B(r) =
1

1− 2µ
r

(4.4)

B̃(r) =
r2(r − 2µ)Ã′(r)− 2µrÃ(r) + r(r − 2µ)(r − µ)F̃ ′(r) + r(r − 2µ)F̃ (r)

(r − 2µ)2
(4.5)

Where µ = GM , G is the Newton constant and M is the mass of the gravitational

source. And survive the equation:

rÃ′′(r) + 2Ã′(r)− µF̃ ′′(r) = 0 (4.6)

Where ′ = d
dr

. In (4.3) and (4.4) we imposed that A(∞) = B(∞) = 1, because we

want that gµν → ηµν to r → ∞. On the other hand, we want that g̃µν → 0 to r → ∞,

but to find Ã(r) and F̃ (r) we need an additional equation, fixing the gauge of g̃µν . For

this, we will use the harmonic gauge. A convenient harmonic coordinate system is:

X1 = (r − µ) sin(θ) cos(φ)

X2 = (r − µ) sin(θ) sin(φ)

X3 = (r − µ) cos(θ)

If we fix the harmonic gauge in these coordinates, we obtain the condition (For more

details, see Appendix D):

r2(r − 2µ)Ã′′(r) + 4r(r − 2µ)Ã′(r)− 4µÃ(r)

+ r(r − 2µ)(r − µ)F̃ ′′(r) + 4(r − µ)2F̃ ′(r) = 0 (4.7)

If we solve (4.6) and (4.7) with the condition Ã(∞) = B̃(∞) = F̃ (∞) = 0, we obtain

that:

Ã(r) = −2a0µ(r − µ)

r2
− a1µ

2µ+ (r − µ) ln
(
1− 2µ

r

)
r2

(4.8)

F̃ (r) =
2a0µ

r
− a1

2µ+ (r − µ) ln
(
1− 2µ

r

)
r

(4.9)

B̃(r) =
2a0µ(r − µ)

(r − 2µ)2
− a1

2µ(r − 2µ) + (r2 − 3µr + µ2) ln
(
1− 2µ

r

)
(r − 2µ)2

(4.10)
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Figure 4.1: Trajectory by gravitational lensing. R is the radius of the star, r0 is the

minimal distance to the star, b is the impact parameter, φ∞ is the incident direction and

∆φ is the deflection of light.

where a0 and a1 are integrate constants. We must remember that, this solution

correspond to the region without matter. In general, this region correspond to r � µ.

Therefore, it is enough to use the more relevant order. That is:

A(r) = 1− 2µ

r
(4.11)

B(r) = 1 +
2µ

r
+O

((µ
r

)2
)

(4.12)

Ã(r) = −2a0µ

r
+O

((µ
r

)2
)

(4.13)

F̃ (r) =
2a0µ

r
+O

((µ
r

)2
)

(4.14)

B̃(r) =
2a0µ

r
+O

((µ
r

)2
)

(4.15)

This is the Newtonian approximation and take up again in chapter 6. We will use

these expressions in the next section too.

4.2 Gravitational Lensing.

To describe this phenomenon, we need the null geodesic. In our case, this is given by

(3.12). To solve these equations, we will consider a coordinate system where θ = π
2

such
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that the trajectory is given by Figure 4.1. For more detail see [63].

So, the geodesic equations given by (3.12) are very complicated, but with some work,

we can reduce it to:

dt

du
=

1

A(r) + κ2Ã(r)
(4.16)

dr

du
= −1

r

√
r2(1 + κ2F̃ (r))− J2(A(r) + κ2Ã(r))

(A(r) + κ2Ã(r))(B(r) + κ2B̃(r))(1 + κ2F̃ (r))
(4.17)

dφ

du
=

J

r2(1 + κ2F̃ (r))
(4.18)

Where u is the trajectory parameter such that xµ = xµ(u). We have fixed t such that

t→ u to r →∞, using that A(∞) = 1 and Ã(∞) = 0. J is a constant of motion related

to the angular momentum. However, it is convenient to express J in term of r0. Since r0

is the minimal radius, we know that dr
du
|r=r0 = 0. So:

J = r0

√
1 + κ2F̃ (r0)

A(r0) + κ2Ã(r0)
(4.19)

From the Figure 4.1, we can see that we need φ(r). To this, we use (4.17) and (4.18)

to obtain:

φ(r)− φ∞ =

∫ ∞
r

dr
(r0

r

)√√√√ (A(r) + κ2Ã(r))(B(r) + κ2B̃(r))

(1 + κ2F̃ (r))(A(r0) + κ2Ã(r0))
(
r2(1+κ2F̃ (r))

1+κ2F̃ (r0)
− r20(A(r)+κ2Ã(r))

A(r0)+κ2Ã(r0)

)
(4.20)

To solve this integral, we will use an approximation. We know that r ≥ r0 � µ,

therefore we can use (4.11-4.15). So, (4.20) is reduced to:

φ(r)− φ∞ '
∫ ∞
r

dr

r

(
1 +

µ

r
+
µ(1 + 2κ2a0)r

r0(r + r0)

)((
r

r0

)2

− 1

)− 1
2

(4.21)

We want describe a complete trajectory, so the photon start in φ∞ to φ(r0) and then

go to φ∞. Besides, if the trajectory were a straight line, this would equal just π. All

these mean that the deflection of light is:
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∆φ = 2|φ(r0)− φ∞| − π

' 2

∣∣∣∣∣∣
∫ ∞
r0

dr

r

(
1 +

µ(2κ2a0r
2 + r2 + rr0 + r2

0)

r0(r + r0)r

)((
r

r0

)2

− 1

)− 1
2

∣∣∣∣∣∣− π
' 4µ(1 + κ2a0)

r0

(4.22)

With usual gravity, we know that ∆φ = 4µ
r0

. So, in our modified gravity, we have

an additional term given by 4µκ2a0
r0

. On the other side, we have an experimental value

∆φExp = 1.761′′ ± 0.016′′ to the sun [64] and a theoretical value ∆φTheo = 1.757′′. This

means that, to satisfy the experimental value, we need:

∣∣∣∣4µκ2a0

r0

∣∣∣∣ = 1.757′′|κ2a0| < 0.016′′

|κ2a0| < 0.009106 (4.23)

In this case, we have a small value to κ2a0. We will look over in chapter 6 to explain

this new term like a dark matter.
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Chapter 5

Cosmological Case.

In this work, we will study photons emitted from the supernovas, so we will need the

modified null-geodesic given by (3.12). But, it is important to observe that the proper

time is defined in terms of massive particles, so that it is necessary to reinterpret the

supernova data. So, in this section, we define the measurement of time and distances in

the model.

The equation (3.3) preserves the proper time of the particle along the trajectory:

Along the trajectory gµν ẋ
µẋν = −1. So, we must define proper time using the original

metric gµν :

dτ =
1

c

√
−gµνdxµdxν =

√
−g00dt (5.1)

Following [65], we consider the motion of light rays along infinitesimally near trajec-

tories, using (3.12) and (5.1), to get the three-dimensional metric:

dl2 = γijdx
idxj (5.2)

γij =
g00

g00

(
gij −

gi0gj0
g00

)
Therefore, we measure proper time using the metric gµν , but the space geometry is

determined by both tensor fields, gµν and g̃µν . These considerations are fundamental to

explain the expansion of the Universe with δ̃ gravity. Now, we will solve the equation of

motion to FRW metric.
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5.1 FRW metric.

To describe the supernova data, we must use the FRW metric. When a photon emitted

from the supernova travels to the Earth, the Universe is expanding. This means that the

photon is affected by the cosmological Doppler effect. So the metric gµν is:

gµνdx
µdxν = −c2dt2 +R2(t)

(
dx2 + dy2 + dz2

)
(5.3)

Assuming an isotropic and homogeneous Universe, we can use the following ansatz

for g̃µν :

g̃µνdx
µdxν = −3Td(t)c

2dt2 + Td(t)R
2(t)

(
dx2 + dy2 + dz2

)
(5.4)

such that, with the change of variable t → t(u) where dt(u)
du

= R3(u), we have an

harmonic gauge. So, the gauge is completely fix (See Appendix D).

On the other side, we have a perfect fluid. So, the energy-momentum tensors are

given by (2.40) and (2.41). We know that 2.10) and (2.13), with Uµ = (c, 0, 0, 0), are

reduced to:

(
Ṙ(t)

R(t)

)2

=
κc2

3

∑
i

ρi(t) (5.5)

ρ̇i(t) = −3Ṙ(t)

R(t)
(ρi(t) + pi(t)) (5.6)

with ḟ(t) = df
dt

(t). But, to solve (5.5) and (5.6), we need equations of state which

relate ρi(t) and pi(t), for which we take pi(t) = ωiρi(t). Since we wish to explain dark

energy with δ̃ gravity, we will assume that in the Universe we only have non relativistic

matter (cold dark matter, baryonic matter) and radiation (photons, massless particles).

So, we will require two equations of state. For non relativistic matter we use pM(t) = 0

and for radiation pR(t) = 1
3
ρR(t), where we have assumed that their interaction is null.

Replacing in (5.5) and (5.6) and solving them, we find the exact solution:

26



ρ(X) = ρM(X) + ρR(X)

=
3H2

0 ΩR

κc2C4

X + 1

X4
(5.7)

p(X) =
1

3
ρR(t)

=
H2

0 ΩR

κc2C4

1

X4
(5.8)

t(X) =
2C2

3H0

√
ΩR

(√
X + 1(X − 2) + 2

)
(5.9)

X =
R(t)

Req

(5.10)

Where t(X) is the time variable, Req and ρEQ are the scale factor and density at

matter-radiation equality, that is ρM(teq) = ρR(teq), C = ΩR
ΩM

, and ΩR and ΩM are the ra-

diation and non relativistic matter density in the present respectively, with ΩM = 1−ΩR.

We know that ΩR � 1, so ΩM ∼ 1 and C � 1. We can see that is convenient to use X

like our independent variable. By definition X � 1 describes the non relativistic era and

X � 1 describes the radiation era.

Now, we can solve (2.11) and (2.14) to find g̃µν . Using (5.7)-(5.9), these equations are

reduced to:

UT
µ = 0 (5.11)

ρ̃M(X) =
9H2

0 ΩR

2κc2C4

(C1 − Td(X))

X3
(5.12)

ρ̃R(X) =
6H2

0 ΩR

κc2C4

(C2 − Td(X))

X4
(5.13)

2X(X + 1)T ′d(X)− (3X + 2)Td(X) = 3C1X + 4C2

Now, if we solve (5.14), we obtain that:

Td(X) =
3

2
(2C2 − C1)X

(√
X + 1 ln

(√
X + 1 + 1√
X + 1− 1

)
− 2

)
−2C2 + C3X

√
X + 1 (5.14)

Where C1, C2 and C3 are integrate constants.
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5.2 Photon Trajectory and Luminosity Distance.

Since we have the cosmological solution of the δ̃ gravity Action now, we can analyze the

trajectory of a supernova photon when it is traveling to the Earth. For this, we use (3.12)

in a radial trajectory from r1 to r = 0. So, we have:

−(1 + 3κ2T̃d(t))c
2dt2 +R2(t)(1 + κ2T̃d(t))dr

2 = 0

In the usual case, we have that cdt = −R(t)dr. In the δ̃ gravity case, we define the

modified scale factor:

R̃(t) = R(t)

√
1 + κ2T̃d(t)

1 + 3κ2T̃d(t)
(5.15)

such that cdt = −R̃(t)dr now. With this definition, we obtain that:

r1 = c

∫ t0

t1

dt

R̃(t)
(5.16)

If a second wave crest is emitted at t = t1 + ∆t1 from r = r1, it will reach r = 0 at

t = t0 + ∆t0, so:

r1 = c

∫ t0+∆t0

t1+∆t1

dt

R̃(t)
(5.17)

Therefore, for ∆t1, ∆t0 small, which is appropriate for light waves, we get:

∆t0
∆t1

=
R̃(t0)

R̃(t1)
(5.18)

Since t is the proper time according to (5.1), we have that

∆ν1

∆ν0

=
R̃(t0)

R̃(t1)
(5.19)

where ν0 is the light frequency detected at r = 0, corresponding to a source emission

at frequency ν1. So, the redshift is now:

1 + z(t1) =
R̃ (t0)

R̃(t1)
(5.20)
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We see that R̃ (t) replaces the usual scale factor R(t) in the calculation of z. This

means that we need to redefine the luminosity distance too. For this, let us consider a

mirror of radius b that is receiving light from our distant source at r1. The photons that

reach the mirror are inside a cone of half-angle ε with origin at the source.

Let us compute ε. The path of the light rays is given by ~r(ρ) = ρn̂+ ~r1, where ρ > 0

is a parameter and n̂ is the direction of the light ray. Since the mirror is in ~r = 0, then

ρ = r1 and n̂ = −r̂1 + ~ε, where ε is the angle between −~r1 and n̂ at the source, forming

a cone. The proper distance is determined by the 3-dimensional metric (5.2), so we get

b = R̃(t0)r1ε. Then, the solid angle of the cone is:

∆Ω =

∫ 2π

0

dφ

∫ ε

0

sin(θ)dθ = 2π(1− cos(ε))

= πε2 =
A

r2
1R̃

2(t0)

where A = πb2 is the proper area of the mirror. This means that ε = b
r1R̃(t0)

. So, the

fraction of all isotropically emitted photons that reach the mirror is:

f =
∆Ω

4π

=
A

4πr2
1R̃

2(t0)

We know that the apparent luminosity, l, is the received power per unit mirror area.

Power is energy per unit time, so the received power is P = hν0
∆t0

f , where hν0 is the

energy corresponding to the received photon, and the total emitted power by the source

is L = hν1
∆t1

, where hν1 is the energy corresponding to the emitted photon. Therefore, we

have that:

P =
R̃2(t1)

R̃2(t0)
Lf

l =
P

A

=
R̃2(t1)

R̃2(t0)

L

4πr2
1R̃

2(t0)

where we have used that ∆t0
∆t1

= ν1
ν0

= R̃(t0)

R̃(t1)
. On the other hand, we know that, in

a Euclidean space, the luminosity decreases with distance dL according to l = L
4πd2L

.

Therefore, using (5.16), the luminosity distance is:
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dL =
R̃2(t0)

R̃(t1)
r1

= c
R̃2 (t0)

R̃(t1)

∫ t0

t1

dt

R̃(t)
(5.21)

Moreover, we can use (5.9) to change the t variable for Y = CX(t) = R(t)
R(t0)

(the scale

factor normalized to one in the present), where C =
REQ
R(t0)

= ΩR
ΩM

. Using (5.14) in (5.15)

and define Ỹ = R̃(t)
R(t0)

, we can see that, to Y � 0, Ỹ =
√

1−2k2C2

1−6k2C2
Y + O(Y 2). We want

Ỹ = Y +O(Y 2), because we expect that δ̃ gravity explain dark energy and it is irrelevant

in the early universe. For this, we use C2 = 0. Therefore, the modified scale factor is:

Ỹ [Y, L1, L2, C] = Y

√√√√√√√
1− L1

Y
3

√
Y + C + L2

Y
C

(√
Y
C

+ 1 ln

(√
Y
C

+1+1√
Y
C

+1−1

)
− 2

)
1− L1Y

√
Y + C + 3L2

Y
C

(√
Y
C

+ 1 ln

(√
Y
C

+1+1√
Y
C

+1−1

)
− 2

) (5.22)

where we used C1 = −2L2

3κ2
and C3 = −C3/2L1

3κ2
. We chose these constants such that a

Big-Rip is produced. We want that because the accelerate expansion of the universe is

produced by a polo in (5.22). To study the form of Ỹ in the Big-Rip era, we need use

Y � C. In this case, we have that:

Ỹ (Y, L1, L2, C) ' Y

√
3 + 2L2 − Y

3
2L1

3(1 + 2L2 − Y
3
2L1)

+O(C
1
2 ) (5.23)

It is clear that the Big-Rip is produced when:

YRip =

(
1 + 2L2

L1

) 2
3

(5.24)

To resume, we have that Ỹ ∼ Y in the radiation era, that is Y � C, so the Universe

evolves normally in the beginning of the Universe, without differences with the usual

gravity. But, when Y � C, we will have a Big Rip, when the denominator is null. We

will give more detail for this when we will study the supernova data.

Now, with all our definitions, the luminosity distance is reduced to:

dL = c

√
C

H0

√
ΩR

Ỹ 2
0 (L1, L2, C)

Ỹ (Y, L1, L2, C)

∫ 1

Y

Y ′dY ′

Ỹ (Y ′, L1, L2, C)
√
Y ′ + C

(5.25)
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with Ỹ0(L1, L2, C) = Ỹ (1, L1, L2, C). This means that the distances will be different

now. In the usual case, we have:

dL =
c

Y H0

∫ 1

Y

dY ′√
ΩΛY ′4 + ΩMY ′ + ΩR

(5.26)

where ΩΛ = 1−ΩM −ΩR is the dark energy density in the present. We will use (5.26)

to compare both, a Universe with dark energy and our modified gravitation model, with

the supernova data.

Finally, we note that (5.9) gives us the time coordinate. In the new notation, it is:

t(Y ) =
2C

1
2

3H0

√
ΩR

(√
Y + C (Y − 2C) + 2C

3
2

)
(5.27)

Therefore, it is possible to obtain a different age of the Universe. A different percep-

tion of the distances implies a different perception of time.All these differences arise a

consequence of the modified trajectory of photons.

5.3 Analysis and Results.

Before we analyze the data, we will define the parameters to be determined. In the usual

gravity, dL depends upon four parameters: Y , H0 = 100h km s−1 Mpc−1, ΩM and ΩR

according to (5.26). However, the CMB black body spectrum give us the photons den-

sity in the present, Ωγ, and if we assume that ΩR = Ωγ + Ων =
(

1 + 3
(

7
8

) (
4
11

)4/3
)

Ωγ,

we obtain h2ΩR = 4.15 × 10−5. Therefore, the parameters in dL can be reduced to

three: Y , h and h2ΩM . For the same reasons, in our modified gravity, dL depends on four

parameters: Y , C, L1 and L2, as shown in (5.25). We use H0

√
ΩR = 0.644 km s−1 Mpc−1.

The supernova data gives the apparent magnitude as a function of redshift. For this

reason, it is useful to use z instead of Y . So, we have:

In the usual gravity:
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m(z, h, h2ΩM) = M + 5 log10

(
dL(z, h, h2ΩM)

10 pc

)
(5.28)

dL(z, h, h2ΩM) =
c(1 + z) Mpc s

100 km

∫ 1

1
1+z

dY ′√
h2ΩΛY ′4 + h2ΩMY ′ + h2ΩR

(5.29)

With h2ΩΛ = h2 − h2ΩM − h2ΩR. On the other side, in our modified gravity:

m(z, L1, L2, C) = M + 5 log10

(
dL(z, L1, L2, C)

10 pc

)
(5.30)

dL(z, L1, L2, C) = c(1 + z)

√
C

H0

√
ΩR

∫ z

0

(1 + u)Y (u)Y ′(u)√
Y (u) + C

du (5.31)

where m is the apparent magnitude, M is the absolute magnitude, common to all

supernova, so it is constant and Y ′(z) = dY
dz

(z). To find Y (z), we must solve (5.20). That

is:

Ỹ (Y (z), L1, L2, C) =
Ỹ0(L1, L2, C)

1 + z
(5.32)

Where Ỹ (Y (z), L1, L2, C) is given by (5.22). Therefore, (5.32) is a numerical equa-

tion. Now we will introduce the statistical method to fit the data.

We interpret errors in data by the variance σ in a normally distributed random vari-

able. If we are fitting a function y(x) to a set of points (xi, yi) with errors (σxi, σyi), we

must minimize [66]:

χ2(per point) =
1

N

N∑
i=1

(yi − y(xi))
2

σ2
fi

σ2
fi = σ2

yi + y′(xi)
2σ2

xi

Where N is the number of data points. In our case, we want to fit the data (zi,mi)

with errors (σzi, σmi) to the model:

m(z) = M + 5 log10

(
dL(z)

10pc

)
Therefore, we must minimize:
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χ2(per point) =
1

N

N∑
i=1

(mi −m(zi))
2

σ2
mi +

(
dm
dz

(zi)
)2
σ2
zi

(5.33)

Now, we can proceed to analyze the supernova data given in [67] with N = 162 su-

pernovas. In both cases, dL is given by an exact expression, but we need to use a numeric

method to solve the integral and fit the data to determinate the optimum values for the

parameters that represent the m v/s z of the supernova data. For this, we used math-

ematica 7.0 1. When we minimized (5.33), we saw that the fit do not depend strongly

of L1 and L2, but they are important to fix the Big-Rip point given by (5.24). Prob-

ably, exist a parameters space to L1 and L2, therefore we need fix one of them. Since

we do not have a criterion for this, we will keep both parameters and we will fix them

with another phenomenons in a future work. So, the parameters that minimize (5.33) are:

In the usual gravity h = 0.6603 and h2ΩM = 0.096 with χ2(per point) = 1.033.

In our modified gravity L1 = 0.8095, L2 = 0.2796 and C = 2.36 × 10−4 with

χ2(per point) = 1.041.

With these values, we can calculate the age of the Universe. We know that, in the

usual case, it is 1.37×1010 years, but that in our model it is given by (5.27). Substituting

the corresponding values for L1, L2, C and taking Y = R(t)
R(t0)

= 1, we obtain 1.56 × 1010

years. Finally, we can calculate when the Big-Rip will happen. For this, we use (5.24),

giving YRip = 1.93. Using this in (5.27), we obtain tBig Rip = 4.16×1010 years. Therefore,

the Universe has lived less than half of its life.

If we see (5.22), it is clear that in the limit where C → 0, it is not possible obtain

a Big-Rip. Then, it is necessary to have 1 � C 6= 0 to obtain an accelerated expansion

of the Universe. Therefore a minimal component of radiation explains the supernova

data without dark energy. In this way, the accelerated expansion of the Universe, can be

understood as geometric effect.

In [53], we did a similar calculus. The procedure is the same, but in this calculus we

add δ̃ matter plus fixing the gauge completely. For this, the result is different, however

1To minimize (5.33) we used FindMinimum. See the Mathematica 7.0 help for more details.
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the explanation of the expansion of the universe is the same.

In the δ̃ gravity model we can avoid a Big Rip at later time by a mechanism that give

masses to all massless particles. Some options are quantum effects (which are finite in

this model) or massive photons due to superconductivity [68] which could happen at very

low temperatures, which are natural at a later stages of the expansion of the Universe.

34



Chapter 6

Non-Relativistic case.

Another important case is the Non-Relativistic. In this chapter, we will study the New-

tonian and Post-Newtonian limit to verify that our theory do not have strong difference

with the usual gravity. On the other side, if we will find a little difference, we could

analyze it to find new physics. One possibility is explain the dark matter studying the

galaxy’s rotation. In this sense, we will expect that δ̃ matter is dark matter.

6.1 Newtonian limit.

With the equations of motion of section 2.1, we can study the Newtonian approximation

too. To express this approximation, we must use a metric gµν given by:

gµν =


−(1 + 2φ(x, y, z)ε2)c2 0 0 0

0 1− 2φ(x, y, z)ε2 0 0

0 0 1− 2φ(x, y, z)ε2 0

0 0 0 1− 2φ(x, y, z)ε2

(6.1)

where φ(x, y, z) is the gravitational potential and ε ∼ v
c

is the perturbative parameter.

On the other side, to find an expression to g̃µν , we use the same argument that in the

chapter 4 to Schwarzschild. If gµν → ηµν to r →∞, then g̃µν → 0. With this in mind,

g̃µν is given by:
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g̃µν =


−2φ̃(x, y, z)ε2c2 0 0 0

0 −2φ̃(x, y, z)ε2 0 0

0 0 −2φ̃(x, y, z)ε2 0

0 0 0 −2φ̃(x, y, z)ε2

 (6.2)

To solve our equations, we use that Tµν and T̃µν are given by (2.40) and (2.41) with

p(ρ) = 0 and Uµ = (ε−1c, 0, 0, 0). So, the equations (2.10) and (2.11) are reduced to:

UT
µ = 0 (6.3)

∂2φ =
κ̂

2
ρ (6.4)

∂2φ̃ =
κ̂

2
ρ̃ (6.5)

where ∂2 = ∂i∂i with ∂i = ∂
∂xi

and κ̂ = κ
ε2
∼ O(1) is the normalized Newton constant.

Besides, (2.13) and (2.14) only say us that ρ and ρ̃ are t-independent. Therefore, we do

not have a relation between ρ and ρ̃. We will see, in the next section, that this is due to

that the gauge fixing is produced in a postnewtonian approximation.

6.2 Post-Newtonian limit.

If we introduce one order more to the Newtonian limit, the metric is given by:

gµνdx
µdxν = −

(
1 + 2φε2 + 2

(
φ2 + ψ

)
ε4
)(cdt

ε

)2

+
(
1− 2φε2 − 2ψε4

)
(dx2 + dy2 + dz2)

+2ε3 (χ1dx+ χ2dy + χ3dz)

(
cdt

ε

)
+ ε4(ξ11dx

2 + ξ22dy
2 + ξ33dz

2

+2ξ12dxdy + 2ξ13dxdz + 2ξ23dydz) (6.6)

In the same way, g̃µν is:

g̃µνdx
µdxν = −2

(
φ̃ε2 +

(
2φφ̃+ ψ̃

)
ε4
)(cdt

ε

)2

− 2
(
φ̃ε2 +

(
ψ̃ + ξ̃

)
ε4
)

(dx2 + dy2 + dz2)

+2ε3 (χ̃1dx+ χ̃2dy + χ̃3dz)

(
cdt

ε

)
+ ε4(ξ̃11dx

2 + ξ̃22dy
2 + ξ̃33dz

2

+2ξ̃12dxdy + 2ξ̃13dxdz + 2ξ̃23dydz) (6.7)
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All function in (6.6) and (6.7) depend of (t, x, y, z), but 1
c
∂
∂t
∼ ε. To considerate this,

we use that ct→ ct
ε

to obtain the equations.

Besides, we have the equations:

4φ̇+ ∂iχi = 0 (6.8)

2φ∂iφ− χ̇i −
1

2
∂iξjj + ∂jξij = 0 (6.9)

4 ˙̃φ+ ∂iχ̃i = 0 (6.10)

2φ∂iφ̃+ 2φ̃∂iφ− ˙̃χi −
1

2
∂iξ̃jj + ∂j ξ̃ij = 0 (6.11)

to fix the harmonic gauge (See Appendix D) and ḟ = 1
c
∂f
∂t

. Additionally, we have

a perfect fluid. This means that the energy-momentum tensors are given by (2.40) and

(2.41) with:

ρ = ρ(0) + ε2ρ(2) (6.12)

ρ̃ = ρ̃(0) + ε2ρ̃(2) (6.13)

p(ρ) = ε2p(2)(ρ) (6.14)

Uµ =

c
1 + ε2

(
φ+ 1

2
U

(1)
k U

(1)
k

)
ε

 , εU
(1)
i

 (6.15)

UT
µ =

(
cεU

T (1)
k U

(1)
k , εU

T (1)
i

)
(6.16)

With all these, the equations (2.10) and (2.11) are reduced to:
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∂2φ =
κ̂

2
ρ(0) (6.17)

∂2χi = −2κ̂U
(1)
i ρ(0) (6.18)

∂2ψ =
κ̂

2

(
2
(
U

(1)
k U

(1)
k − φ

)
ρ(0) + ρ(2) + 3p(2)(ρ)

)
+ φ̈ (6.19)

∂2ξij = −2κ̂U
(1)
i U

(1)
j ρ(0) − 4(∂iφ)(∂jφ) + 2κ̂

((
U

(1)
k U

(1)
k + φ

)
ρ(0) + 2p(2)(ρ)

)
δij

+4(∂kφ)(∂kφ)δij (6.20)

∂2φ̃ =
κ̂

2
ρ̃(0) (6.21)

∂2χ̃i = −2κ̂
(
U
T (1)
i ρ(0) + U

(1)
i ρ̃(0)

)
(6.22)

∂2ψ̃ = κ̂

((
2U

(1)
k U

T (1)
k − φ̃

)
ρ(0) +

(
U

(1)
k U

(1)
k − φ+

3

2
p′(2)(ρ)

)
ρ̃(0) +

ρ̃(2)

2

)
+ ¨̃φ (6.23)

∂2ξij = −2κ̂
((
U
T (1)
i U

(1)
j + U

(1)
i U

T (1)
j

)
ρ(0) + U

(1)
i U

(1)
j ρ̃(0)

)
− 4(∂iφ̃)(∂jφ)− 4(∂iφ)(∂jφ̃)

+2κ̂
((

2U
(1)
k U

T (1)
k + φ̃

)
ρ(0) +

(
U

(1)
k U

(1)
k + φ+ 2p′(2)(ρ)

)
ρ̃(0)
)
δij

+8(∂kφ)(∂kφ̃)δij (6.24)

Where p′(2)(ρ) = ∂p(2)

∂ρ
(ρ). We can see that the equations (6.17) and (6.21) correspond

to (6.4) and (6.5) respectively.

Besides, we have the equations (2.13) and (2.14), but they are null with the gauge

equations (6.8-6.11). However, it is useful write them in term of ρ(0), ρ(2), ρ̃(0), ρ̃(2) and

p(2) in the case when U
(1)
i = U

T (1)
i = 0. That is:

ρ̇(0) = 0

ρ̇(0) = 0

˙̃ρ(2) = 0

˙̃ρ(2) = 0

∂ip
(2)(ρ) = −ρ(0)∂iφ

∂i
(
p′(2)(ρ)ρ̃(0)

)
= −ρ(0)∂iφ̃− ρ̃(0)∂iφ (6.25)

These equations give us additional information about ρ(0) that we did not have in

the Newton approximation. This information come from the gauge fixing. To see this

explicitly, we will analyze the spherical symmetry case. So, the equations in (6.25) say

us that all densities are t-independent, therefore they are only depend of r. Besides, we

have that:
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p′(2) (ρ(r))

(
∂ρ(0)

∂r
(r)

)
= −ρ(0)(r)

(
∂φ

∂r
(r)

)
(6.26)

∂

∂r

(
p′(2) (ρ(r)) ρ̃(0)(r)

)
= −ρ(0)(r)

(
∂φ̃

∂r
(r)

)
− ρ̃(0)(r)

(
∂φ

∂r
(r)

)
(6.27)

Where we used that
(
∂p(2)

∂r
(r)
)

= p′(2) (ρ(r))
(
∂ρ(0)

∂r
(r)
)

. Now, if we mix (6.26) and

(6.27) we obtain:

ρ̃(0)(r) =

(
∂ρ(0)

∂r
(r)
)

(
∂φ
∂r

(r)
) (

φ̃(r) + φ̃0

)
(6.28)

Where φ̃0 is an integration constant. This means that we can obtain an expression

to ρ̃(0) if we know ρ(0). So, the Newtonian limit equations to spherical symmetry are

reduced to:

1

r2

∂

∂r

(
r2∂φ(r)

∂r

)
=

κ̂

2
ρ(0)(r) (6.29)

1

r2

∂

∂r

(
r2∂φ̃(r)

∂r

)
=

κ̂

2

(
∂ρ(0)

∂r
(r)
)

(
∂φ
∂r

(r)
) (

φ̃(r) + φ̃0

)
(6.30)

Therefore, we can obtain φ(r) and φ̃(r) if we know ρ(0)(r), that is the complete New-

tonian limit. Now, we can ask us if it is possible explain dark matter with this result.

For this, we will study the trajectory of a particle in the next section

6.3 Trajectory of a Particle.

If we have a massive particle, the acceleration is given by (3.3). In the Post-Newtonian

limit, we obtain that:

1

c2

d2~x

dt2
= −ε2∇

(
φN +

(
2φ2

N + ψN
)
ε2
)

+ε4
(

3~vφ̇N + 4~v (~v · ∇φN)− v2∇φN − ~̇χN + (~v ×∇× ~χN)
)

+
ε4k2

2

2
∇φ̃2 +O

(
ε6
)

(6.31)
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Where ~v = d~x
dt

, φN = φN + κ2φ̃ and the same for the others fields. From (6.31), we

can deduce a couple of thing. In first place, we can see that 1
c2
d2~x
dt2

= −ε2∇φN in the

Newtonian limit, so φN is the effective potential. In second place, the acceleration is

similar to the usual case if we replace φ→ φN [63], with the exception of the last term in

(6.31). If we analyze the case with spherical symmetry outside the matter, from (6.30)

we can see that φ̃2 ∼ r−2. This means that this term is ∼ −r−3, therefore is an attractive

contribution. A more detailed analysis is required for this term, but in this work we will

only do a little analysis of the Newtonian case.

We said that φN is the effective potential in the Newtonian limit. This means that

the effective density is ρeff = ρ(0) + κ2ρ̃
(0). In spherical symmetry is:

ρeff (r) = ρ(0)(r) + κ2

(
∂ρ(0)

∂r
(r)
)

(
∂φ
∂r

(r)
) (

φ̃(r) + φ̃0

)
(6.32)

Therefore, we have an additional mass given by the second term in (6.32), that could

be identify with dark matter. If we compare this result with (4.22), we can see that

the deflection of light allow an additional mass given by Madd = κ2a0M , where M is

the mass of sun. If we accept that this mass is dark matter, (4.23) say us that we have

< 1% of dark matter in the solar system scale. On the other side, in a galactic scale, this

effect could be even bigger. To verify this, we need use some profile of luminosity for any

galaxy, exponential for example, and obtain an expression to the density of luminosity

matter, ρ(0), [69]. Finally, we can obtain the effective density using (6.32). Unfortunately,

by time problems, we did can complete this calculus to this work.
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Conclusions.

We have proposed a modified gravity model with good properties at the quantum level.

It is finite on shell in the vacuum and only lives at one loop. It incorporates a new field

g̃µν that transforms correctly under general coordinate transformation and exhibits a new

symmetry: the δ̃ symmetry. The new action is invariant under these transformations.

We call this new gravity model δ̃ gravity. A quantum field theory analysis of δ̃ gravity

has been developed [51].

In this work, we study the classical effects in a classical level. To this end, we require

to set up the following two issues. First, we need to find the equations for δ̃ gravity.

One of them is Einstein’s equation, which it gives us gµν , and the other equation is

(2.11) to solve for g̃µν . Second, we need the modified test particle action. This action,

(3.9), incorporates the new field g̃µν . We obtain that a photon, or a massless particle,

moves in a null geodesic of gµν = gµν + κ2g̃µν and that a massive particle is governed

by the equation of motion (3.3). With all this basic set up, we can study any phenomenon.

In first place, we analyze the Schwarzschild case outside the matter. We found a exact

solution to the equations of motion to this case. This solution could be used to study the

black hole. To the sun, we can use a Newtonian approximation and found the deflection

of light. To explain the experimental data, the correction must be small. This means

that the modification of δ̃ gravity is not important to solar system scale.

In [52] it was shown that δ̃ gravity predicts an accelerated expansion of the Universe

without a cosmological constant or additional scalar fields by using an approximation

corresponding for small redshift. In [53], it is developed an exact expression for the cos-

mological luminosity distance, but we assumed that we do not have δ̃ matter. We find in

the present work the exact solution with δ̃ matter. For this, it was necessary to fix the

gauge to gµν and g̃µν . We used an extended harmonic gauge. We verify that δ̃ gravity
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do not require dark energy to explain the accelerate expansion of the universe. With

this exact expression, we could also study very early phenomenon in the Universe, for

example inflation and the CMB power spectrum. This work is in progress.

On the other hand, photons move on a null geodesic of gµν = gµν + κ2g̃µν , so we can

define a new scale factor R̃(t). If we assume that the universe only has non relativistic

matter and radiation, we can obtain an exact expression for R̃(t). It is clear in (5.22) that

1 � C 6= 0 is necessary to obtain an accelerated expansion of the Universe. Therefore

a minimal component of radiation explains the supernova data without dark energy. In

this way, in this model, the accelerated expansion of the Universe, can be understood as

geometric effect.

Besides, we calculate the age of the Universe. We find that the Universe has lived a

bit more as in GR. This is not a contradiction, but rather a reinterpretation of the obser-

vations. This result is a consequence of the new equation of motion for the photons. This

model ends in a Big Rip and we calculate when it will happen. The universe almost has

lived half of its life. Even though the Big Rip could be seen as a problem, we observe that

other cosmological models share this property too [54, 55]. Nevertheless, in our case, we

have some way outs from the Big Rip. For example, the appearance of quantum effects

or massive photons at times close to the Big Rip, by effects similar to superconductivity

[68]. These effects could occur at very low temperatures which are common at the later

stages of the evolution of the Universe.

Finally, we studied the Non-Relativistic case. In the Newtonian limit, we obtain a

similar expression to the usual case, where we have an effective potential. This potential

depend of ρ(0) and ρ̃(0), where the last one correspond to δ̃ matter. The Schwarzschild

result say us that δ̃ matter is < 1% to solar system scale. However, a different result could

be find in another scale. For example, to galactic scale. We found a relation between ρ(0)

and ρ̃(0). We can use this relation to study the velocity rotation in a galaxy. For this, a

numeric calculus is necessary. This work is in progress.
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Appendix A: Analysis of T̃µν.

The equation (2.9) is:

T̃ µν =
1√
−g

δ

δgµν

[√
−g
(
Tαβ g̃αβ − 2L̃M

)]
+ g̃µαT

αν + g̃ναT
αµ − 1

2
g̃ααT

µν

=
1√
−g

δ

δgµν

[√
−gTαβ g̃αβ

]
+ g̃µαT

αν + g̃ναT
αµ − 1

2
g̃ααT

µν + T µν(δM)

= g̃αβ
δTαβ

δgµν
+

1

2
gµνTαβ g̃αβ + g̃µαT

αν + g̃ναT
αµ − 1

2
g̃ααT

µν + T µν(δM)

Where the equation (2.8) say us that:

T µν(δM) = − 2√
−g

δ

δgµν

[√
−gL̃M

]
= φ̃I

∂T µν

∂φI
+ (∂αφ̃I)

∂T µν

∂(∂αφI)
(6.33)

Now, we use:

g̃αβ
δTαβ

δgµν
= g̃αβ

δ

δgµν

[
gαρgβλTρλ

]
= g̃αβ

δTαβ
δgµν

− g̃µαT να − g̃ναT µα

So:

T̃ µν = g̃αβ
δTαβ
δgµν

+
1

2
gµνTαβ g̃αβ −

1

2
g̃ααT

µν + T µν(δM) (6.34)

If we evaluate this identity in the equation of motion of g̃µν , (2.11), we obtain:

F (µν)(αβ)ρλDρDλg̃αβ +
1

2
(g̃ααR

µν − g̃µνR) = κ

(
g̃αβ

δTαβ
δgµν

+ T µν(δM)

)
(6.35)
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This equation is obtained in [53, 51] with T µν(δM) = 0. So, (6.34) say us that (2.11) and

(6.35) are the same.

On the other side, we know that T̃µν = g̃αβ
δTµν
δgαβ

+ T (δM)
µν . Therefore (6.34) say us:

g̃αβ
(
δTαβ
δgµν

)
= gµρgνλg̃αβ

(
δTρλ
δgαβ

)
− 1

2
gµνTαβ g̃αβ +

1

2
g̃ααT

µν (6.36)

Now, we will verify the identity (6.36) to a perfect fluid. Using (2.18), we obtain that:

δTµν
δgαβ

= −1

2
λ2,ρr

(
δρν

(
δUµ
δgαβ

)
+ δρµ

(
δUν
δgαβ

))
+ gµνλ2,ρr

(
δUρ

δgαβ

)
− (r(1 + ε(r)) + λ1(uaua + 1)− λ2,ρrU

ρ)

(
δgµν
δgαβ

)
= −1

2
λ2,ρrua

(
δρν

(
δeaµ
δgαβ

)
+ δρµ

(
δeaν
δgαβ

))
+ gµνλ2,ρuar

(
δeaρ

δgαβ

)
−1

2
(r(1 + ε(r)) + λ1(uaua + 1)− λ2,ρrU

ρ)
(
δαµδ

β
ν + δβµδ

α
ν

)
= −1

8
λ2,ρr

(
δρν
(
δαµU

β + δβµU
α
)

+ δρµ
(
δανU

β + δβνU
α
))
− 1

4
gµνλ2,ρr

(
Uαgρβ + Uβgρα

)
−1

2
(r(1 + ε(r)) + λ1(uaua + 1)− λ2,ρrU

ρ)
(
δαµδ

β
ν + δβµδ

α
ν

)
(6.37)

So:

(
δTµν
δgαβ

)
g̃αβ = −1

4
λ2,βr

(
δβνU

αg̃µα + δβµU
αg̃να + 2gµνU

αg̃βα
)

− (r(1 + ε(r)) + λ1(uaua + 1)− λ2,ρrU
ρ) g̃µν (6.38)(

δTαβ
δgµν

)
g̃αβ = −1

4
λ2,βr

(
Uν g̃µβ + Uµg̃νβ + g̃αα

(
Uµgνβ + Uνgµβ

))
− (r(1 + ε(r)) + λ1(uaua + 1)− λ2,ρrU

ρ) g̃µν (6.39)

If we replace these expressions in (6.36), we obtain:
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g̃αβ
(
δTαβ
δgµν

)
− gµρgνλg̃αβ

(
δTρλ
δgαβ

)
+

1

2
gµνTαβ g̃αβ −

1

2
g̃ααT

µν = 0

→ −1

4
λ2,βr

(
Uν g̃µβ + Uµg̃νβ + g̃αα

(
Uµgνβ + Uνgµβ

)
− gνβUαg̃µα − gµβUαg̃να − 2gµνUαg̃

αβ
)

−1

2
gµν
(
λ2,βrg̃

β
αU

α + g̃αα(r(1 + ε(r)) + λ1(uaua + 1)− λ2,βrU
β)
)

+
1

2
g̃αα

(
1

2
λ2,βr

(
gνβUµ + gµβUν

)
+ gµν(r(1 + ε(r)) + λ1(uaua + 1)− λ2,βrU

β)

)
= 0

→ −1

4
λ2,βr

(
Uν g̃µβ + Uµg̃νβ − gνβUαg̃µα − gµβUαg̃να

)
= 0

→ 0 = 0

Where we have used (2.29) in the last line. Now, if we use the equations of motion

(2.20), (2.22) and (2.23), (6.38) and (6.39) are reduced to:

(
δTµν
δgαβ

)
g̃αβ =

1

4
r (1 + ε(r) + rε′(r))

(
UνU

αg̃µα + UµU
αg̃να + 2gµνU

αUβ g̃αβ
)

+r2ε′(r)g̃µν

= p(ρ)g̃µν +
1

4
(p(ρ) + ρ)

(
UνU

αg̃µα + UµU
αg̃να + 2gµνU

αUβ g̃αβ
)
(6.40)(

δTαβ
δgµν

)
g̃αβ =

1

4
r (1 + ε(r) + rε′(r)) (UνUαg̃µα + UµUαg̃να + 2g̃ααU

µUν)

+r2ε′(r)g̃µν

= p(ρ)g̃µν +
1

4
(p(ρ) + ρ) (UνUαg̃µα + UµUαg̃να + 2g̃ααU

µUν) (6.41)

Where we used that ρ = r(1 + ε(r)) and p(r) = r2ε′(r). On the other hand, we have

that:
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(
δTµν
δλ1

)
λ̃1 = −λ̃1(uaua + 1)

= 0 (6.42)(
δTµν
δλ2

)
λ̃2 = −1

2
λ̃2,ρr

(
δρνUµ + δρµUν

)
+ λ̃2,ρrU

ρgµν

= rr̃ (2ε′(r) + rε′′(r))UµUν

+
1

2
r(1 + ε(r) + rε′(r))

(
UT
µ Uν + UT

ν Uµ +
1

2
g̃βνUβUµ +

1

2
g̃βµUβUν

)
+r

(
r̃ (2ε′(r) + rε′′(r))− 1

2
g̃αβUαUβ(1 + ε(r) + rε′(r))

)
gµν

= r̃
∂p

∂ρ
(ρ)UµUν +

1

2
(p(ρ) + ρ)

(
UT
µ Uν + UT

ν Uµ +
1

2
g̃βνUβUµ +

1

2
g̃βµUβUν

)
+

(
r̃
∂p

∂ρ
(ρ)− 1

2
(p(ρ) + ρ) g̃αβUαUβ

)
gµν (6.43)(

δTµν
δua

)
ũa = −1

2
λ2,ρr

(
δρνU

T
µ + δρµU

T
ν

)
− (2λ1u

aũa − λ2,ρrU
ρ
T ) gµν

=
1

2
r(1 + ε(r) + rε′(r))

(
UνU

T
µ + UµU

T
ν

)
=

1

2
(p(ρ) + ρ)

(
UνU

T
µ + UµU

T
ν

)
(6.44)(

δTµν
δr

)
r̃ = −1

2
λ2,ρr̃

(
δρνUµ + δρµUν

)
− r̃ (1 + ε(r) + rε′(r)− λ2,ρU

ρ) gµν

= r̃(1 + ε(r) + rε′(r))UµUν

= ρ̃UµUν (6.45)
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Appendix B: Variation of Gµν.

In this appendix, we will develop the variation of Gµν with respect gµν . We know that

Gµν = Rµν − 1
2
gµνR, so:

δ̃ [Gµν ] = δ̃

[
Rµν −

1

2
gµνR

]
= δ̃ [Rµν ]−

1

2
g̃µνR +

1

2
gµνRαβ g̃

αβ − 1

2
gµνg

αβ δ̃ [Rαβ]

=

(
δαµδ

β
ν −

1

2
gµνg

αβ

)
δ̃ [Rαβ]− 1

2
g̃µνR +

1

2
gµνRαβ g̃

αβ

Where we used that R = Rαβg
αβ and δ̃gµν = −g̃µν . Now, we use:

δ̃ [Rαβ] = Dρ

(
δ̃
[
Γραβ
])
−Dα

(
δ̃
[
Γρρβ
])

δ̃
[
Γραβ
]

=
1

2
gασ (Dβ g̃σα +Dαg̃βσ −Dσg̃αβ)

to demonstrate that:

(
δαµδ

β
ν −

1

2
gµνg

αβ

)
δ̃ [Rαβ] =

1

4
(δαµδ

λ
ν g

ρβ − δαµδβν gρλ + δβµδ
λ
ν g

ρα − δβµδαν gρλ

+δλµδ
α
ν g

ρβ + δλµδ
β
ν g

ρα − δλµδρνgαβ − δρµδλν gαβ

+2gµνg
αβgρλ − gµνgαλgρβ − gµνgλβgρα)DρDλg̃αβ

= F
(αβ)ρλ
(µν) DρDλg̃αβ

Where F (µν)(αβ)ρλ is given by (2.6). Therefore:

δ̃ [Gµν ] = F
(αβ)ρλ
(µν) DρDλg̃αβ +

1

2
gµνR

αβ g̃αβ −
1

2
g̃µνR

We use this to demonstrate that (2.11)µν = δ̃ [(2.10)µν ] in the section 2.1.
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Appendix C: Vierbein analysis.

One of our basic identities is:

δgαβ
δgµν

=
1

2

(
δµαδ

ν
β + δµβδ

ν
α

)
(6.46)

On the other side, we know that gµν = ηabe
a
µe
b
ν = eaµeaν and ηab = gµνeaµe

b
ν = eaµe

bµ,

where eaµ is the Vierbein. So, (6.46) can be reduced to:

ηab

(
δeaαe

b
β

δgµν

)
=

1

2

(
δµαδ

ν
β + δµβδ

ν
α

)
eaβ

(
δeaα
δgµν

)
+ eaα

(
δeaβ
δgµν

)
=

1

2

(
δµαδ

ν
β + δµβδ

ν
α

)
(
δeaα
δgµν

)
is a three tensor symmetric in (µν) and a vector in a. For this, we define(

δeaα
δgµν

)
= eaγf

γ(µν)
α , where f

β(µν)
α is a four tensor symmetric in (µν). So:

f
(µν)
βα + f

(µν)
αβ =

1

2

(
δµαδ

ν
β + δµβδ

ν
α

)
(6.47)

Besides, fαβ(µν) only must depend of g. Therefore, the most general expression is

f
(µν)
αβ = a

(
δµαδ

ν
β + δναδ

µ
β

)
+ bgµνgαβ. If we evaluate this expression in (6.47), we obtain

a = 1
4

and b = 0. This means that:

δeaα
δgµν

=
1

4
(δµαe

aν + δναe
aµ) (6.48)

From this result, we can conclude that:
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ẽaµ = δ̃eaµ

=

(
δeaµ
δgαβ

)
g̃αβ

=
1

4

(
δαµe

aβ + δβµe
aα
)
g̃αβ

=
1

2
eaαg̃

α
µ (6.49)

Now, another identity that we have is:

δg̃µν
δgαβ

= 0 (6.50)

because gµν and g̃µν are the independent variables, therefore eaµ and ẽaµ depend of these

variables. Since g̃µν = δ̃gµν , we have that g̃µν = ηab
(
ẽaµe

b
ν + eaµẽ

b
ν

)
. So, using (6.48) and

(6.49), we obtain:

δg̃µν
δgαβ

=

(
δg̃µν
δeaρ

)(
δeaρ
δgαβ

)
+

(
δg̃µν
δẽaρ

)(
δẽaρ
δgαβ

)
=

(
δg̃µν
δeaρ

)(
δeaρ
δgαβ

)
+

1

2

(
δg̃µν
δẽaρ

)(
δeaλg̃

λ
ρ

δgαβ

)

=

(
δg̃µν
δeaρ

)(
δeaρ
δgαβ

)
+

1

2

(
δg̃µν
δẽaρ

)(
g̃λρ

(
δeaλ
δgαβ

)
+ eaλg̃ρε

(
δgελ

δgαβ

))
=

1

4
ηbc
(
ẽcµδ

ρ
νδ
b
a + ẽbνδ

ρ
µδ

c
a

) (
δβρ e

aα + δαρ e
aβ
)

+
1

2
ηbc
(
ecµδ

ρ
νδ
b
a + ebνδ

ρ
µδ

c
a

)(1

4
g̃λρ

(
δβλe

aα + δαλe
aβ
)
− 1

2
eaλg̃ερ

(
δαε δ

β
λ + δβε δ

α
λ

))
=

1

4

(
ẽaµδ

ρ
ν + ẽaνδ

ρ
µ

) (
δβρ e

α
a + δαρ e

β
a

)
− 1

8

(
eaµδ

ρ
ν + eaνδ

ρ
µ

) (
g̃βρ e

α
a + g̃αρ e

β
a

)
=

1

4

(
ẽaµe

α
aδ

β
ν + ẽaµe

β
aδ

α
ν + ẽaνe

α
aδ

β
µ + ẽaνe

β
aδ

α
µ

)
− 1

8

(
g̃βν δ

α
µ + g̃αν δ

β
µ + g̃βµδ

α
ν + g̃αµδ

β
ν

)
Using that ẽaµe

α
a = 1

2
g̃αµ :

δg̃µν
δgαβ

=
1

8

(
g̃αµδ

β
ν + g̃βµδ

α
ν + g̃αν δ

β
µ + g̃βν δ

α
µ

)
− 1

8

(
g̃βν δ

α
µ + g̃αν δ

β
µ + g̃βµδ

α
ν + g̃αµδ

β
ν

)
= 0 (6.51)

So, (6.50) has been demonstrated.
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Appendix D: Harmonic Gauge.

We know that the Einstein’s equations do not fix all degrees of freedom of gµν . This

means that, if gµν is solution, then exist other solution g′µν given by a general coordinate

transformation x → x′. We can eliminate these degrees of freedom by adopting some

particular coordinate system, fixing the gauge.

One particularly convenient gauge is given by the harmonic coordinate conditions.

That is:

Γµ ≡ gαβΓµαβ = 0 (6.52)

Under general coordinate transformation, Γµ transform:

Γ′µ =
∂x′µ

∂xα
Γα − gαβ ∂2x′µ

∂xα∂xβ

Therefore, if Γα does not vanish, we can define a new coordinate system x′µ where

Γ′µ = 0. So, it is always possible to choose an harmonic coordinate system. For more

detail about harmonic gauge see, for example, [63].

In the same form, we need fix the gauge to g̃µν . It is natural to choose a gauge given

by:

δ̃ (Γµ) ≡ gαβ δ̃
(
Γµαβ
)
− g̃αβΓµαβ = 0 (6.53)

Where δ̃
(
Γµαβ
)

= 1
2
gµλ (Dβ g̃λα +Dαg̃βλ −Dλg̃αβ). So, when we will refer to harmonic

gauge, we will use (6.52) and (6.53).

Now, we will study the harmonic gauge to particular cases.
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I) Schwarzschild:

In this case, a convenient harmonic coordinate system is (t,X1,X2,X3) with:

X1 = (r − µ) sin(θ) cos(φ)

X2 = (r − µ) sin(θ) sin(φ)

X3 = (r − µ) cos(θ) (6.54)

Where (t,r,θ,φ) is the standard coordinate system and µ = GM . So, the metric in

harmonic coordinate is:

gµνdx
µdxν = −A(r)c2dt2 +

(
r

r − µ

)2

dX2 +

(
B(r)

(r − µ)2
− r2

(r − µ)4

)
(X · dX)2 (6.55)

Where r = µ+
√
X2

1 +X2
2 +X2

3 . It is possible to demonstrate that, if we use (6.54)

in (6.55), we obtain (4.1). In the same form, we can write (4.2) in this coordinate system.

That is:

g̃µνdx
µdxν = −Ã(r)c2dt2 + F̃ (r)

(
r

r − µ

)2

dX2 +

(
B̃(r)

(r − µ)2
− F̃ (r)r2

(r − µ)4

)
(X · dX)2(6.56)

It is not difficult to see that this system is not convenient to work, so we will fix the

gauge in the harmonic coordinate and then we will return to the standard coordinate

system. By construction, (6.54) obey (6.52). However, (6.53) say us that we need the

condition:

r2(r − 2µ)Ã′′(r) + 4r(r − 2µ)Ã′(r)− 4µÃ(r) + r(r − 2µ)(r − µ)F̃ ′′(r) + 4(r − µ)2F̃ ′(r) = 0

where ′ = d
dr

and we used (4.3-4.5). Therefore, the solution of Ã(r) and F̃ (r) is given

by this condition and (4.6).

II) FRW:

In this case, to find the harmonic coordinate system, we will change the t variable of (5.3)

by u. So, the metric is now:

gµνdx
µdxν = −T 2(u)c2du2 +R2(u)

(
dx2 + dy2 + dz2

)
(6.57)
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such that T (u) = dt
du

(u). In the same form, (5.4) is changed to:

g̃µνdx
µdxν = −Tc(u)T 2(u)c2du2 + Td(u)R2(u)

(
dx2 + dy2 + dz2

)
(6.58)

Now, if we fix the harmonic gauge, we obtain that T (u) = T0R
3(u) from (6.52) and

Tc(u) = 3(Td(u) + T1) from (6.53), where T0 and T1 are gauge constants. We use T0 = 1

and T1 = 0 to fix the gauge completely. So, with these conditions, the system (u,x,y,z)

correspond to harmonic coordinate. Now, we can return to the usual system where gµν

and g̃µν are given by:

gµνdx
µdxν = −c2dt2 +R2(t)

(
dx2 + dy2 + dz2

)
g̃µνdx

µdxν = −3Td(t)c
2dt2 + Td(t)R

2(t)
(
dx2 + dy2 + dz2

)
where the gauge is fixed. We will used these expressions on chapter 5 to solve the

cosmological case.

III) Postnewtonian Limit:

The form of gµν and g̃µν , given by (6.6) and (6.7) respectively, are the more general

expression to covariant tensor of rank two. Therefore, we can choose the functions such

that the harmonic gauge is obeyed. For this, we need impose (6.52) and (6.53) in the

Post-Newtonian approximation. So, the harmonic gauge is reduced to:

4φ̇+ ∂iχi = 0

2φ∂iφ− χ̇i −
1

2
∂iξjj + ∂jξij = 0

4 ˙̃φ+ ∂iχ̃i = 0

2φ∂iφ̃+ 2φ̃∂iφ− ˙̃χi −
1

2
∂iξ̃jj + ∂j ξ̃ij = 0

In all our calculus, we fix the harmonic gauge. So, we use all these expressions to

solve (2.10) and (2.11).
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