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Summary

Since Loop Quantum Gravity (LQG) i.e., an approach to quantize gravity, was first

formulated in the pioneering work of T. Jacobson and L. Smolin, it has undergone

a rapid increase of original ideas leading to profound insights and unexpected con-

nections between: gravity, loops, knots and gauge theory. After two decades of

active research in the field, the LQG approach is by now considered viable as well

as a promising candidate to quantize General Relativity. The approach is a minimal

attempt to combine the ideas of Quantum Mechanics and General Relativity. Mini-

mal in the sense that it sticks with the standard formulation of Quantum Mechanics

and General Relativity, but implementing rigourously the diffeomorphism symme-

try of General Relativity. The notion of diffeomorphism symmetry by its own leads

to a fully background independent and non-perturbative formulation of Quantum

Gravity. Partial culmination of these ideas had become crystalized in states of the

gravitational field i.e., possible occurrence of 3-geometries with discrete eigenvalues

and purely constructed from combinatorial principles.

The impetus in the LQG approach is mainly attributed to the success casting

a consistent and formal Kinematical theory that solves the problems of quantum

gravity in a great extent. Progress has been made by matching the black hole con-

straint, and by the recent inspired phenomenological models that put close possible

scenarios to test loop quantum gravity effects. These effects have an opportunity

to be probed in cosmological events and in particle physics beyond the Standard

Model.

Moreover, the Hamiltonian of the Standard Model coupled to gravity, supports

a representation based on densely defined operators. The resulting Hamiltonian is

anomaly free and completely finite without renormalization. From these Hamilto-
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nians we obtain the effective Hamiltonians that contains quantum gravity effects.

More precisely, in this thesis we focus in two objectives, first we present the

departing theory from which we obtain the effective models, the Loop Quantum

Gravity formalism. Secondly, we derive the Yang Mills and Higgs effective models

that contains quantum gravity corrections.

In the introduction we summarize the arguments that supports the idea that

a quantum theory of spacetime is important. Certainly, these arguments are not

in the category to be considered formal proofs, instead they try to motivate the

construction of this theory. The claim that a fundamental theory should not have

place for infinities, resume them.

We review in chapter 2 the Hamiltonian formulation of General Relativity and

the LQG formalism in which we pay special attention to the subset of kinematical

constraints, this roughly includes the spin networks basis and geometric operators

spectra.

Last chapters are central part of our investigation, they include a detailed anal-

ysis of the method we have developed to obtain Yang Mills and Higgs effective the-

ories. Both effective theories were obtained using semiclassical states picked around

a flat three metric and defined to preserve rotational invariance. We compute ex-

pectation values of Hamiltonians which describe particle propagation and predict

near Planck energy scales the breakdown of Lorentz invariance.

v



Chapter 1

Introduction

1.1 Quantum gravity: Origins and motivations

Quantum Gravity is an attempt to amalgamate in a single consistent theory, two of

the major revolutionary ideas of contemporary physics, Quantum Mechanics (QM)

and General Relativity (GR). The research in this direction has been intense over

the past seventy years, attracting a lot of ingenious ideas and the investments of

tremendous efforts. However, until date all the proposed models to accomplish

this synthesis have shown to be incomplete or inconsistent. The final program

of quantizing GR has become extremely elusive and out of our immediate reach;

reports and current status can be found in [2, 3]. Nevertheless, one has to recognize

that enormous progress has been made in several directions, the most important

approaches are among Superstring [10, 11], Non-commutative Geometry [12] and

Loop Quantum Gravity (LQG), (for an introduction of LQG, see [4, 5], for the first

use of loop variables see [1], and for textbooks see [6, 7] and more recently [8, 9])

which we honestly remark is not minor considering the complexity of the task.

The two theories proposed to unite are GR and QM, both are consistent but

also disconnected descriptions of the world, each one separately, provide robust

contributions to our knowledge. Let us briefly comment and highlight on their basic

aspects.

The framework introduced by Einstein’s theory harmoniously allows to accom-

modate spacetime and matter in a geometrical language. The concepts taking part
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in the foundational physics of Newton like action-at-distance and absolute observer

had been replaced with new notions. In modern terminology, gravitational field is

identified with spacetime geometry and absolute observer with general covariance.

This is perhaps amongst the most radical changes taking place in physics.

Einstein equation Rµν− 1
2
gµνR = 8πGTµν is a non linear, second order differential

equation for the metric tensor, which synthesize and codes the dynamics of the

theory. A large variety of geometric entities in the manifold, such as line elements,

Riemann curvature and geodesics are specified through the metric. In that way, a

broad range of gravitational phenomena are related to the interplay of matter and

geometry, yielding, planetary orbits, gravitational lensing, black holes, etc.

Gravitational interaction is well known to persists over cosmological scales and

neglected in high energy phenomena. Therefore, the scenario of gravity becoming

crucial for local high energies processes, as suggested by quantum gravity, is quite

astonishing. Then, the statement that gravity deals exclusively with the very large

seems to be premature yet.

On the other side of our knowledge, the agenda to quantize all the forces has

seen to be gloriously achieved in all known matter field theories, culminating in the

celebrated SU(3)× SU(2)× U(1) Standard Model (SM). Standard Model is a the-

ory of strong and electroweak interactions. It accommodates gluons, W and photons

acting as force carriers between quarks and between leptons. All fundamental inter-

actions are described within the SM formalism, except gravity. The data obtained in

accelerator experiments, with relativistic particles colliding at energies of the order

of 102 Gev, are extremely precise and in high accordance with theoretical predic-

tions, also of course the experiments in condensed matter physics, quantum optics

etc, which are ruled with the non relativistic Schrodinger equation. At date, no

fundamental interactions of physics deviates from this universally quantum-matter

implementation.

However and in spite of the successful implementation of Quantum Mechanics

in the matter sector, a deep understanding of the steps that defines the theory is

still missing. These fundamental issues, when treating with the gravitational system

might turn to be important and not more allowed to be ignored.

Nowadays, it is widely known that the standard methods of functional quanti-

zation are sterile when applied to GR; this is the first explanation why gravity has
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not been quantized yet. Its origin lies on the fact that divergent diagrams occur-

ring in the perturbative serie can not be removed by a renormalization procedure.

A natural questions then arises: Are the basic assumptions in GR or QM fully

correct?. Several and different approaches, work on the idea that a quantum de-

scription of spacetime requires a modification of the two basic theories GR and QM,

some more drastic than others (see [13, 14, 15, 16, 17, 18]). Nevertheless, if one

insist to apply a perturbative approach in gravity by replacing GR at high energies,

just like Fermi theory was replaced by electroweak theory, then the main objec-

tion is that metric splitting and background dependence, implicit in perturbation

theory, means to lose active diffeomorphism invariance of GR. Another reaction to

the non-renormalizability of gravity is support the thesis that quantum corrections

have negligible effects on the gravitational interaction which is extremely weak and

therefore argue that the unification of GR and QM might be useless, at least from an

empirical point of view. We are aware that this is a possibility, but contradicts the

next point [ 2 ], and presents a departure from the historical evolution characterized

in physics toward a reductionist viewpoint of Nature.

The present status of experiments gives no strong clue, although, some argu-

ments sheds some light on why is important to search for this quantum gravity

theory. The most popular claims are related to the role of observables and to the

unavoidable inconsistencies resulting from the formulation of semiclassical quantum

gravity:

[ 1 ]. A fundamental theory must have finite observables and consequently mean-

ingful predictions. To solve the problem of having divergent observables in a theory

the theoretical framework must be extended by replacing some of the basic assump-

tion. An old hope in physics is the idea that quantum gravity could provide the

extended framework to remedy the following singularities.

(a) Cosmological objects such as black holes are characterized to have infinite

curvature in the origin, R(0) → ∞, high matter density regions reflect themselves

in that way.

(b) The problem of initial condition has not been solved in cosmological models.

A description of the origin of the universe might come from the elucidation of some
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aspects that quantum gravity theory must confront.

(c) Standard Model is saturated with two kind of singularities. One shows up

at fixed order when arbitrary high momenta are summed over in the perturbative

expansion. The second kind of divergency, worst in nature, comes from the whole

series expansion. This last one is not cured even using a renormalization procedure

as in the first case. The argument here is that quantum gravity could provide a

natural gravitational regulator for these infinities, preventing integrals from ultravi-

olet divergencies. Mainly due to space discreetness which is expected to arise from

the quantum gravity theory, therefore prohibiting arbitrary short distance and high

momenta availability.

[ 2 ]. A classical gravitational field interacting with a quantum system lead to

inconsistencies. The key line of argument is roughly, after assuming Gµν = 〈ψ |
T̂µν | ψ〉, solutions for the metric needs to specify if there has been wavefunction

collapse after any measurement on the system. This fact leads to violation of either,

uncertainty principle, momentum conservation, signals faster than light, or other

unwanted results. [19]

1.2 Status and overview: free quantum field the-

ories

In the next subsections, we want to give a brief overview of the axiomatic involved

in the quantization of free field theories. The main motivation here, is to point out

some misleading generalizations in the methods used in free quantum field theories

when they are applied to the gravitational system. We will show two possible in-

terpretations given to free Quantum Field Theories (QFT), the particle and field

interpretations. The first interpretation is strongly motivated by the action of the

Poincaré group while the second resembles more the general procedures of Quan-

tum Mechanics. Canonical methods to quantize gravity uses the latter which is best

4



suited to give physical meaning to the gravitational field and because the gauge

symmetry underlying GR is the diffeomorphism group and not the Lorentz group.

GR is a constrained system, thus the tools employed in canonical quantization of

gravity are in many aspects different of those handled in traditional QFT. Here we

will show those first differences.

1.2.1 Fock quantization: particle interpretation

Quantizing a system with infinite degrees of freedom, is commonly known as second

quantization. In particle physics this is normally realized with the use of creation

and annihilation operators that allows to build up the quantum field with all its

basic harmonic excitations. And permits to connect by acting on the vacuum, the

distinct particle Hilbert subspaces of finite harmonic oscillators. Fock space then is

defined by the direct product of these individual Hilbert spaces.

The axiomatization of free QFT are usually given in terms of Wightman axioms

[23, 24], which we proceed to summarize

1. Unitary Representation.

The existence of a unitary and continuous representation of the Poincaré group

P realized in Hilbert space H: P → U(a, Λ), a and Λ being typical displacements

and rotations in spacetime.

2. Spectral Condition

We require for the momentum operator P µPµ ≤ m2; P 0 ≥ 0

3. Unique Vacuum

The trivial representation U(a, Λ) = 1 correspond to a state which is invariant

under all Poincaré transformations called the vacuum Ω0

U(a, Λ) Ω0 = Ω0

4. Covariance
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Consider the smeared field operator φ(f) =
∫

d4x φ(x)f(x). The set of linear

combinations of the form φ(f1)...φ(fn)Ω0 lie dense in H, hence the vacuum is said

to be cyclic. The field satisfy the covariant property

U(p)φ(f)U(p)−1 = φ(f · p) p ∈ P

5. Microscopic Causality

Let the supports of ~f and ~g be spacelike separated then the operators φ(~f) and

φ(~g) must satisfy the relation [φ(~f), φ(~g)] = 0.

Recall that in free field quantization, for instance in the case of a scalar field, the

bilinear operator N̂k = â†kâk which is called number operator, have integers eigenval-

ues and is a constant of motion. Quantum states which are classified according that

integer are mapped by â†k and âk into states with increased or decreased that inte-

ger. The operators â†k and âk are interpreted as creating and annihilating quanta.

Therefore, the notion of quanta being a observer independent quantity, heavily relies

on the property of transformation of the operators among themselves. They must

transform covariantly under the action of Poincaré group, as can be seen in the ex-

pression for the bilinear operator. In that way, the notion of particle in conventional

QFT does not depend on the inertial system.

In resume, Fock space is essentially motivated because carries a unitary rep-

resentation of the Poincaré group, which as we have said, permits to consider an

n-particle state observer-independent, and therefore quanta as a absolute notion.

The absence of this group in the GR case, is another good reason to consider a

different approach than the particle interpretation.

1.2.2 Functional quantization: field interpretation

We start with the basic variables, the configuration variables φ(x, t) and its conju-

gate momenta π(x, t). Both fields, are defined to satisfy the following equal time

commutation relation

6



[
φ̂(x), π̂(y)

]
= i~δ(3)(x− y) (1.1)

Next we choose a representation of the equal time commutations relations, for

which we define, respectively, smeared coordinates and momenta Q, P of the fields

φ and π in terms of the following basis {e1, ..., ek}, ν = 1, ..., k, for example at time

t = 0, by

Q̂n(e, 0) =

∫
φ̂α(x, 0)eν(x)d3x (1.2)

P̂n(e, 0) =

∫
π̂α(x, 0)eν(x)d3x, n ∈ (α, ν) (1.3)

which could generate temporal evolution through a Hamiltonian H, accordingly

to

P̂n(x, t) = e
i
~Ht P̂n(x, 0) e

−i
~ Ht (1.4)

Q̂n(x, t) = e
i
~Ht Q̂n(x, 0) e

−i
~ Ht (1.5)

A representation of (1.1) is obtained by choosing state vectors as functionals of the

classical configuration space Q and belonging to the Hilbert space L2(Q, dµ(Q)),

where dµ(Q) is the measure.

Q̂n(x)Ψ
[
φ(X)

]
= Qn(x)Ψ

[
φ(X)

]
(1.6)

P̂n(y)Ψ
[
Q(X)

]
= −i~

δΨ
[
Q(X)

]

δQn(y)
(1.7)

The Schrodinger equation is

H(Q,−i~
δ

δQ
)Ψ

[
Q(X); t

]
= i~

∂Ψ
[
Q(X); t

]

∂t
(1.8)

After a measurement is made of the classical field configuration, the quantity

PB =

∫

B

|Ψ[
Q(X); t

]|2dµ(Q) (1.9)

is the probability that the result lie in the set B.

7



1.3 First historical attempts

The quantization program in high energy physics, applies only for free fields prop-

agating in a fixed and flat background, as we have seen in the Wightman axiomati-

zation. Therefore, approximative methods as perturbation theory and quantization

on curved backgrounds have been developed to treat with interacting fields, which

indeed are the ones we experience in real life. The perturbative method in SM relies

on the availability to define a unitary operator that describes time evolution and

connects free asymptotic quantum states in the far past and future. Haags theorem

demonstrates that the interaction picture does not really exists, at least you can

write down a perturbative serie that approximates it, but then you need to renor-

malize the theory. What is called renormalization is the mechanism by which order

by order the serie can be made artificially finite, this is surmounted by redefinition

of certain parameters in the Lagrangian as masses, charges and fields. This scheme

has succeeded in the SM, although the convergence of the whole serie is totally lost

and left without control.

The perturbative approach in GR fails because the gravitational field is not

renormalizable as we will see in the next subsection. This is one of the reasons why

the non-renormalizability of gravity could be considered disappointed. But let us

emphasize that even in the case that perturbation techniques were viable in GR we

would have to deal in consequence with the same open problem that characterize

the SM, the convergence of the whole series.

Let us briefly sketch what happens when trying to implement the perturbative

expansion in the gravitational system.

1.3.1 Gravity is non-renormalizable

A naive check to know if a theory is renormalizable is by power counting. Consider

the dimensionless action S in the units ~ = c = 1. The theory for a certain in-

teraction g
∫ Lint is renormalizable if the superficial degree of divergence 4 is not

negative, where the mass dimensionality of the coupling constant is g = M−4. The
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reason is that for momenta K ≤ M lower than the mass scale of the coupling pa-

rameter g = M−4 the interaction is suppressed by the term ( k
M

)4 ≤ 1 and therefore

we lose predictability, for else we need a mass scale higher than the accessible ener-

gies of the system. The mass dimensionality depends on the superficially degree of

divergence 4 = 4 − d −∑
f nf (sf + 1), where nf is the number of fields of type f

and sf , is 0 , 1/2 , 1 , 0 for scalars and graviton, fermions, massive vector field, and

photons respectively.

The first check for gravity, is whether the superficial degree of divergence satisfies

the above condition. For which we refer the readers to the calculation developed in

[20] using the background field method. To sketch the calculation let us consider

the perturbative treatment of the Einstein Hilbert action
∫

d4x
√

gR with the usual

split of the metric around a fixed background plus the perturbation, in most cases

the background is chosen to be the Minkowskian flat metric, in the following way,

gµν(X) = ηµν +
√

Ghµν(X) (1.10)

At first order we obtain an interaction term

√
Gh(∂h)(∂h) + ... (1.11)

Making the power counting we see that 4 = 4 − 2 − 3 = −1, and GR is not

renormalizable neither including supersymmetry.

1.4 Main inputs: Concepts and tools in loop quan-

tum gravity

At this point, the first attempt to quantize gravity have failed, when looking for

other approaches as the canonical ones, we will have to consider a set of constraint

and deal with their solutions (treated in detail in the next chapter). This can be

done in two different ways, the first one is solving the constraints at the classical level
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and then quantizing (phase space reduced methods), and the second is quantizing

and then trying to solve the constraints. The latter, which will be revised in the

sequel, is named Dirac quantization, and is the one used in the LQG approach.

On the other hand, fair to say, solutions to the Hamiltonian constraint better

known as Wheeler DeWitt equation, have never been found in the metric approach

(geometrodynamics approach) not even a consistent regularization. Things improve

in the LQG approach, following the Dirac quantization program and using Ashtekar

variables, some naive solutions can in fact be given, but a complete understanding

of the theory, which amounts to solve the Hamiltonian constraint remains an open

problem.

Due to the many obstacles when trying to quantize gravity, the discussion to a

great extent has been centered on the requirements asked to the quantum gravity

theory. Therefore, in the formulation of Quantum Gravity theory one must decide

among all the basic structures one wants to preserve. The loop approach tries to

implement the quantization program without changing the traditional structures of

both QM and GR, and holding further the diffeomorphism symmetry of GR.

The additional requirement of having active diffeomorphism invariance in the

theory, might seen at first not enough to produce a substantial change. However, as

we would see, a relevant shift in the mathematics involved would take place, with

states of the gravitational field, spin network relying ultimately in combinatorial

terms, and amazing implications which by now belong to the principal ingredients

of the LQG approach, as discreteness of 3-geometries. The notion of space that we

have gained in our everyday experience, continuum and smooth has to be considered

only an approximation accounting for many basic excitations that are discrete in

nature and that should become evident, as we descend to the fundamental levels of

space.

Progress has been achieved from the LQG perspective in understanding the non-

renormalizability of gravity. Essentially because the separation of the gravitational

field into a classical background plus a quantum correction neglects non-perturbative

effects, such as discreteness of 3-geometries that contradicts the assumption of hav-

ing availability of arbitrary short distances.

As we have already mentioned, the irreconcilability of quantum theory and gen-

eral relativity, is by now, one of the important problems left unsolved in theoretical
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physics. The problems, had lead us to deal with the interplay of concepts taking

part in the final theory. The common sensation, however, and definitely the biggest

obstacle that undermines the final program of quantum gravity, which should be

always kept in mind, is the shortage confronting experimental data which permits

to test the different models and the existent theories in dispute.

1.4.1 Diffeomorphism concept in Einstein’s theory

The goal in this subsection is review the key notions firmly established by now in

the GR formalism, as well as their lesser known implications. More precisely, we

want here to emphasize the role of diffeomorphism symmetry and show how this

induces the concept of relationalism in physics.

The GR legacy has brought a substantial upgrade in the understanding of Nature.

Firstly due to the identification of gravitational field with spacetime geometry. This

has changed the old vision that all the things evolve on top of a fixed absolute

background structure, the same one that Newton needed to formulate his theory.

The rigid background is today considered as a dynamical entity governed through

the Einstein’s equations. Secondly, the underlying gauge invariance of GR, general

covariance or active diffeomorphism invariance implies a spectacular renaissance of

the idea of relationism in physics. The notion of relationism has returned with

tangible physical meaning and not only as a product of philosophical thoughts. Let

us explain this concept in more detail.

The GR formalism is invariant under the group of diffeomorphism Diff(M).

They are transformations defined over the manifold M, mapping the spacetime

points to the same manifold while the relevant physical quantities are left invariant.

This signifies that all the possible locality information regarding individual points in

the manifold gets virtually removed by the symmetry, not even to transfer points to

a set of equivalent regions, more instead to only one big equivalent region, the whole

manifold. This is achieved by means of all the C∞ transformations. Holding further

this idea, it can be realized that space and time must lack of absolute meaning i.e.,

points can not be referred to some-where or some-when, for else the implicit fact that

GR has to be described in a fully relational form [21, 22]. In this sense, relational
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means that what is capable to give a precise description to things are only through

relationships, very different of what happens in Newtonian theory where a system

defined by a flat non-dynamical background is such that all the physical effects of

other system ultimately relies on this absolute one.

Furthermore the quantum implementation of this symmetry is well captured in

the picture of spacetime arising in LQG, in which space is defined by the manner

loops are knotted to each other on a single point and subject to change in time. The

rationale in GR is different from other physical theories formulated on dependent

backgrounds, as the entire SM in which the view is that fields evolve on top of

a background. It is meaningful in QED theory to consider a par creation and

ask for the direction of the emitted particles, because the direction is supposed

to be referred to an external absolute structure. Spacetime objects in GR rests

only through relationships, any background structure breaks this symmetry albeit

in many cases the theory may still be able to be formulated in a passive invariant

fashion.

Diffeomorphism is capable to indicate us the presence of a background, this

extra information involves the dynamics of the theory itself. Passive transformations

depends on how the theory are mathematically formulated.

1.4.2 Dirac quantization

In this subsection we will review the Dirac algorithm for constrained systems which

is the one used in the LQG approach. A more detailed discussion can be found in

[25].

Consider a classical system with Hamiltonian H(qi, pi), with qi a set of canonical

variables with canonical momenta pi. Whenever a system with non independent

variables is formulated, a set of constraints is obtained and defined by the relations

φa(qi, pi) = 0 i = 1, 2, ...a (1.12)

First class constraints are defined to satisfy,

12



{φa, φb} = Cd
abφd (1.13)

Second class constraints do not satisfy this relation. Although, there are methods

to bring second class constraints into first class constraints. After some manipulation

involving the lagrange multipliers λa, the time evolution of a function O(q, p) satisfies

Ȯ(q, p) = {O, H}+ λa{O, φa} (1.14)

O is defined to be an observable if {O, φa} = 0. first class constraints generate

gauge transformations connecting physical trajectories in a restricted phase space

constraint surface. The Hamiltonian can be written H ′ = H + λaφa.

Now, let us resume the steps leading to the Dirac quantization of systems with

constraints

1. Define an auxiliary Hilbert space H(aux) and pick a polarization such that

quantum states are functionals of the configurations variables Ψ[Q]

2. Find a representation for the classical algebra into commutators

[P̂ (x), Q̂(y)] = −iδ(3)(x− y) (1.15)

with self-adjoint operators on a Hilbert space of states

Q̂ = Q (1.16)

P̂ = −i
δ

δQ
(1.17)

3. Symmetries are represented as constraints, then one has to impose quantum

constraints annihilating physical states, narrowing the H(aux) to a physical Hilbert

space H(phy)

4. We need now a inner product in the physical Hilbert space in order to compute

expectation values and make physical predictions

5. Construct a set of observables that could be interpreted

More references for this subsection are found in [26, 27, 28, 29, 30]
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Chapter 2

The loop quantum gravity

formalism

Now that we have discussed the concepts involved in the loop approach, let us turn

to the review of the mathematical formulation.

The Hamiltonian formulation of GR was developed in the sixties by Arnowitt,

Deser and Misner (ADM) [31]. In rigor the formalism constitutes the starting point

of canonical approaches. To describe dynamical evolution, the Hamiltonian is re-

quired to depend on a time parameter. Therefore, spacetime manifold M of 4-

dimensions will be arbitrary spilt in 3-dimensional space plus time direction which

is unphysical. The explicit covariance of the theory will be spoil, although the

constraints will tell us that the theory is invariant under any such choice of coordi-

natization. Thus, all the concepts analyzed in the previous sections are going to be

canalized through the constraints.

The use of complex phase space for GR (Ashtekar or self-dual variables) remark-

ably leads to a simplification of the algebraic structure of the constraint. Allowing

for the first time to found an overcomplete basis of solutions for the Hamiltonian

constraint. These solutions called Wilson loops provides the name ”loop” and hints

on the advantages of a formulation of GR in terms of Ashtekar variables [32].
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2.1 Hamiltonian Formulation

Consider a global hyperbolic 4-manifold M with topology R× S, and S a compact

3-manifold representing space and t ∈ R unphysical time. Next, cover M with a

foliation into Cauchy surfaces Σt and define t as a global time function and tµ a

time-like vector representing the flow of time, both obeying tµ∇µt = 1.

Let us write an imbedded space metric qµν as

qµν = gµν + nµnν , (2.1)

with nµ a normal vector to Σt and with nµnµ = −1. The vector field tµ can be

decomposed in its normal nµ and tangential Nµ components to the surface Σt in the

form,

tµ = Nnµ + Nµ. (2.2)

N receives the name of lapse function, as it measures the change in proper time

while Nµ is called shift vector relating normal displacements. Written in a particular

system of local coordinates (x, t) and in terms of the quantities (qµν , N,N i), the line

element ds reads,

ds2 = −N2dt2 + qab(dxa + Nadt)(dxb + N bdt). (2.3)

Note that the metric qµν acts as projector on Σt, therefore verifying qµν nν = 0

and qµν qνρ = qρ
µ, therefore in what follows qµν will be considered a space metric

written with space indices only.

An important object that describes the velocity of qab as it moves normally to

the surface Σt, is given by the extrinsic curvature Kµν :

Kµν = q σ
µ ∇σnν , (2.4)

or the alternative definition given by,
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Kµν =
1

2
L~nqµν , (2.5)

where L is the Lie derivative along the vector ~n. With the same considerations

as before we will write the extrinsic curvature with spatial indices.

The tensors qab and Kab are called first and second fundamental forms in Σt

respectively, they behave as Cauchy data for the metric, just like the potential

vector Aa and the electric field Ea are Cauchy data for the electromagnetic tensor

Fµν . Phase space consist in the 3-metric qab and in the extrinsic curvature Kab.

They allows to cast the system in canonical form.

After some manipulation the Einstein-Hilbert action S =
∫

d4xR written in the

variables q and K reduces to

S =

∫
dtd3xN

√
q((3)R + KabK

ab −K2), (2.6)

with q the 3-determinant of qab, where
√

g = N
√

q, and using the following

notation K = Ka
a .

The action is now conveniently expressed in terms of variables that are space

functions and which evolves in time, so let us follow the traditional steps in the

canonical quantization program. With this purpose, we choose the 3-metric qab

to play the role of position, while its associated conjugate momenta results to be,

πab = ∂L
∂q̇ab

=
√

q(Kab − K2qab). Then, after working out the Hamiltonian density

and using the Legendre transform of the Lagriangian density L, we finally arrive to

the expression

H(q, π) =

∫

Σ

d3xH =

∫

Σ

d3x
√

q(NC + NaCa) (2.7)

where we have defined

C = −(3)R + q−1(πabπ
ab − 1

2
π2) (2.8)

and
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Ca = −2∇b(q−1/2πab), (2.9)

the notation is such that ∇a, is the torsion-free covariant derivative compatible

with qab and π2 = (πa
a)

2.

The fact that the Hamiltonian contains no time derivatives with respect to the

lapse and the shifts functions, means that N and Na are Lagrange multipliers,

instead than true dynamical variables. It can be shown that,

C = 0 and Ca = 0. (2.10)

The above equations are instantaneous laws satisfied on shell i.e., on each hy-

persurface Σ, analogous to the Gauss constraint in electromagnetism. In electro-

magnetism the Gauss law constraint, tell us how to control the redundant degree

of freedom of the gauge theory U(1), by pointing out, that not any electric field re-

sults to be a proper solution. In here we have the same situation, with only certain

allowed regions in phase space.

The constraints C and Ca are called Hamiltonian and spatial diffeomorphism

respectively, because when we set ~N to zero, the Hamiltonian of GR turns out to

be, see eq (2.7),

C(N) =

∫

Σ

NCq1/2d3x. (2.11)

Considering the phase space function J , it can be shown that C(N) generates

infinitesimal gauge transformations

δNJ = {C(N), J}. (2.12)

Thus, the Hamiltonian constraint C(N) generates diffeomorphisms in a normal

direction that corresponds to the direction of the flow of time. Now, if we set the

lapse N to zero,
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~C( ~N) =

∫

Σ

NaCaq
1/2d3x (2.13)

and we arrive to,

δ ~NJ = {~C( ~N), J}. (2.14)

As before, we see that C( ~N) generates diffeomorphism in the ~N direction with

displacements tangent to Σt.

The Hamiltonian and diffeomorphism constraint can be shown to verify the Pois-

son algebra,

{~C( ~N), ~C( ~M)} = ~C(L ~M
~N) (2.15)

{~C( ~N), C(M)} = C(L ~N
~M) (2.16)

{C(N), C(M)} = ~C( ~K) (2.17)

where K is defined to be Ka = qqab(N∂bM −M∂bN).

2.2 Geometrodynamics quantization

Until this point, GR has been canonically formulated and the gauge character of

gravity directly related to the constraints, that in turn play the role of spacetime

diffeomorphism generators. The Hamiltonian of GR has seen to vanish on shell,

since it’s a linear combinations of vanishing constraints. At this stage we could

think that the dynamics of the theory is dominated by a trivial Hamiltonian, which

is not the case. More precisely, is an indication that the GR Hamiltonian is not a

true Hamiltonian, instead generates spacetime diffeomorphisms and therefore tell us

that space and time can not be defined as something absolute.
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Our next step is to apply the rules of quantization to the gravitational system

we have derived, picking for example a polarization for the state vectors in terms

of metric variables Ψ(q). Thereafter, we seek for a representation of the symplectic

algebra expressed in terms of metric variables, which lead us to the next step in

the Dirac quantization program for constrained systems. Promote constraints to

operators while requiring physical state vectors to lie in the kernel of the constraints,

Ĉµ(q̂, π̂)Ψ(q) = 0. (2.18)

However and unfortunately, the Cµ functions involve terms in which the canoni-

cal variables appear non polynomially multiplied, not even analytically on the metric

qab, so we must confront operator ordering problems; different orders of writing down

equivalent classical formulas for the constraints yield different operators in the quan-

tum level. One can, at least in principle, seek for regularized expressions for the

constraints, where operators are to be defined in terms of limits of smeared field

variables. Up to date no one has yet demonstrated a consistent choice of canonical

variables and operator orderings in which the constraints equations behave in the

above sense. This technical issue is the constraints implementation problem

and is where the program first stalls. Let us go further and analyze the dynamic of

the theory. We have said that the Hamiltonian density vanishes on physical states

by virtue of equation (2.7) and (2.10). The dynamics of the theory, then, is not

dominated by the Hamiltonian, rather describes the states that are invariant under

all spacetime diffeomorphism. This is the time problem in quantum gravity; this

feature is related to the meaning of time as something determined intrinsically by

the theory (in terms of geometry), rather than by an external structure. In order

to compute expectation values and relevant quantities involved in any measurable

phenomena we will require a physical inner product and a real Hilbert space. We

must factor out somehow the gauge group of Diff(Σ) when one performs an in-

ner product. This resembles the factorization done in the functional integral, and is

called the inner product problem. These three problems are the major roadblock

we face when we try to quantize gravity by means of canonical technics (for a more

detailed discussion on these points see [7, 37]).
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2.3 New canonical framework

Now that we have summarized the main list of problems encountered in the program

of geometrodynamics quantization, let us change to a different approach that will

lead us close to the basic of the LQG formalism. We will give a chance to the

so called first order formulation, which introduce tetrads and spin connections

as new variables in phase space. These new variables introduce extra degrees of

freedom in the theory, providing an additional solution to the Einstein equation

together with a new subset of constraints related to rotational invariance in tangent

space. The new variables allow to describe the system more like a Yang Mills (YM)

theory. We will exploit this fact using all the machinery developed to quantize these

gauge systems. However constraints will retain their non polynomial character with

no substantial progress when we try to implement the quantum version of constraints

and with all the subsequent attached problems we have describe before.

Nevertheless, if in addition phase space of GR is extended using self dual variables

or the so called Ashtekar variables [32], that is, a complex phase space with self

dual connections and tetrads, then the constraints notably simplifies. Wilson loops

solutions of the Hamiltonian and Gauss constraint, are in here, the first sign of the

loop notion arising.

2.3.1 First order variables

The key point of the next step is to shift the description of the system, basically from

metric variables to connection ones. First let us define tetrads and spin connections.

A set of basis vectors {eI
a} are called tetrads or vielbeins if the metric of space

time looks locally flat, ie.

gµν = eI
µe

J
ν ηIJ {I, µ} = 0, 1, 2, 3 (2.19)

We can perform a a Lorentz transformation on the flat indices {I} at every point

in spacetime, they are called local Lorentz transformations, or perform usual
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general coordinate transformations or diffeomorphisms on curved indices

{µ}. Comparison of the covariant derivative on two different bases permit us to write

the following relationship between spin connection w I
µ J and ordinary connection Γν

µλ

w I
µ J = eI

νe
λ
JΓν

µλ − eλ
J∂µe

I
λ (2.20)

We can think on eI
µ and w a

µ b as a vector and tensor valued one form respectively

[36].

2.3.2 The Palatini action and self-dual action

With the same assumptions regarding the manifold structure of the previous section,

the Palatini action is defined by a curvature 2-form ΩIJ
µν = ∂[µω

IJ
ν] + [ωµ, ων ]

IJ the

connection 1-form ωIJ
µ and the tetrad eµ

I as,

S(e, w) =

∫
d4x e ea

Ie
b
JΩIJ

ab , (2.21)

where e =
√−g is the determinant of the tetrad.

After performing the usual spacetime decomposition, we arrive to an additional

solution, which is ea
I = 0 and to a new constraint, the Gauss constraint DaeI

a = 0

[37].

The main idea of the modern formulation is to introduce Ashtekar variables [32]

or the self-dual Lorentz connection +A keeping the tetradic construction. This

extra structure requires complex phase space variables, therefore requires to extend

the differential geometric structure of traditional GR to complex GR. Under ap-

propriate reality conditions we can recover the standard theory which makes them

totally equivalent. The spacetime decomposition of this new action introduce a fun-

damental change in the kind of constraints; this in part relies on the fact that the

new connection entails information of both variables qab and Kab, like Bargmann

or holomorphic variables in the solution of the quantum harmonic oscillator. We

define a Lorentz connection by AIJ
a = −AJI

a and the internal Hodge dual of a
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Lorentz connection mapping element of the space of connections to itself defined by
∗T IJ = 1

2
εIJ

KLTKL; any Lorentz connection can be write by a sum of self-dual and

anti-self dual parts A = +A + −A with ∗A = ±i ±A. In terms of self and anti self

dual parts ±A = (A∓ i ∗A)/2. The other basic field besides the self-dual connection

is the tetrad eI
µ, the proposed self dual action is,

S(e, +A) =

∫

M

d4x e eµ
I e

ν
J

+F IJ
µν . (2.22)

It can be shown that the curvature of a self dual Lorentz connection is self dual

∗F = iF Where we have defined the internal Hodge dual of the curvature F as

(∗F )IJ
µν = 1

2
εIJ

KLFKL
µν . Now we proceed with the usual decomposition of spacetime;

gauge fixing the internal vector nI = ed
Ind = (1, 0, 0, 0) allow to consider only 0I

components of internal indices.

The Hamiltonian becomes,

H =

∫

Σ

{1

2
N ~Fab( ~Ea × ~Ea) + Na ~Fab · ~Eb + Λ ·Da

~Ea} (2.23)

With Ea
I =

√
qea

I and the self dual connection Ai
a. They satisfy the Poisson

bracket relation

{Ai
a(x), Eb

j (y)} = iδb
aδ

i
jδ

(3)(x− y) (2.24)

with new constraints,

Gi = DaE
ai Ca = Eb

i F
i
ab H = εij

k Ea
i Eb

jF
k
ab (2.25)

and obeying a different constraint algebra [5].

2.4 Loop quantization

The use of Ashtekar variables has led to a simplification in the constraints. To

proceed we must choose a representation of the relation (2.24) and pick a polarization

of the functionals in terms of connection variables for instance, such as
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Âi
aΨ(A) = Ai

aΨ(A) (2.26)

Êa
i Ψ(A) =

δ

δAi
a

Ψ(A) (2.27)

and then promote the constraints to operators equations. First we will consider

a order for the constraints, with the triads to the right (2.25),

Ĝi = Da
δ

δAi
a

Ca = F i
ab

δ

δAi
a

H = εijkF i
ab

δ

δAj
a

δ

δAk
b

(2.28)

Gauss constraint require that states be gauge invariant functionals states of

the connection A, therefore states can be described by the loop states Ψγ(A) =∏
i Tr(h(A, γi)) as the basis states for quantum gravity. They allow us to control the

diffeomorphism constraint and are solutions of the Hamiltonian constraint. However

one of the difficulties of these objects is that they form a overcomplete basis.

It can be shown that the Gauss and the Diffeomorphism constraint generates

gauge transformations and diffeomorphisms on the wavefunctionals Ψ(A). A first

inspection suggest to consider Wilson loops W (A) = Tr
(Pexp

∮
Aadxa

)
which are

well known to be gauge invariant functionals under transformations of the connec-

tion A, and therefore automatically solutions of the Gauss constraints. We would

continue to require these states to be annihilated by the Diffeomorphism constraints

and then continue with the Hamiltonian constraints, with the hope to finish at the

end with a genuine Hilbert space, with physical states belonging to it.

2.4.1 Holonomies

Let a curve γ be defined as a continuous, piecewise smooth map from the interval

[0, 1] into the 3-manifold M ,

γ : [0, 1] −→ M (2.29)

s 7−→ {γa(s)} , a = 1, 2, 3 . (2.30)
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The holonomy or parallel propagator h[A, γ], of the connection A along the curve γ

is defined by

h[A, γ](s) ∈ SU(2) , (2.31)

h[A, γ](0) = 11 , (2.32)

d

ds
h[A, γ](s) + Aa

(
γ(s)

)
γ̇a(s) U [A, γ](s) = 0 , (2.33)

where γ̇(s) := dγ(s)
ds

is the tangent to the curve. The formal solution of (2.33) is

given in terms of the series expansion

P exp

∫ 1

0

dsA
(
γ(s)

)

=
∞∑

n=0

∫ 1

0

ds1

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsn A
(
γ(sn)

) · · ·A(
γ(s1)

)
. (2.34)

h[A, γ](s) = P exp

∫

γ

ds γ̇a Ai
a

(
γ(s)

)
τi ≡ P exp

∫

γ

A , (2.35)

for any matrix-valued function A
(
γ(s)

)
which is defined along γ.

Here P denotes path ordering, i.e. the parameters si are ordered with respect to

their moduli from the left to the right, or more explicitely s1 ≤ s2 ≤ . . . .

2.4.2 Spin Networks

A graph Γn = {γ1, . . . , γn} is a finite collection of n piecewise smooth curves or edges

γi, i = 1, . . . , n, respectively, embedded in the 3-manifold M , that meet only at their

endpoints.

A spin network is a generalization of a graph, namely a colored graph. More

precisely, by definition a spin network is a triple s = (Γ,~j, ~N), where to each link

γi we assign a non-trivial irreducible representation of SU(2) which is labelled by

the numbers ~j = {ji}. Let Hj1 , . . . ,Hjk
be the Hilbert spaces of the representations

associated to the k links. Consider a node p where the k links meet, and associate

to it the Hilbert space Hp = Hj1

⊗
....

⊗Hjk
. Fix an orthonormal basis element
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Np in Hp. An element Np of the basis is called a coloring of the node p. A spin

network state can be defined by taking holonomies at each link associated to the j

representation and contracting it with the elements of the basis in Hp where links

meet. The spin networks states Ψ(A) can be shown to satisfy the orthonormal

condition

< ΨS | ΨS′ >= δΓ,Γ′δj,j′δS,S′ (2.36)

2.4.3 Area Operator

The spectrum computation of geometric operators in the loop representation were

done taking advantage of their non locality properties [78]. Using the complete

basis of spin network states is possible to calculate operators spectrums that are

observables in the Dirac sense.

A surface Σ is a 2-dimensional submanifold embedded in M . The associated

embedding is given by the map X : Σ → M and is characterized by local coordinates

xa, a = 1, 2, 3 on M and coordinates on the surface σµ = (σ1, σ2), µ, ν = 1, 2.

Σ : (σ1, σ2) 7→ xa(σ1, σ2) (2.37)

The pullback metric gΣ and the normal na on Σ are given by

gΣ
µν =

∂xa

∂σµ

∂xb

∂σν
gab and na =

1

2
εµνεabc

∂xb(~σ)

∂σµ

∂xc(~σ)

∂σν
(2.38)

The area is then

A[Σ] =

∫

Σ

d2σ
√

detgΣ =

∫

Σ

d2x

√
1

2!
εµ1µ2εν1ν2gΣ

µ1ν1
gΣ

µ2ν2

=

∫

Σ

d2x
√

nanbEaiEbi (2.39)

25



After regularizing the area A(Σ) the area operator Â(Σ) is given by

Â(Σ) = lim
ε→∞

∑

n(ε)

√
Êi(Σn)Êi(Σn) (2.40)

where we have define the smeared operator

Êi(Σ) = −i~G
∫

Σ

d2σna(~σ)
δ

δAi
a(x(~σ))

(2.41)

Finally, the eigenvalues corresponding to the area operator are given by the

expression

A(Σ) = 8πβ~G
∑

l

√
jl(jl + 1) . (2.42)

Where jl labels de SU(2) representation associated to the link l crossing the

surface Σ .

2.4.4 Volume Operator

Let us consider the volume of a three dimensional region R, this is given by

∫

R

d3x
√

detg (2.43)

g is the three-dimensional space metric. In the same way as in the case of the

area operator, a regularization for the volume operator is needed.

We will not show the technical steps in the derivation of the volume operator

but merely give its final expression, which is

V =
1

4
l3p

∑
i

√
aibici + aibi + bici (2.44)

where p , q and r are the colors of the three adjacent link of the node i. And where

we have defined

p = ai + bi q = bi + ci r = ci + ai (2.45)
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Chapter 3

Yang Mills effective model

Let us go now on to the construction of the Yang Mills effective theory when diffeo-

morphism invariance, geometric operators, spin networks, and what we have study

in the previous chapters are extended or included to matter dynamics. The concrete

implementation given in here is due to the calculations of our work which forms part

of the results of this thesis.

First attempts to include matter in the framework of loop quantum gravity,

were done in the pioneering work [48, 49]. For an approach based on the Kinemat-

ical framework for diffeomorphism invariant theories of connections, see [50]. The

posterior breakthrough came by generalizing to diffeomorphism invariant quantum

field theories, including, besides connections, also fermions and Higgs fields. And

facing directly the task of including matter fields in the Kinematical scheme with

well defined adjoint relations and using the volume operator to solve order ambi-

guities and finiteness of the theory [51]. In that way a consistent representation

with holonomies-like excitations of quantum fields, was successfully implemented to

describe all the sectors of the Standard Model.

In this chapter we concentrate in the process of generalizing the loop quantum

gravity inspired model described in [56, 57] to Yang-Mills fields, in order to obtain

the non-Abelian generalization of the corrections previously found for the dynamics

of photons. Namely, corrections to standard matter dynamics are obtained by means

of calculating non-Abelian holonomies, either of gravitational or Yang-Mills type,

around triangular paths. The basic tool in our analysis is the holonomy along a
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straight line segment which path order property we consistently keep to all orders

in our expansion.

The work is organized as follows: we start working on the regularization of

the Yang Mills Hamiltonian using the Thiemann procedure [51]. We summarizes

the results for the Abelian expansion of holonomies in subsection 3.4.1, which we

generalize [53]. In the last step we calculate the expectation value of the Yang Mills

Hamiltonian with matter fields expanded around vertices which allows to construct

finally the Yang Mills effective theory.

3.1 Electric sector

We will follow the original work of Thiemann and its basics ingredients for the

regularization of the Yang Mills field [51]. The regularization procedure heavily

depends on the action of the volume operator on spin networks. The volume operator

annihilates states unless they act on a vertex of the graph, which permits to syntonize

the two triangulations arising in the regularization. Moreover, the procedure is such

that a large class of Hamiltonians of weight one which are diffeomorphism covariant

and are coupled to gravity, can be turned into densely defined and anomaly-free

operators on a formal defined Hilbert space H.

In addition, let us mention that our expressions for the regularized Hamiltonians

are slightly different from the original ones. Mainly because matter fields in our

approximation are not considered full quantum states, instead they are treated in

an approximation where they are largely parameterized by unknown terms. This

treatment is more well adapted to the semiclassical approximations we are interested

in, instead than the investigation of exact states for gravity plus matter, which lies

beyond our scope.

The Yang Mills Hamiltonian is composed by an electric and magnetic part

smeared on a surface Σ over a space function N(x) as

HY M(N) =

∫

Σ

d3xN(x)
qab

2Q2
√

det q
(Ea

I Eb
I + Ba

I B
b
I), (3.1)
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the notation introduced is such that the underlines indices denotes an arbitrary

compact gauge group G, for instance, the gauge group of the Standard Model (SM)

and where a, b, . . . denotes spatial indices. We are assuming the usual electromag-

netic tensor in terms of magnetic and electric variables as F ab
I = εabcBI

c and F 0a
I = Ea

I

Focussing first in the electric part, the identity 1/κ{Ai
a, V } = 2 sgn(det ej

b)e
i
a

allows to rewrite the above expression as

HE =
1

2κQ2
lim
ε→0

∫

Σ

d3xN(x){Ai
a(x),

√
V (x, ε)}Ea

I (x)

×
∫

Σ

d3yχε(x, y){Ai
b(y),

√
V (y, ε)}Eb

I(y) (3.2)

where ε is a small number and χε(x, y) =
∏3

a=1 θ(ε/2 − |xa − ya|) is defined as

the characteristic function of a cube of volume ε3 centered at x. In addition let

V (x, ε) :=
∫

d3yχε(x, y)
√

det(q) be the volume of the box as measured by qab.

This coordinatization procedure will spoil the explicit diffeomorphism covariance,

which however, will be recovered once the regulator is removed in the next steps.

We note that the trick works as long as we keep the density weight of the constraint

to be one, since then a natural balance between point splitting and powers of
√

det q

in the denominator will permit us to eliminate the divergent factor 1/ε3 [51].

Let us define

Θi
I [f ] :=

∫
d3x f(x)Ea

I (x)
{

Ai
a(x),

√
V (x, ε)

}

=
∑
∆

∫

∆

d3x f(x)Ea
I (x)

{
Ai

a(x),
√

V (x, ε)
}

Θi
I [f ] =:

∑
∆

Θi
∆I [f ] (3.3)

and the covariant flux of Ea
I through the two-surface S as,

ΦE
I (S) := tr

[
τIhe

(∫

S

hρ(p)E
a(p)h−1

ρ(p)εabcdsbc(p)

)
h−1

e

]
(3.4)
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where ρ(p) is the path from the vertex v to the point p lying in the two-surface

S and hρ(p) the holonomy associated to the connection of the gauge field Aa
I .

Note that

tr
(
τihsL

{
h−1

sL
,
√

V (x, ε)
})

= tr

(
τiτm

∫ 1

0

dt ṡ−1a
L (t)

{
Am

a (s−1
L (t)),

√
V (x, ε)

})
+ . . .

= −δim

2

∫ 1

0

dt ṡ−1a
L (t)

{
Am

a (s−1
L (t)),

√
V (x, ε)

}
+ . . .

≈ −1

2
sa

L(1)
{

Ai
a(s

−1
L (0)),

√
V (x, ε)

}
(3.5)

therefore, for small tetrahedra ΦE
I (FJK) ≈ 1

2
εabc sb

J(∆) sc
K(∆) Ea

I , it follows

f(v) εJKLΦE
I (FJK) tr

(
τ i hsL(∆)

{
h−1

sL(∆),
√

V (v(∆), ε)
})

≈ −1

4
f(v)εJKLεabcs

b
J(∆)sc

K(∆)Ea
I sd

L(∆)
{

Ai
d(s

−1
l (0)),

√
V (x, ε)

}

= −3!

2
f(v)vol(∆)Ea

I

{
Ai

a(s
−1
l (0)),

√
V (x, ε)

}

= −3!

2

∫

∆

f eI ∧
{

Ai(x),
√

V (x, ε)
}

. (3.6)

We have then

Θi
∆I [f ] = − 2

3!
f(v) εJKLΦE

I (FJK)tr
(
τ i hsL(∆)

{
h−1

sL(∆),
√

V (v(∆), ε)
})

, (3.7)

where sJ(∆), sK(∆), sL(∆) denotes the edges of the tetrahedra ∆ having v as

common vertex, and FJK the surface parallel to the face determined by sJ(∆), sK(∆)

which is transverse to sL(∆).

Hence

HE[N ] =
1

2κ2Q2
lim
ε−→0

∑

∆∆′
Θi

∆I [N ]Θi
∆′I [χ]. (3.8)

Next we promote Ea and V (x, ε) to quantum operators and adapts the tri-

angulation to the embedded graph γ that corresponds to the state acted upon.
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This is done with the prescription that at each vertex v of γ having the triplet of

edges e, e′, e′′ a tetrahedron is defined with basepoint at the vertex v(∆) = v and

segments sI(∆), I = 1, 2, 3, corresponding to s(e), s(e′), s(e′′) [51]. Let us denote

the arcs connecting the end points of sI(∆) and sJ(∆) by aIJ(∆), so that a loop

αIJ := sI ◦ aIJ ◦ s−1
J can be formed.

The action of the regulated operator hereby obtained gets concentrated in the

vertices of the graph, in essence due to the action of the volume operator which

annihilates a state unless the region defined by the ε-box contains a vertex, which

in successive steps we tend to zero.

We now rearrange the electric Hamiltonian using the following expressions

Θ̂i
∆I [N ] = − 2

3!

1

i~
N(v(∆)) εJKLΦ̂E

I (FJK)

× tr

(
τ i hsL(∆)

[
h−1

sL(∆),

√
V̂ (v(∆), ε)

])
(3.9)

and

Θ̂i
∆′I [χ] = − 2

3!

1

i~
χε(v(∆), v(∆′)) εMNP Φ̂E

I (F ′
MN)

× tr

(
τ i hsP (∆′)

[
h−1

sP (∆′),

√
V̂ (v(∆′), ε)

])
, (3.10)

which after replacing in (3.8) results in

HE[N ] = − 1

~22κ2Q2

∑

v∈V (γ)

N(v)

(
2

3!

8

E(v)

)2 ∑

v(∆)=v(∆′)=v

×

× tr

(
τ i hsL(∆)

[
h−1

sL(∆),

√
V̂ (v(∆), ε)

])
εJKLΦ̂E

I (FJK)×

× tr

(
τ i hsP (∆′)

[
h−1

sP (∆′),

√
V̂ (v(∆′), ε)

])
εMNP Φ̂E

I (F ′
MN). (3.11)

We define the valence n(v) of the vertex v, which produce the contribution E(v) =

n(v)(n(v)−1)(n(v)−2)/3! of the adapted triangulation in each vertex of γ. Moreover,

we have considered that as ε → 0, v(∆) = v(∆′) is the only contributions left over

in the sum.
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3.2 Magnetic sector

Let us continue with the magnetic part of (3.1), using the same regularization

scheme. We start concentrating in the expression for the holonomy of the G con-

nection A, which will be used to rewrite the magnetic constraint in the following.

hαIJ
= P exp

(∮

αIJ

Aa(~x(s))
dxa

ds
ds

)
(3.12)

for small tetrahedra it reduces to, see Eq(3.62)

tr(τIhαIJ
) ≈ −i

1

2
εabcs

b
J (1)s c

K(1)Ba
I (v(∆)) (3.13)

And with the use of

f(v)εJKLtr(τIhαJK
)tr

(
τihsL(∆)

{
h−1

sL(∆),
√

V (x, ε)
})

≈ i
1

4
εJKLεabcs

b
J s c

Ks d
Lf(v)Ba

I (v)
{

Ai
d(v),

√
V (x, ε)

}

= i
1

2
vol(sJ , sK , sL) δd

a f(v) Ba
I (v)

{
Ai

d(v),
√

V (x, ε)
}

= i
3!

2
vol(∆)f(v)Ba

I (v)
{

Ai
a(v),

√
V (x, ε)

}

= i
3!

2

∫

∆

f(x) BI(x) ∧
{

Ai(x),
√

V (x, ε)
}

, (3.14)

we can write

HB[N ] =
1

2κ2Q2
lim
ε−→0

∑

∆∆′
Ξi

∆I [N ] Ξi
∆′I [χ], (3.15)

where

Ξi
∆I [f ] := i

2

3!
f(v)εJKLtr(τIhαJK

)tr
(
τihsL(∆)

{
h−1

sL(∆),
√

V (x, ε)
})

. (3.16)

The quantum counterparts of the above expressions are
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Ξ̂i
∆I [f ] := i

2

3!

1

i~
f(v) εJKLtr(τIhαJK

)tr

(
τihsL(∆)

[
h−1

sL(∆),

√
V̂ (x, ε)

])
.

And the regularized magnetic piece of the Hamiltonian constraint is

HB[N ] = +
1

~22κ2Q2

∑

v∈V (γ)

N(v)

(
2

3!

8

E(v)

)2 ∑

v(∆)=v(∆′)=v

×

× εJKL tr

(
τi hsL(∆)

[
h−1

sL(∆),

√
V̂v

])
tr(τIhαJK

)×

× εMNP tr

(
τi hsP (∆′)

[
h−1

sP (∆′),

√
V̂v

])
tr(τIhαJK

). (3.17)

3.3 The total regularized Hamiltonian

From (3.11) and (3.17), the total Hamiltonian can be written as

ĤYang−Mills[N ] =
1

~22κ2Q2

∑

v∈V (γ)

N(v)

(
2

3!

8

E(v)

)2 ∑

v(∆)=v(∆′)=v

tr

(
τi hsL(∆)

[
h−1

sL(∆),

√
V̂v

])

tr

(
τihsP (∆′)

[
h−1

sP (∆′),

√
V̂v

])
εJKLεMNP

[
tr(τIhαJK

)tr(τIhαMN
)− Φ̂E

I (FJK)Φ̂E
I (F ′

MN)
]
.

(3.18)

Before proceeding a comment on the general structure of the above regularized

Hamiltonian is in order to fix some ideas. So far we have obtained a well first

quantized operator anomaly free and finite which includes kinematical gravitational

degrees of freedom coupled to matter dynamics. The underlying invariant group

being SU(2) and G, with holonomies excitations has appeared well suited to describe

the theory [62, 63, 64, 65, 66, 67] .

The algebraic structure is such that a global gravitational factor is included in

the SU(2) trace, each one acting along one edge of the graph. The basic matter
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entities that regularize the electromagnetic part are the magnetic holonomy along

a triangular path and the electric flux smeared in a face surface spanned by the

tetrahedra of the triangulation .

Let us recall that according to Thiemann’s conventions, the flat space case re-

duces to

HYang−Mills =

∫
d3x

1

2 Q2

(
Ea

I Ea
I + Ba

I Ba
I

)
, (3.19)

where Q is the electromagnetic coupling constant. The units are such that the

gravitational connection Ai
a has dimensions of 1/L (inverse Length) and the New-

ton’s constant κ has dimensions of L/M (Length over Mass). Also we have that

[EI
a/Q

2] = M/L3. Taking the dimensions of the electromagnetic potential AI
a to be

1/L, according to the corresponding normalization of the Wilson loop, we conclude

that [EI
a ] = [BI

a] = 1/L2 and [Q2] = 1/(M L). In our case we also have [~] = M L,

which in fact leads to αEM = Q2 ~ to be the dimensionless fine-structure constant,

as defined by Thiemann [51].

3.4 Holonomies expansion

The method to obtain the quantum gravity induced corrections to the magnetic part

of the Yang-Mills Lagrangian requires, see the expression (3.18), the calculation of

the object

Tρ = tr (Gρ hαIJ
) , (3.20)

where Gρ are the generators of the corresponding Lie algebra and hαij(∆) is the

holonomy of the Yang-Mills connection Aa = Aρ
a Gρ in the triangle αIJ , with vertex

v, defined by the vectors ~sI and ~sJ , arising from the vertex v Fig1.

Our main task will be to construct an expansion of Tρ in powers of the segments

sa
I , sb

J .

To be more precise, we have

hαIJ
= P exp

(∮

αIJ

Aa(~x(s))
dxa

ds
ds

)
, (3.21)

where P is a path-ordered product specified in the subsection 2.4. As shown in

Fig.3.1, the closed path αIJ , parameterized by ~x(s), is defined in the following way:
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sI

sJ

v

Figure 3.1: Triangle αIJ with vertex v

we start from the vertex v following a straight line in the direction and length of ~sI ,

then follow another straight line in the direction and length of ~sJ − ~sI , and finally

returning to v following −~sJ . From the definition of the holonomy, we have the

transformation property

hαIJ
→ U(v)hαIJ

U(v)−1, (3.22)

under a gauge transformation of the connection, where U(v) is a group element

valued on the vertex v. In other words, hαIJ
transforms covariantly under the

group.

3.4.1 The Abelian case

The corresponding calculation was performed in [57] and here we summarize the

results in order to have the correct expressions to which the non-Abelian result

must reduce when taking the commuting limit. In this case Eq.(3.20) reduces to

T = exp(ΦIJ)− 1, (3.23)

where ΦIJ is the magnetic flux through the area of the triangle, given by

ΦB(FIJ) =

∮

αIJ

dt ṡa(t)Aa(t)

=

∫ ~v+~sI

~v

Aa dxa +

∫ ~v+~sJ

~v+~sI

Aa dxa +

∫ ~v

~v+~sJ

Aa dxa, (3.24)
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where the connection Aa(~x(s)) is now a commuting object.

The basic building block in (3.24) is

∫ ~v2

~v1

Aa(~x) dxa =

∫ 1

0

Aa(~v1 + t (~v2 − ~v1)) (~v2 − ~v1)
a dt

=

∫ 1

0

Aa(~v1 + t ~∆) ∆a dt

=

(
1 +

1

2!
∆b∂b +

1

3!
(∆b∂b)

2 + . . .

)
∆aAa(v), (3.25)

with ∆a = (~v2 − ~v1)
a. The infinite series in parenthesis is

F (x) = 1 +
1

2!
x +

1

3!
x2 +

1

4!
x3 + · · · = ex − 1

x
, (3.26)

yielding ∫ ~v2

~v1

Aa(~x) dxa = F (∆a ∂a) (∆a Aa(~v1)) . (3.27)

In the following we employ the notation ∆a Va = ~∆ · ~V . Using the above result in

the three integrals appearing in (3.24) and after some algebra, we obtain

ΦB(FIJ) = F1(~sI · ∇, ~sJ · ∇) sa
J sb

I (∂a Ab(~v)− ∂b Aa(~v))

= F1(~sI · ∇, ~sJ · ∇) sa
J sb

I εabcB
c(v), (3.28)

where the gradient acts upon the coordinates of ~v. The function F1 is

F1(x, y) =
y(ex − 1)− x(ey − 1)

x y (y − x)
= −

∞∑
n=1

1

(n + 1)!

xn − yn

x− y
. (3.29)

Let us emphazise that F1(x, y) is just a power series in the variables x and y.

Expanding in powers of the segments sa
I we obtain

ΦB(FIJ) =

(
1 +

1

3
(sc

I + sc
J) ∂c +

1

12
(sc

I sd
I + sc

I sd
J + sc

J sd
J) ∂c ∂d + ...

)
×

× 1

2
sa

Is
b
JεabcB

c(v). (3.30)

Notice that the combination

1

2
sa

Is
b
Jεabc = A nc, (3.31)
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is just the oriented area of the triangle with vertex v and sides sc
I , sc

J , joining at

this vertex, having value A and unit normal vector nc.

To conclude we have to calculate

(
eΦB(FIJ (∆)) − 1

)
=

∞∑
n=2

1

n!
(ΦB(FIJ))n =

∞∑
n=2

MnIJ(∆), (3.32)

where the subindex n labels the corresponding power in the vectors sa. The results

are

M2IJ(∆) := sa
Is

b
J

1

2!
Fab, (3.33)

M3IJ(∆) := sa
Is

b
J

1

3!
(xI + xJ)Fab, (3.34)

M4IJ(∆) := sa
Is

b
J

1

4!
(x2

I + xIxJ + x2
J)Fab + sa

Is
b
Jsc

Is
d
J

1

8
FabFcd, (3.35)

M5IJ(∆) := sa
Is

b
Jsc

Is
d
J

[
1

4 · 3!
(xI + xJ)FabFcd +

1

4 · 3!
Fab(xI + xJ)Fcd

]
(3.36)

up to fifth order. We are using the notation xI = ~sI · ∇ = sa
I ∂a.

We expect that the non-Abelian generalization of the quantities (3.85), (4.52),

(3.35), (3.36) is produced by the replacement

Aa → Aa = Aρ
a Gρ, ∂a → Da = ∂a − [Aa, ] (3.37)

Fab → Fab = ∂aAb − ∂bAa − [Aa,Ab] (3.38)

Nevertheless, at this level there are potential ordering ambiguities which will be

resolved in the next subsections.

3.4.2 The non-Abelian case

In a similar way to the Abelian case we separate the calculation of the holonomy

hαIJ
in three basic pieces through the straight lines along the sides of the triangle

αIJ . We have

hαIJ
= P (eL3)P (eL2)P (eL1) ≡ U3 U2 U1, (3.39)
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where

L1 =

∫ 1

0

dtAa(~v + t ~sI) sa
I (3.40)

L2 =

∫ 1

0

dtAa(~v + ~sI + t (~sJ − ~sI)) (sa
J − sa

I) (3.41)

L3 =

∫ 1

0

dtAa(~v + ~sJ − t ~sJ) (−sa
J) (3.42)

Here we have parameterized each segment with 0 ≤ t ≤ 1.

Let us consider in detail the contribution

U1 = P (eL1), L1 =

∫ 1

0

dtAa(~v + t ~sI) sa
I , (3.43)

with ~sI = {sa
I}.

Using the definition

U1 = 1 +

∫ 1

0

dtAa(~v + t~sI)s
a
I +

∫ 1

0

dt

∫ t

0

dt′Aa(~v + t~sI)Ab(~v + t′~sI)s
a
Is

b
I

+

∫ 1

0

dt

∫ t

0

dt′
∫ t′

0

dt′′AaAbAcs
a
Is

b
Is

c
I + . . . , (3.44)

for the path ordering, we arrive at the following expression

U1 = 1 + I1(x)Aa(v)sa
I + I2(x, x̄)Aa(v)Āb(v)sa

Is
b
I

+I3(x, x̄, ¯̄x)Aa(v)Āb(v) ¯̄Ac(v)sa
Is

b
Is

c
I + . . . (3.45)

Here we are using the conventions

x = sc
I∂c x̄ = sc

I ∂̄c ¯̄x = sc
I
¯̄∂c (3.46)

I1(x) = F (x), I2(x, x̄) =
F (x + x̄)− F (x)

x̄
(3.47)

I3(x, x̄, ¯̄x) =
1
¯̄x

[
1

x̄ + ¯̄x
(F (x + x̄ + ¯̄x)− F (x))− 1

x̄
(F (x + x̄)− F (x))

]
(3.48)

with F (x) given by Eq.(3.26). The notation in Eq. (3.45) is that each operator

x, x̄, ¯̄x acts only in the corresponding field A, Ā, ¯̄A respectively. We write

U1 =
∑
N

U
(N)
1 , (3.49)
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where the superindex N indicates the powers of sa
I contained in each term. A

detailed calculation produces

U
(1)
1 = sa

IAa, U
(2)
1 =

1

2
(xsa

IAa + sa
Is

b
IAaAb) (3.50)

U
(3)
1 =

1

3!
(x2sa

IAa + (x̄ + 2x)sa
Is

b
IAaĀb + sa

Is
b
Is

c
IAaAbAc) (3.51)

U
(4)
1 =

1

4!

[
x3sa

IAa + (3x2 + 3xx̄ + x̄2)sa
Is

b
IAaĀb + (3x + 2x̄ + ¯̄x)sa

Is
b
Is

c
IAaĀb

¯̄Ac

+sa
Is

b
Is

c
Is

d
IAaAbAcAd

]
(3.52)

Now we put the remaining pieces together in order to calculate hαIJ
= U3U2U1.

Using the notation

y = sa
J ∂a (3.53)

and starting from the basic structure (3.45) we obtain, mutatis mutandis,

U
(1)
2 = (sa

J − sa
I)Aa, (3.54)

U
(2)
2 =

1

2
[(x + y)(sa

J − sa
I)Aa + (sa

J − sa
I)(s

b
J − sb

I)AaAb], (3.55)

U
(3)
2 =

1

3!
[(x2 + y2 + xy)(sa

J − sa
I)Aa + (x + 2y + ȳ + 2x̄)(sa

J − sa
I)(s

b
J − sb

I)AaĀb

+ (sa
J − sa

I)(s
b
J − sb

I)(s
c
J − sc

I)AaAbAc)], (3.56)

U
(4)
2 =

1

4!
[(x3 + y3 + x2y + xy2)(sa

J − sa
I)Aa + (xȳ + 3xx̄ + x2 + 2xy + 2x̄ȳ + 3x̄2 + 3y2 + ȳ2 +

+ 3yȳ + 5x̄y)(sa
J − sa

I)(s
b
J − sb

I)AaĀb + (x + 2x̄ + 3¯̄x + 2ȳ + ¯̄y + 3y)(sa
J − sa

I)

× (sb
J − sb

I)(s
c
J − sc

I)AaĀb
¯̄Ac + (sa

J − sa
I)(s

b
J − sb

I)(s
c
J − sc

I)(s
d
J − sd

I)AaAbAcAd] (3.57)

for U2, together with

U
(1)
3 = −sa

JAa, (3.58)

U
(2)
3 =

1

2
(−ysa

JAa + sa
Jsb

JAaAb), (3.59)

U
(3)
3 =

1

3!
(−y2sa

JAa + (2ȳ + y)sa
Jsb

JAaĀb − sa
Jsb

Jsc
JAaAbAc), (3.60)

U
(4)
3 =

1

4!

[
−y3sa

JAa + (3ȳ2 + 3yȳ + y2)sa
Jsb

JAaĀb − (3¯̄y + 2ȳ + y)sa
Jsb

Jsc
JAaĀb

¯̄Ac

+sa
Jsb

Jsc
Jsd

JAaAbAcAd

]
, (3.61)
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for U3. Let us emphasize that in all the expressions above for U1, U2 and U3, the

connection is evaluated at the vertex v. The bars only serve to indicate the position

in which the corresponding derivative acts.

Next we write the contributions to the holonomy in powers of the segments. We

obtain

h(2)
αIJ

=
1

2
sa

Is
b
J Fab, (3.62)

h(3)
αIJ

=
1

3!
(sc

I + sc
J)sa

Is
b
JDcFab, (3.63)

h(4)
αIJ

=
1

4!
(sc

Is
d
I + sc

Is
d
J + sc

Jsd
J)sa

Is
b
JDcDdFab +

1

8
sa

Is
b
Jsc

Is
d
JFabFcd. (3.64)

Eq. (3.64) resolves the ordering ambiguity which apparently arises in covariantizing

the first term in the RHS of Eq.(3.35). Nevertheless, as we subsequently show there

is no such ambiguity at this order. Let us consider the combination

sa
Is

b
Jsc

Is
d
J (DcDd −DdDc)Fab = sa

Is
b
Jsc

Is
d
J [Dc,Dd]Fab

= −sa
Is

b
Jsc

Is
d
J [Fcd,Fab] = [F,F] = 0 (3.65)

where we have used the notation F = sa
Is

b
JFab together with the property

[Dc,Dd]G = − [Fcd,G] (3.66)

valid for any object G in the adjoint representation.

The results (3.62), (3.63) and (3.64), which we have obtained by direct calcula-

tion, constitute in fact the unique gauge covariant generalization of the correspond-

ing Abelian expressions (3.85), (4.52) and (3.35). This provides a strong support to

our method of calculation.

3.5 Electric flux expansion

Now we turn to the electric piece of the regularization. The basic covariant object

involved in the expression (3.18) is
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F = he+ρ(p) E(p) h−1
e+ρ(p) (3.67)

In order to simplify the calculation, we will consider the path ρ(p) connecting

the vertex v to the point p to be a straight line x.

Recalling from the expression (3.45), we can write

hv+sI
= 1 +

[
I1(x)A + I2(x, x̄)AĀ + I3(x, x̄, ¯̄x)AĀ ¯̄A + . . .

]
(v) (3.68)

where the notation is such that A = xaAa and the same definitions as before.

Considering the inverse operator h−1
v+x, defined as the operator along the inverse

path, which amounts the replacement A → −A and the cyclic permutation that

takes into consideration a proper ordering of x′ segments, it follows

h−1
v+x = [1− I1(x)A + I2(x̄, x)AĀ− I3(¯̄x, x, x̄)AĀ ¯̄A + . . . ](v) (3.69)

Taking into account the fact that hv+xh
−1
v+x = 11 and the explicit form of the I’s

expressions, we get

I2(x, x̄) + I2(x̄, x) = I1(x)I1(x̄) (3.70)

and

I1(¯̄x)I2(x̄, x)− I1(x)I2(x̄, ¯̄x) = I3(¯̄x, x̄, x)− I3(x, x̄, ¯̄x) (3.71)

and the permutations (x, x̄) → (x̄, x). Together with

I3(x, ¯̄x, x̄) + I3(¯̄x, x̄, x) + I3(¯̄x, x, x̄) = I1(x)I2(¯̄x, x̄) (3.72)

and the permutations (x, ¯̄x) → (¯̄x, x).

After a tricky manipulation we find the the compact equation with a clear ten-

dency,
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F = hv+xE(v + x)h−1
v+x = E− I1(x)[A, E] + I2(x, x̄)[ Ā, [ A, E] ] +

−I3(x, x̄, ¯̄x)
[

¯̄A, [ Ā, [ A, E ] ]
]

+ . . . (3.73)

Which results to be

F ≈
{

E + DE +
1

2!
D2E +

1

3!
D3E + . . .

}
(v) (3.74)

Where again the notation is D = xaDa, and Da the covariant derivative

3.6 Semiclassical analysis: A general scheme

The corresponding modifications to the Yang Mills theory requires now to resolve

the last technical and conceptual problem. For the sake of clarity, let us resume

what has been done and to describe the calculations which would take place next.

The Yang Mills Hamiltonian has been regularized, with little deviation from the

original work [51]. It is now written in terms of the volume operator and in terms

of matter fields operators ready for the semiclassical approximation. The volume

operator has arise as a natural regulator of QFT acting exclusively on vertex points

of the graph introduced by the state.

The problem we are left in now, is to the search for good semiclassical states that

could approximate a flat geometry. A flat space is the geometry we are requiring

for our effective theory to live on. There has been extensive deal of attention in the

problem of semiclassical loop gravity [69, 70, 71, 72, 73, 74, 75, 76, 77], in particular

because the problem is tightly interlaced with one of the open problems in the LQG

approach. The problem is how to recover the classical geometry solely from quantum

properties of space. The analogy is close of the one faced when trying to reobtain

the classical properties of liquids from the quantum molecular theory.

In the calculations of expectations values of regularized Hamiltonian, we will

choose semiclassical states picked around a three metric with the properties de-

scribed in [57]. However, these are not the correct semiclassical states neither the
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so called weave states, since they not fulfill peakedness properties around the con-

nection, which relies on the more fundamental problem described above.

Taking into account the expression for the regularized Hamiltonian, let us sepa-

rate the operator in gravitational and matter components as,

Ĥ[N ] =
∑

v, ∆, ∆′
εJKLεMNP ŵi L ∆(e)ŵi P ∆(e′)ĤI

∆JK(e)ĤI
∆′MN(e′) (3.75)

where

ŵi L ∆(e) = tr

(
τi heL(∆)

[
h−1

eL(∆),

√
V̂v

])
(3.76)

The magnetic contribution have the structure

ĤI
∆JK(e) = εabce

a
Jeb

K ×
[

1

2!
B̂c

I +
1

3!
(sd

J + sd
K)DdB̂

c
I +

1

4!
(sf

Jsd
J + sf

Jsd
K + sf

Ksd
K)DfDdB̂

c
I

+
1

8
sf

Jsp
KεfpdεI L M B̂d

LB̂c
M + . . .

]
(v) (3.77)

The electric part is analogous but considering only at linear order in the field,

also with modifications in some coefficients calculated in the appendix A.

To proceed with the approximation we think of space as made up of boxes,

each centered at a given point ~x and with volume L3 ≈ d3 x. Each box is defined

to contain a large number of vertices of the semiclassical state (L >> `P ), but

infinitesimal in the scale where the space can be regarded as continuous. Also, we

assume that the magnetic operators are slowly varying inside the box (`P << λD),

in such a way that for all the vertices inside the box one can write

〈W, ~E, ~B| . . . B̂a
I (v) . . . |W, ~E, ~B〉 = µBa

I (~x). (3.78)

Here B is the classical magnetic field at the center of the box and µ is a di-

mensionless constant to be determined in such a way that we recover the standard

classical result (3.19) in the zeroth order approximation. In the next subsection we

show that

µ =

( L
`P

)1+Υ

, (3.79)
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with Υ being a parameter defining the leading order contribution of the gravitational

connection to the expectation value. Applying to (3.75) the procedure just described

leads to

H =
∑
Box

N(~x)

[
BI

a1
(~x)BI

b1
(~x)

∑
v∈Box

εJKLεMNP < W, ~E, ~B| Q̂∆L(e)Q̂∆′P (e′)×

× εa1a2a3 × εb1b2b3 × eJ
a2

eK
a3

e′Mb2 e′Nb3 |W, ~E, ~B > +BI
a1

(~x)DpB
I
b1

(~x)
∑

v∈Box

εJKL × εMNP

× < W, ~E, ~B| Q̂∆L(e)Q̂∆′P (e′)εa1a2a3 × εb1b2b3eJ
a1

eK
a2

e′Mb2 e′Nb3 (e′Mp + e′Np )|W, ~E, ~B > +

DqB
I
a1

(~x)DpB
I
b1

(~x)
∑

v∈Box

εJKLεMNP ×

× < W, ~E, ~B| Q̂∆L(e)Q̂∆′P (e′)eJ
a2

eK
a3

(eJ
q + eK

q )e′Mb2 e′Nb3 (e′Mp + e′Np )|W, ~E, ~B >

+ . . . ] (3.80)

The general structure is

HB =
∑
Box

N(~x)BI
r1

(~x) . . . BI
rn

(~x)
(
Da1 . . . DamBI

r (~x)
)

d3x Ra1...am

rr1...rn(~x)

HB =

∫
d3x N(~x)BI

r1
(~x) . . . BI

rn
(~x)

(
Da1 . . . Dam BI

r(~x)
)

Ra1...am

rr1...rn(~x)

(3.81)

R is constructed from flat space tensors like δab, εabc. In this way we are demand-

ing covariance under rotations at the scale L.

When averaging inside each box, the scaling of the expectation values of the

gravitational operators is estimated according to

〈W, ~E, ~B | . . . Aia . . . |W, ~E, ~B 〉 ≈ . . .
1

L
(

`P

L
)Υ

. . . , (3.82)

〈W, ~E, ~B | . . .
√

Vv . . . |W, ~E, ~B 〉 ≈ . . . `
3/2
P . . . , (3.83)
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3.7 Yang Mills effective Hamiltonian

In constructing the effective theory we will put all the elements of the previous

sections altogether, and note that the following calculation of elements R has been

already calculated in [57].

Let us now continue with the calculation of the contribution to (3.17) due to the

magnetic flux by writing the expansion

tr(τIhαJK
) = tr

(
τI

∞∑
n=2

h(n)
αJK

)
= M I

2JK(∆) + M I
3JK(∆) + M I

4JK(∆)

+O (
s5F 4

)
(3.84)

where

M I
2IJ(∆) := sa

Is
b
J

i

2!
F I

ab (3.85)

M I
3IJ(∆) := sa

Is
b
J

i

3!
(xI + xJ)F I

ab − sa
Is

b
Jsc

Is
d
JεI L M 1

8
FL

abF
M
cd (3.86)

M I
4JK(∆) := sa

Ksb
J

i

4!
(x2

J + xJxK + x2
K)F I

ab (3.87)

and BI
c = εabcF I

ab

according to the previous analysis. We are using the notation xI = ~sI · ~D = sa
I Da.

Let us remark that, contrary to the electric case, the magnetic contribution will

incorporate non-linear terms due to the expansion of the exponential in powers of
~B. This implies that the exact duality symmetry of Maxwell equations in vacuum

will be lost due to quantum gravity corrections.

Next let us consider the gravitational contributions to (3.18), arising from the

gravitational part of (3.76), which we expand as

ŵi L∆ = sa
Lwia + sa

Lsb
Lwiab + sa

Lsb
Lsc

Lwiabc +O(s4w), (3.88)

with

wia =
1

2
[Aia,

√
V ], wiab =

1

8
εijk[Aja, [Akb,

√
V ]], wiabc = − 1

48
[Aja, [Ajb, [Aic,

√
V ]]].(3.89)
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The scaling properties of the above gravitational operators under the semiclassical

expectation value are

〈W ~E ~B| . . . wi a1...an . . . |W ~E ~B〉 → `P
3/2

Ln

(
`P

L
)nΥ

. (3.90)

For the product ŵi L∆ŵi P∆′ we need only

ŵi L∆ŵi P∆′ = U2LP + U3LP + U4LP +O (
s5w2

)
(3.91)

with

U2LP = sa
Ls′dP wiawid,

U3LP = sa
Ls′dP s′eP wiawide + sa

Lsb
Ls′dP wiabwid,

U4LP = sa
Ls′dP s′eP s′fP wiawidef + sa

Lsb
Ls′dP s′eP wiabwide + sa

Lsb
Lsc

Ls′dP wiabcwid. (3.92)

Here all the w’s are evaluated at a common vertex v.

At this level it is convenient to state the result (no sum over L)

sa
L sb

L wiab =
1

8
sa

L sb
L εijk [Aja, [Akb,

√
V ]]

=
1

8
sa

L sb
L εijk

(
AjaAkb

√
V − Aja

√
V Akb − Akb

√
V Aja +

√
V AkbAja

)
,

= 0, (3.93)

which holds due to symmetry properties. This leads to

U3LP = 0. (3.94)

After taking the expectation value the terms contributing to order `2
P

T = T0 + T1 + T2 +O(→ `3
P ) (3.95)

T0 = − 1

2 Q2

1

`4
P

εJKL εMNP
[
U2LP M I

1JK M ′I
1MN

]
, (3.96)

T1 = − 1

2 Q2

1

`4
P

εJKL εMNP U2LP

[
M I

1JK M ′I
2MN + M I

2JK M ′I
1MN

]
, (3.97)

T2 = − 1

2 Q2

1

`4
P

εJKL εMNP
[

U2LP (M I
1JK M ′I

3MN + M I
3JK M ′I

1MN + M2JK M ′
2MN) +

+U4LP M I
1JK M ′I

1MN

]
. (3.98)
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Now we are ready to calculate the different contributions to the magnetic sector

of the Hamiltonian (3.18). The task is to calculate the R pieces which are symmetric

in the indices r1, r2, . . . , rn. The first contribution to To is

R0
r1r2 =

∑
v∈Box

1

2Q2

(
2

3!

8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2

4 `7
P

εr1
ab εr2

uv εJKL εMNP ×

× sa
K sb

J sc
L s′vM s′uN s′dP 〈W ~E ~B|wic wid |W ~E ~B〉. (3.99)

And with the relations

εKJL sa
K sb

J sc
L = det(s) εabc, det(s) = det(sa

K), εabpεabq = 2δp
q . (3.100)

(3.99) can be rewriten in the simpler form

R0
r1r2 =

∑
v∈Box

1

2 Q2

(
2

3!

8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2

`7
P

×

× det(s) det(s′) 〈W, ~E, ~B|1
2
{wi

r1 , wi
r2} |W, ~E, ~B〉. (3.101)

The above equation implies

R0
r1r2 =

1

2 Q2

µ2

`7
P

`6
P

`3
P

L2

(
`P

L
)2Υ

δr1r2 =
1

2 Q2
δr1r2 , (3.102)

which reproduces the zeroth-order magnetic contribution (3.19) with the choice

µ =

( L
`P

)1+Υ

. (3.103)

The contribution to the T ′s have been calculated in the previous work [57]. Let

us just write them

The correction arising from T1 is

R11
a1rr1 = κ8

µ2

Q2 `7
P

`7
P

`3
P

L2

(
`P

L
)2Υ

εa1rr1 , (3.104)
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which produces a parity-violating term in the magnetic sector of the effective

Hamiltonian.

The next contribution arises from T2 and can be separated into three pieces

HB
21 =

∑

v∈V (γ)

1

2 Q2

(
2

3!

8

E(v)

)2

`3
P

∑

v(∆)=v(∆′)=v

− 1

`7
P

εJKL εMNP ×

×〈W, ~E, ~B|U2LP (M I
1JK M ′I

3MN + M I
3JK M ′I

1MN) |W, ~E, ~B〉, (3.105)

HB
22 =

∑

v∈V (γ)

1

2 Q2

(
2

3!

8

E(v)

)2

`3
P

∑

v(∆)=v(∆′)=v

− 1

`7
P

εJKL εMNP ×

×〈W, ~E ~B|U2LP M I
2JK M ′I

2MN |W, ~E, ~B〉, (3.106)

HB
23 =

∑

v∈V (γ)

1

2 Q2

(
2

3!

8

E(v)

)2

`3
P

∑

v(∆)=v(∆′)=v

− 1

`7
P

εJKL εMNP ×

×〈W, ~E, ~B|U4LP M I
1JK M ′I

1MN |W, ~E, ~B〉. (3.107)

Let us start discussing HB
21. After some algebra we obtain

HB
21 =

∑

v∈V (γ)

1

2 Q2

(
2

3!

8

E(v)

)2

`3
P

∑

v(∆)=v(∆′)=v

− i

`7
P

εJKL εMNP ×

× sa
Ls′dP s′xNs′qM 〈W, ~E, ~B|wiawid

(
sr

Kst
J

i

4!
(x2

J + xJxK + x2
K)F I

rt

)
F I

xq |W, ~E, ~B〉,
(3.108)

which naturally splits into the following pieces

HB
211 =

∑

v∈V (γ)

1

2 Q2

(
2

3!

8

E(v)

)2

`3
P

∑

v(∆)=v(∆′)=v

− i

`7
P

εJKL εMNP ×

× sa
Ls′dP s′xNs′qM 〈W, ~E, ~B|wiawid

(
sr

Kst
J

i

4!
(x2

J + xJxK + x2
K)F I

rt

)
F I

xq |W, ~E, ~B〉,
(3.109)
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The corresponding R tensors are

R211
a1a2rr1 =

∑
v∈Box

1

2

(
2

3!

8

E(v)

)2 ∑

v(∆)=v(∆′)=v

2 µ2

4! Q2`7
P

det(s′)det(s)

εNKJ

(
s−1

)rN
εJKL sa

L (2sa1
J sa2

J + sa1
J sa2

K ) 〈W, ~E, ~B|wiaw
r1

i |W, ~E, ~B〉,

R211
a1a2rr1 =

µ2

Q2`7
P

`8
P

`3
P

L2

(
`P

L
)2Υ (

κ6 δa1a2 δrr1 + κ7 (δa1r δa2r1 + δa2r δa1r1)
)

,(3.110)

Now we continue with the correction arising from (3.106), which reduces to

HB
22 =

∑
v∈Box

1

2 Q2

(
2

3!

8

E(v)

)2

`3
P

∑

v(∆)=v(∆′)=v

4

(3!)2 `7
P

εJKL εMNP ×

×sa
Ls′dP 〈W, ~E, ~B|wiawid

(
su

Ksy
J xJF I

uy

) (
s′rNs′sM x′MF I

rs

) |W, ~E, ~B〉,
(3.111)

Then

R22
a1a2rr1 =

∑
v∈Box

1

2 Q2

(
2

3!

8

E(v)

)2 ∑

v(∆)=v(∆′)=v

4 µ2

(3!)2 `7
P

det(s)det(s′)×

× (−εY MNεPMNs′dP s′a2
M

) (
εXJKεLJK sa

L sa1
J

) (
s−1

)Xr1
(
s′−1

)Y r

×〈W, ~E, ~B|wiawid |W, ~E, ~B〉. (3.112)

where we have used the relation

εmbc sb
J sc

L = det(s) εKJL

(
s−1

)K

m
, (3.113)

we find

R22
a1a2rr1 =

µ2

Q2`7
P

`8
P

`3
P

L2

(
`P

L
)2Υ (

κ9 δa1a2 δrr1 + κ10 (δa1r δa2r1 + δa2r δa1r1)
)

.

(3.114)

This contribution is of the same kind as the one given by R211
a1a2rr1 .

Finally we are left with
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HB
23 =

∑

Box(~x)

Br1
(~x) Br(~x)

∑

v∈Box(~x)

1

2 Q2

(
2

3!

8

E(v)

)2

`3
P

∑

v(∆)=v(∆′)=v

µ2

4 `7
P

×

× εJKL εMNP su
Ksv

J s′xNs′yM
(
sd

Ls′aP s′bP s′cP
)

εuv
r1 εxy

z〈W, ~E, ~B| {wid, wiabc} |W, ~E, ~B〉,
(3.115)

which leads to

R23
rr1 =

∑

v∈Box(~x)

1

2 Q2

(
2

3!

8

E(v)

)2 ∑

v(∆)=v(∆′)=v

−µ2

`7
P

det(s′) det(s)

× (
s′−1

)rP
(
s′aP s′bP s′cP

)
〈W, ~E, ~B| {w r1

i , wiabc} |W, ~E, ~B〉.
(3.116)

Taking the symmetric part, we have

R23
rr1 = κ11

µ2

Q2`7
P

`8
P

`3
P

L4

(
`P

L
)4Υ

δr r1 . (3.117)

Adding all previous contributions, we obtain the magnetic sector of the effective

Hamiltonian, up to order `2
P ,

HB =
1

Q2
tr

∫
d3(~x)

[(
1 + θ7

(
`P

L
)2+2Υ

)
1

2
~B2 + `2

P

(
θ2 BaDaDbB

b + θ3 Ba D2Ba
)

+

+θ8`P
~B · (D × ~B) + . . .

]
. (3.118)

The numbers θi are linear combinations of the corresponding κj appearing in the

tensors R. The correspondences are

κ7, κ10 → θ2, κ6, κ9 → θ3, θ4, κ11 → θ7, , κ8 → θ8. (3.119)

As pointed out and showed in the appendix (3.18), the electric sector of the

effective Hamiltonian can be obtained by changing ~B into ~E and keeping up to
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quadratic contribution of the corresponding expression for the magnetic sector. In

this way the complete electromagnetic effective Hamiltonian becomes up to order

`2
P , B2, and with ( ~D × ~BI)

a = εabcDbB
I
c and D2 = DaDa

HY M =
1

Q2
Tr

∫
d3~x

[(
1 + θ7

(
`P

L
)2+2Υ

)
1

2

(
~B

2
+ ~E

2
)

+ θ3 `2
P

(
~B D2~B + ~E D2~E

)
+

+θ2 `2
P

(
EaDaDbE

b +
1

2
~E · ( ~B × ~E) + BaDaDbB

b

)
+

θ8`P

(
~B · ( ~D × ~B) + ~E · ( ~D × ~E)

)
+ . . .

]
(3.120)
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Chapter 4

Higgs effective model

In the following chapter the goal we pursue is to obtain the corresponding modifica-

tions to the Higgs field, which will be carried using the same techniques developed

in the Yang Mills case. The Higgs field remains the last unexplored sector of the

SM [56, 57].

In the derivation of the Higgs effective theory we will shift from the usual vari-

ables to new ones, which are the smeared in space momentum and the adimensional

point holonomy variable. The main reason in doing so, is that the new variables

allows to implement correctly the adjointness relations, which are not trivially im-

plemented for diffeomorphism invariant field theories (a complete discussion can be

found in [85]
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4.1 Higgs regularization

The Higgs regularization will be carried in the same terms that led to the Yang Mills

effective theory.

The total Higgs Hamiltonian in curved space can be written as

HHiggs(N) =
1

2κ

∫

Σ

d3xN(x)

(
pIpI

√
det(q)

+
√

det(q)

[
qabDaφIDbφI +

P (φφ)

~κ

])
(4.1)

It will be convenient to separate each contribution and analize them indepen-

dently. From the Hamiltonian it can be distinguish the usual kinematical, derivative

and potential pieces

Hkin(N) =
1

2κ

∫

Σ

d3xN(x)
pIpI

√
det(q)

(4.2)

Hder(N) =
1

2κ

∫

Σ

d3xN(x)
√

det(q)qabDaφIDbφI (4.3)

Hpot(N) =
1

2~κ2

∫

Σ

d3xN(x)P (φφ) (4.4)

Let us consider the following regulated four-fold point-splitting of the kinematical

term and the techniques developed in the previous chapter

Hε
kin(N)

=
1

2κ
lim
ε→0

∫

Σ

d3xN(x)pI(x)

∫

Σ

d3y χε(x, y)pI(y)

∫

Σ

d3uχε(u, x)(
det(ei

a)

[
√

V (u, ε)]3
)(u)

∫

Σ

d3vχε(v, y)(
det(ei

a)

[
√

V (v, ε)]3
)(v)

=
1

2κ

1

32κ6
lim
ε→0

∫

Σ

d3xN(x)pI(x)

∫

Σ

d3yχε(x, y)pI(y)×

×
∫

Σ

χε(u, x)tr({A(u),
√

V (u, ε)} ∧ {A(u),
√

V (u, ε)} ∧ {A(u),
√

V (u, ε)})×

×
∫

Σ

χε(v, y)tr({A(v),
√

V (v, ε)} ∧ {A(v),
√

V (v, ε)} ∧ {A(v),
√

V (v, ε)}) (4.5)
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Recall that
∫

d3x det(ei
a) = 1

3!

∫
εijke

i ∧ ej ∧ ek = −1
3

∫
tr(e ∧ e ∧ e).

Let us define

Q[χ] :=

∫

Σ

χε(u, x)tr
(
{A(u),

√
V (u, ε)} ∧ {A(u),

√
V (u, ε)} ∧ {A(u),

√
V (u, ε)}

)

=
∑
∆

∫

∆

χε(u, x)tr
(
{A(u),

√
V (u, ε)} ∧ {A(u),

√
V (u, ε)} ∧ {A(u),

√
V (u, ε)}

)

Q[χ] =
∑
∆

Q∆[χ]. (4.6)

Where we have defined

Q∆[χ] =

∫

∆

χε(u, x)tr
(
{A(u),

√
V (u, ε)} ∧ {A(u),

√
V (u, ε)} ∧ {A(u),

√
V (u, ε)}

)
(4.7)

And let us define the gauge invariant object pI(Be) by,

pI(Be) := tr

[
τIhe

(∫

Be

hρ(r)p(r)h−1
ρ(r)d

3x(r)

)
h−1

e

]
(4.8)

Where hρ(r) is the parallel propagator from the vertex v to the point r in the

region Be

Now consider the three vectors sa
J(∆)sb

K(∆)sc
L(∆) that span the tetrahedra ∆

with base in e = v, we have

pI(Bv) =
1

3!
εJKLεabcsa

Jsb
Ksc

LpI(v) +

+
1

4!
εJKLεabcsa

Jsb
Ksc

L(sa
J + 2sa

I + sa
K)Dap(v) + O(s5) (4.9)

Therefore for a small tetrahedra ∆

f(v)pI(Bv) =
1

3!
f(v)εJKLεabcsa

Jsb
Ksc

LpI(v) + Dap(v) =

∫

Bv

d3xf(x)pI(x) (4.10)

And considering
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∫

∆

tr({A(x),

√
V̂ (x, ε)} ∧ {A(x),

√
V̂ (x, ε)} ∧ {A(x),

√
V̂ (x, ε)})

≈ 1

3!
εIJKtr(hsI(∆){h−1

sI(∆),

√
V̂ (v(∆), ε)}tr(hsJ (∆){h−1

sJ (∆),

√
V̂ (v(∆), ε)} ×

× tr(hsK(∆){h−1
sK(∆),

√
V̂ (v(∆), ε)}) (4.11)

We have then for the familiar triangulation,

Q∆ =
1

3!
εIJKtr(hsI(∆){h−1

sI(∆),
√

V (v(∆), ε)}tr(hsJ (∆){h−1
sJ (∆),

√
V (v(∆), ε)} ×

× tr(hsK(∆){h−1
sK(∆),

√
V (v(∆), ε)}) (4.12)

And we rewrite

Hε
kin(N) =

1

2κ732
lim
ε→0

∑

pqrs∈V (γ)

N(p)pI(Bp)p
I(Bq)χ(p, q)×

× 8

E(r)
χ(r, p)

∑

v(∆)=r

Q∆
8

E(s)
χ(s, q)

∑

v(∆′)=s

Q∆′ (4.13)

Now we replace the classical objects by their quantum counterpart and we take

the limit. Now we just take ε to zero, realize that only terms with v = p = q = r = s

contribute and find that,

Ĥkin[N ] =
1

2κ732(i~)6

∑

v∈V (γ)

N(v)

(
8

E(v)

)2

p̂I(Bv)p̂
I(Bv)×

×
∑

v(∆)=v(∆′)=v

εIJKεLMNtr(hsI(∆)[h
−1
sI(∆),

√
V̂ (v(∆), ε)]tr(hsJ (∆)[h

−1
sJ (∆),

√
V̂ (v(∆), ε)]×

× tr(hsK(∆)[h
−1
sK(∆),

√
V̂ (v(∆), ε)])tr(hsL(∆′)[h

−1
sL(∆′),

√
V̂ (v(∆′), ε)]×

× tr(hsM (∆′)[h
−1
sM (∆′),

√
V̂ (v(∆′), ε)])tr(hsN (∆′)[h

−1
sN (∆′),

√
V̂ (v(∆′), ε)] (4.14)

now because only tetrahedra based at vertices γ contribute in the sum
∫

σ
=∑

∆

∫
∆
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Ĥkin[N ] =
1

2κ732(i~)6

∑

v∈V (γ)

N(v)

(
8

E(v)

)2

p̂I(Bv)p̂
I(Bv)×

×
∑

v(∆)=v(∆′)=v

εIJKεLMNtr(hsI(∆)[h
−1
sI(∆),

√
V̂v]tr(hsJ (∆)[h

−1
sJ (∆),

√
V̂v]×

× tr(hsK(∆)[h
−1
sK(∆),

√
V̂v])tr(hsL(∆′)[h

−1
sL(∆′),

√
V̂v]×

× tr(hsM (∆′)[h
−1
sM (∆′),

√
V̂v])tr(hsN (∆′)[h

−1
sN (∆′),

√
V̂v] (4.15)

where B is a compact region in Σ, and E(v) is the usual function E(v) =

n(v)(n(v)− 1)(n(v)− 2) where n(v) is the valence of the vertex v.

Next we turn to the term containing the derivatives of the scalar field.

Then considering eq(4.3)

Hder[N ] =
1

2κ

∫

Σ

d3xN(x)
√

det(q)qabDaφIDbφI (4.16)

And with

qab
√

det(q) =
Ea

i Eb
i√

det(q)
and Ea

i = εacdεijk
ej

ce
k
d

2

We write and regulate (again we could have chosen to replace only one of the Ea
i by

the term quadratic in ei
a and still would arrive at a well-defined result at the price

of losing symmetry of the expression).

Hder[N ]

=
1

2κ
lim
ε→0

∫
d3x

∫
d3yN(x)χε(x, y)εijkεimnεabc (DaφIe

j
be

k
c )(x)√

V (x, ε)
εbef

(DbφIe
m
e en

f )(y)√
V (y, ε)

=
1

2κ5
(
2

3
)4 lim

ε→0

∫
N(x)εijkDφI(x) ∧ {Aj(x), V (x, ε)3/4} ∧ {Ak(x), V (x, ε)3/4} ×

×
∫

χε(x, y)εimnDφI(y) ∧ {Am(x), V (y, ε)3/4} ∧ {An(y), V (y, ε)3/4} . (4.17)
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It is clear where we are driving at. We replace Poisson brackets by commutators

times 1/i~ and V by its operator version. Furthermore we introduce the already

familiar triangulation of Σ and have, using that with v = s(0) for some path s

Let us define the quantity

Γ[f ] =

∫

Σ

f(x)DφI(x) ∧ {Aj(x), V (x, ε)3/4} ∧ {Ak(x), V (x, ε)3/4}

=
∑
∆

∫

∆

f(x)DφI(x) ∧ {Aj(x), V (x, ε)3/4} ∧ {Ak(x), V (x, ε)3/4} (4.18)

Then

Hder[N ] =
1

2κ5
(
2

3
)4 lim

ε→0

∑

∆∆′
Γ∆[N ]Γ∆′ [χ] . (4.19)

Now the functional derivative of Φ(v) = eφIτI with respect to φI(x) turns out to

be meaningless without a regularization of Φ(v) as well.

In [85] a regularization which takes the interpretation of Φ(v) as the nontrivial

limit of a holonomy he as e shrinks to e serious has been used to take into account

a consistent implementation of the adjoint relations. We will use this variables

explained in that work.

We see that

hs(0, δt)Φ(s(δt))hs(0, δt)
−1 − Φ(v)

= exp(hs(0, δt)φ(s(δt))hs(0, δt)
−1)− Φ(v)

= exp([1 + δtṡa(0)Aa][φ(v) + δtṡa(0)∂aφ(v)][1− δtṡa(0)Aa] + o((δt)2))− Φ(v)

= exp(δtṡa(0)(∂aφ(v) + [Aa, φ(v)]) + o((δt)2))− U(v) = δtṡa(0)Daφ(v) + o((δt)2),

(4.20)

And using the expression derived in the previous chapter, we arrive to
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6

∫

∆

f(x)DφI(x) ∧ {Aj(x), V (x, ε)3/4} ∧ {Ak(x), V (x, ε)3/4}

≈ −4

d
εmnp f(v(∆)) tr(τ I [hv+sM

Φ(sM(∆))h−1
v+sM

− Φ(v(∆))])×
× tr(τjhsN (∆){h−1

sN (∆), V (v(∆), ε)3/4})tr(τkhsP (∆){h−1
sP (∆), V (v(∆), ε)3/4}) .(4.21)

and with tr(τiτj) = −δij/2, tr(τ IτJ) = −dδIJ , d the dimension of the fundamen-

tal representation of G that

Ĥder[N ] =
1

2κ5~4
(
2

3
)4(

2

3d
)2 lim

ε→0

∑

v,v′∈V (γ)

N(v)χε(v, v′)εijkεilm ×

×
∑

v(∆)=v

8

E(v)
εNPQtr(τ I [hv+sN

Φ∆(sN)h−1
v+sN

− Φ(v)])×

× tr(τjhsP (∆)[h
−1
sP (∆), V̂

3/4
v ])tr(τkhsQ(∆)[h

−1
sQ(∆), V̂

3/4
v ])×

×
∑

v(∆′)=v

8

E(v)
εRST tr(τ I [hv+sR

Φ∆′(sR)h−1
v+sR

− Φ(v)])×

× tr(τlhsS(∆′)[h
−1
sS(∆′), V̂

3/4
v ])tr(τmhsT (∆′)[h

−1
sT (∆′), V̂

3/4
v ]) (4.22)

since only tetrahedra with vertices as basepoints contribute. Thus we find in the

limit ε → 0

Ĥder[N ] =
1

2κ5~4
(
2

3
)4(

2

3d
)2

∑

v∈V (γ)

N(v)εijkεilm ×

×
∑

v(∆)=v(∆′)=v

8

E(v)
εNPQtr(τ I [hv+sN

Φ∆(sN)h−1
v+sN

− Φ(v)])×

× tr(τjhsP (∆)[h
−1
sP (∆), V̂

3/4
v ])tr(τkhsQ(∆)[h

−1
sQ(∆), V̂

3/4
v ])×

× εRST tr(τ I [hv+sR
Φ∆′(sR)h−1

v+sR
− Φ(v)])×

× tr(τlhsS(∆′)[h
−1
sS(∆′), V̂

3/4
v ])tr(τmhsT (∆′)[h

−1
sT (∆′), V̂

3/4
v ]) (4.23)

Again, despite its complicated appearance, (4.23) defines a densely defined op-

erator.
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Finally the potential term, is trivial to quantize. Notice that certain functions of

φI(v)φI(v) can be recovered from polynomials of the functions [tr(U(v)n)]m where

m,n are non-negative integers. Thus we may define for instance a mass term through

φi(v)2 := [arcos(
tr(Φ(v))

2
)]2

we find

Ĥpot(N) =
mp

`3
p

∑

v∈V (γ)

NvP (φIφI)(v)V̂v (4.24)

This furnishes the quantization of the Higgs sector. Notice that the regularized

Hamiltonians have the same structure, namely an operator which carries out a dis-

crete operation on a spin network, divided by an appropriate power of the Planck

length which compensates the power of the Planck length coming from the action

of the volume operator.

4.2 Momentum and field covariant expansions

Let us now continue with the calculation of the contribution to (4.15) due to the

momentum integral by writing the expansion

p̂I(Bv) : = tr

[
τIhv

(∫

Bv

hρ(r)p̂(r)h−1
ρ(r)d

3x(r)

)
h−1

v

]
(4.25)

And by using the expressions before

p̂I(Bv) : =
~sI · (~sJ × ~sK)

3!

[
pI(v) + T aDap

I(v) + T abDaDbp
I(v) + . . .

]
(4.26)

where the T ′s can be calculated

T a =

∫

Bv

d3xxa =
1

4
(sa

J + 2sa
I + sa

K) (4.27)
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T ab =

∫

Bv

d3xxaxb (4.28)

T a =
1

4
(sa

J + 2sa
I + sa

K) (4.29)

VB =
~sI · (~sJ × ~sK)

3!
(4.30)

=
J

3!
(4.31)

And for the derivative part

hv+sR
Φ(sR)h−1

v+sR
− Φ(v) = sa

RDaφ(v) +
1

2!
sa

Rsb
RDaDbφ(v) + . . . (4.32)

according to the previous analysis we are using the notation xI = ~sI · ~D = sa
I Da.

4.3 The Higgs effective Hamiltonian

Let us consider the total Higgs Hamiltonian without potential term

ĤHiggs = Ĥkin + Ĥder + Ĥpot (4.33)

The kinematical part is

Ĥkin[N ] =
(−2)2

2κ7(3!)2(i~)6

∑

v∈V (γ)

N(v)

(
8

E(v)

)2

p̂ I(Bv)p̂
I(Bv)×

×
∑

v(∆)=v(∆′)=v

εIJKQ̂I∆Q̂J∆Q̂K∆ × εLMNQ̂L∆′Q̂M∆′Q̂N∆′

(4.34)
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and the derivative part is

Ĥder[N ] =
1

2κ5~4
(
2

3
)4(

2

3d
)2

∑

v∈V (γ)

N(v)εijkεilm ×

×
∑

v(∆)=v(∆′)=v

(
8

E(v)

)2

εNPL tr
(
τI [hv+sN

Φ∆(sN)h−1
v+sN

− Φ(v)]
)

Q̂jP∆ Q̂kL∆ ×

× εRST tr
(
τI [hv+sR

Φ∆′(sR)h−1
v+sR

− Φ(v)]
)

Q̂lS∆′ Q̂mT∆′ (4.35)

Where

Q̂I∆ = tr

(
hsI(∆)[h

−1
sI(∆),

√
V̂v]

)
(4.36)

Q̂iP∆ = tr
(
τihsP (∆)[h

−1
sP (∆), V̂

3/4
v ]

)
(4.37)

4.3.1 Kinetic part

First we need to expand the relevant quantities taking part in (4.34)

p̂I(Bv) : =
1

3!
εpqrsp

Is
q
Jsr

K

[
pI(v) +

1

4
(sa

J + 2sa
I + sa

K)Dap
I(v) + . . .

]
(4.38)

M I
3IJK(∆) :=

1

3!
εpqrsp

Is
q
Jsr

KpI(v) (4.39)

M I
4IJK(∆) :=

1

4!
εpqrsp

Is
q
Jsr

K(sa
J + 2sa

I + sa
K)Dap

I(v) (4.40)

Next let us consider the gravitational contributions, which we expand as

Q̂L∆ = sa
Lsb

LQab + sa
Lsb

Lsc
LQabc +O(s4Q), (4.41)

with
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Qab =
1

4
[Aia, [Aib,

√
V ] ], Qabc =

1

24
εijk[Aia, [Ajb, [Akc,

√
V ] ] ]. (4.42)

The scaling properties of the gravitational operators under the semiclassical ex-

pectation value are

〈W ~E ~B| . . . Q a1...an . . . |W ~E ~B〉 → `P
3/2

Ln

(
`P

L
)nΥ

. (4.43)

where we have used the same scaling for the connection see Eq.(3.83)

For the product Q̂ I∆Q̂ J∆Q̂K∆ we need the element

Q̂ I∆Q̂ J∆Q̂K∆ = U IJK
2∆ + U IJK

3∆ +O (
s4

)

(4.44)

where

U IJK
2∆ = sa

Is
b
Is

c
Jsd

Jse
Ksf

KQabQcdQef + sa
Is

b
Is

c
Jsd

Is
e
Jsf

Ksg
KQabcQdeQfg

+O (
s8

)
(4.45)

U IJK
3∆ = sa

Is
b
Is

c
Is

d
Jse

Jsf
Jsh

Ksr
Kst

KQabcQdefQhrt +O (
s10

)
(4.46)

at this point all we need is to consider the tensorial structure and orders in the

segments more than the exhaustive analysis of the exact numerical coefficients since

they at last can be absorbed in the unknown coefficients coded at the end. Just to

see the structure of the terms they are roughly like

Therefore

Q̂ I∆Q̂ J∆Q̂K∆Q̂L∆′Q̂M∆′Q̂N∆′ = U IJK
2∆ ULMN

2∆′ + U IJK
3∆ ULMN

3∆′ +

+U IJK
2∆ ULMN

3∆′ + U IJK
3∆ ULMN

2∆′ +O(s7) (4.47)

62



We are considering

H =
1

κ

∫
d3xN(~x)p I(~x)

(
Da1 . . . Da1p I(~x)

)
Ra1...am(~x) (4.48)

T = T0 + T1 + T2 +O(→ `3
P ) (4.49)

T0 =
1

2κ632(i~)6
εIJK εLMN

[
U IJK

2∆ ULMN
2∆′ M I

3IJ(∆)M
I
3LM(∆′)

]
,

T1 =
1

2κ632(i~)6
εJKL εMNP

[
U IJK

2∆ ULMN
2∆′

(
M I

3IJ(∆)M
I
4LM(∆′) + M I

4IJ(∆)M
I
3LM(∆′)

)]
,

T2 =
1

2κ632(i~)6
εJKL εMNP

[
M I

3IJ(∆)

(
U IJK

2∆ ULMN
3∆′ + U IJK

3∆ ULMN
2∆′

) ]
.

The calculation is performed in the appendix.B , we are left with the kinetic

contribution to the Hamiltonian

Hkin =

∫
d3x

2k

(
p I p I + κ1`

2
p

(Dap
I Dap

I
)

+ κ2`
3
pε

abcDap
I DbDcp

I) + . . .
)

or

Hkin =

∫
d3x

2k
Tr

[
p · p + κ1`

2
p

(
~Dp · ~Dp

)
+ κ2`

3
p
~Dp · ( ~D × ~Dp) + . . .

]

4.3.2 Derivative part

From the derivative part of the field we have the expansion

hv+sJ
Φ(sJ)h−1

v+sJ
− Φ(v) = sa

RDaφ(v) +
1

2!
sa

Jsb
JDaDbφ(v) + . . . (4.50)

LI
1J(∆) := sa

JDaφ
I(v) (4.51)

LI
2J(∆) :=

1

2!
sa

Jsb
JDaDbφ

I(v) (4.52)

LI
3J(∆) :=

1

3!
sa

Jsb
Jsc

JDaDbDcφ
I(v) (4.53)
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And the gravitational contributions of the derivative part of the Hamiltonian,

similarly as in the previous case the contributions are multiples of quantities like,

Q̂i L∆ = sa
LQia + sa

Lsb
LQiab + sa

Lsb
Lsc

LQiabc +O(s4Q), (4.54)

with

Qia =
1

2
[Aia, V

3/4], Qiab =
1

8
εijk[Aja, [Akb, V

3/4]], Qiabc = − 1

48
[Aja, [Ajb, [Aic, V

3/4]]].

(4.55)

For the product Q̂i P∆Q̂i L∆ we need the element

Q̂j P∆Q̂k L∆ = UPL jk
2∆ + UPL jk

3∆ +O (
s4

)

(4.56)

where

UPL jk
2∆ = sa

P sb
LQjaQkb + sa

P sb
Lsc

LQjaQkbc

+O (
s8

)
(4.57)

UPL jk
3∆ = sa

P sb
P sc

Lsc
LQjabQkcd +O (

s10
)

(4.58)

now all we need is to consider the tensorial structure and orders in the segments

more than the exhaustive analysis of the exact numerical coefficients since they at

last can be absorbed in the unknown coefficients coded at the end. Just to see the

structure of the terms they are roughly like

Therefore

Q̂ iP∆Q̂ jL∆Q̂ lS∆′Q̂mT∆′ = UPLij
2∆ UST lm

2∆′ + UPL
3∆ UST lm

3∆′ +

+UPLij
2∆ UST lm

3∆′ + UPLij
3∆ UST lm

2∆′ +O(s7) (4.59)
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And

H =
1

κ

∫
d3xN(~x)Dr1φ

I(~x) . . .Drnφ I(~x) (Da1 . . . Dam)Drφ
I(~x) Rrr1...rn

a1...am
(~x) (4.60)

K = K0 + K11 + K12 +O(→ `3
P ) (4.61)

K0 =
1

2κ4~4
(
2

3
)4(

2

3d
)2 εNPL εRST

[
UPL

2∆ UST
2∆′ L

I
1N(∆)L

I
1R(∆′)

]
,

K11 =
1

2κ4~4
(
2

3
)4(

2

3d
)2 εNPL εRST

[
UPL

2∆ UST
2∆′

(
LI

1N(∆)L
I
2R(∆′) + LI

2N(∆)L
I
1R(∆′)

)]
,

K12 =
1

2κ4~4
(
2

3
)4(

2

3d
)2 εNPL εRST

[ (
UPL

2∆ UST
3∆′ + U IJK

3∆ ULMN
2∆′

)
LI

1IJ(∆) LI
1IJ(∆′)

]
.

Now let us calculate the contributions to K in the appendix.C. The derivative

contribution to the total Higgs Hamiltonian is

Hder =

∫
d3x

2k

(Daφ
I Daφ

I + κ3`pε
abcDaφ

I DbDcφ
I + κ4`

2
pDaDaφ

I DbDbφ
I + . . .

)

or

Hder =

∫
d3x

2k
Tr

(
~Dφ · ~Dφ + κ3`p

~Dφ · ( ~D × ~Dφ) + κ4`
2
p
~D2φ · ~D2φ + . . .

)

4.3.3 Higgs effective Hamiltonian

From (4.50) and (4.62) the total Higgs Hamiltonian is

Hkin =

∫
d3x

2k
Tr

[
p · p + ~Dφ · ~Dφ + κ1`

2
p

(
~Dp · ~Dp

)
+ κ2`

3
p
~Dp · ( ~D × ~Dp)

+κ3`p
~Dφ · ( ~D × ~Dφ) + κ4`

2
p
~D2φ · ~D2φ + . . .

]
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Appendix A

Non-abelian electric flux integrals

The work developed in the Yang Mills sector has been done with the replacement

B → E, and keeping until quadratic order in the electric field, which will be now

justified. In here we calculate directly the electric contribution using an appropriate

parameterization in terms of the two vectors sI and sJ that span the face FIJ .

The element we want to calculate is the expression (3.4)

∫

FIJ

d3xF =

∫

FIJ

dx he+x(p) E(p) h−1
e+x(p) (A.1)

The region of integration is a triangle with face FIJ and sides sI and sJ Then

we will use the following parameterization for the vector ~x(t, u)

~x(t, u) = t~sI + u(~sJ − ~sI) (A.2)

the change of variables produces the jacobian J c

∫
dSc →

∫ 1

0

dt

∫ t

0

duJ c (A.3)

J c = |∂(x, y)

∂(t, u)
|c = εabcs

a
Is

b
J (A.4)
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We will use the expression given by

h(~v,~v + ~x) ~E(~x + ~v)h(~v,~v + ~x) = ~E(~v) + D ~E(~v) + 1
2!
D2 ~E(~v) + ... (A.5)

Where D = xaDa

Then the determination of the electric flux amounts to calculate the expression

φE(FIJ) =

∫
( ~Ev + xa(t, u)Da

~Ev + xa(t, u)xb(t, u)DaDb
~Ev + ...

+xnDn
v
~Ev)~dS (A.6)

with

Bn =

∫
xa1xa2 ...xandS (A.7)

we get the elements

B0 =
1

2!
εabcs

a
Is

b
J

B1 =
1

3!
(sd

I + sd
J)εabcs

a
Is

b
J

B2 =
1

4!
{sd

Is
e
I +

1

2
(sd

Is
e
J + sd

Jse
I) + sd

Jse
J}εabcs

a
Is

b
J

B3 =
1

5!
(sd

Is
e
Is

f
I +

1

3
(sd

Is
e
Is

f
J + se

Is
d
Jsf

I + sd
Jse

Is
f
I + sd

Is
e
Jsf

J +

sd
Jse

Is
f
J + sd

Jse
Jsf

I ) + sd
Jse

Jsf
J)εabcs

a
Is

b
J (A.8)

And the corresponding fluxes are

Φ
(2)
I (FJK) =

1

2!
εabcs

a
Jsb

KEc
I (A.9)

Φ
(3)
I (FJK) =

1

3!
(sd

J + sd
K)εabcs

a
Jsb

KDdE
c
I (A.10)

Φ
(4)
I (FJK) =

1

4!

(
sd

Jse
J +

1

2
(sd

Jse
K + sd

Kse
J) + sd

Kse
K

)
εabcs

a
Jsb

KDdDeE
c
I (A.11)
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Appendix B

Higgs: kinetic contribution

Now let us calculate the contributions to the momentum sector of the Higgs Hamil-

tonian

R0 =
1

2κ632(i~)6

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
kin

(3!)2
εIJK εLMNεpqrsp

Is
q
Jsr

Kεpqrsp
Is

q
Jsr

K ×

× sa
I sb

I sc
J sd

J se
K sf

K s′rI s′pI s′tJ s′uJ s′vK s′wK 〈W ~E ~B|Qab Qcd Qef Q′
rp Q′

tu Q′
vw |W ~E ~B〉.

(B.1)

R0 =
−1

2`12
p 32

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
kin det(s) det(s)×

× sa
I sb

I sc
J sd

J se
K sf

K s′rI s′pI s′tJ s′uJ s′vK s′wK 〈W ~E ~B|Qab Qcd Qef Q′
rp Q′

tu Q′
vw |W ~E ~B〉.

(B.2)

We see that

R0 =
−1

2`12
p 32

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
kin det(s) det(s)×

×〈W ~E ~B|QII QJJ QKK Q′
LL Q′

MM Q′
NN |W ~E ~B〉. (B.3)
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where we have defined

QIJ =
sa

Is
b
J

4
[Aia, [Aib,

√
V ] ] (B.4)

The above equation implies

R0
r1r2 =

1

2 Q2

µ2

`7
P

`6
P

`3
P

L2

(
`P

L
)2Υ

δr1r2 =
1

2 Q2
δr1r2 , (B.5)

the flat limit is recovered by choosing

µ2
kin =

( L
`P

)12Υ+12

. (B.6)

And with the relations

εKJL sa
K sb

J sc
L = det(s) εabc, det(s) = det(sa

K), εabpεabq = 2δp
q . (B.7)

The correction arising from T1 is

Ra1
1 =

−1

2`12
p 32

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
kin

3! 4!
εIJK εLMN [εpqrsp

Is
q
Jsr

K×

εp1q1r1sp1

I sq1

J sr1
K(s′a1

J + 2s′a1

I + s′a1

K ) + (sa1
J + 2sa1

I + sa1
K )εp1q1r1s′p1

I s′q1

J s′r1

K

]×
× sa

I sb
I sc

J sd
J se

K sf
K s′rI s′pI s′tJ s′uJ s′vK s′wK 〈W ~E ~B|Qab Qcd Qef Q′

rp Q′
tu Q′

vw |W ~E ~B〉.
(B.8)

there is no symmetric tensor with one index then

Ra1
1 = 0 (B.9)
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Ra1a2
2 =

−1

2`12
p 32

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
kin

3! 4!
εIJK εLMN

[
εpqrsp

Is
q
Jsr

K(s′a1

J + 2s′a1

I + s′a1

K )×

εp1q1r1sp1

I sq1

J sr1
K(s′a1

J + 2s′a1

I + s′a1

K ) + εpqrsp
Is

q
Jsr

K(sa1
J + 2sa1

I + sa1
K )

εp1q1r1s′p1

I s′q1

J s′r1

K(s′a1

J + 2s′a1

I + s′a1

K )
]× sa

I sb
I sc

J sd
J se

K sf
K s′rI s′pI s′tJ s′uJ s′vK s′wK ×

× 〈W ~E ~B|Qab Qcd Qef Q′
rp Q′

tu Q′
vw |W ~E ~B〉.

(B.10)

And

Ra1a2
2 = κ1

µ2
kin

`12
P

`16
P

`9
P

L12

(
`P

L
)12Υ

δa1a2 = κ1`p δa1a2 (B.11)

Ra1a2a3
3 = κ2`

3
pε

a1a2a3 (B.12)

Ra1a2a3a4
4 = κ2`

2
p(δ

a1 a2 δa3 a4 + δa1 a3 δa2 a4 + δa1 a4 δa2 a3) (B.13)
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Appendix C

Higgs: derivative contribution

We proceed to compute the derivative contributions to the Higgs Hamiltonian

Rr1 r2
0 =

1

2κ4~4
(
2

3
)4(

2

3d
)2

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
der

(3!)2
εIJK εLMNεpqrsp

Is
q
Jsr

Kεpqrsp
Is

q
Jsr

K ×

× sa
I sb

I sc
J sd

J se
K sf

K s′rI s′pI s′tJ s′uJ s′vK s′wK 〈W ~E ~B|Qab Qcd Qef Q′
rp Q′

tu Q′
vw |W ~E ~B〉.

(C.1)

Rr1 r2
0 =

−1

2`12
p 32

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
kin det(s) det(s)×

× sa
I sb

I sc
J sd

J se
K sf

K s′rI s′pI s′tJ s′uJ s′vK s′wK 〈W ~E ~B|Qab Qcd Qef Q′
rp Q′

tu Q′
vw |W ~E ~B〉.

(C.2)

We see that

Rr1 r2
0 =

−1

2`12
p 32

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
kin det(s) det(s)×

×〈W ~E ~B|QII QJJ QKK Q′
LL Q′

MM Q′
NN |W ~E ~B〉. (C.3)

where we have defined
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QIJ =
sa

Is
b
J

4
[Aia, [Aib,

√
V ] ] (C.4)

The above equation implies

R0
r1r2 =

1

2 Q2

µ2

`7
P

`6
P

`3
P

L2

(
`P

L
)2Υ

δr1r2 =
1

2 Q2
δr1r2 , (C.5)

the flat limit is recovered by the choose of

µ2
der =

( L
`P

)12Υ+12

. (C.6)

And with the relations

εKJL sa
K sb

J sc
L = det(s) εabc, det(s) = det(sa

K), εabpεabq = 2δp
q . (C.7)

The correction arising from T1 is

Rr1 r2
1 a1

=
−1

2`12
p 32

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
kin

3! 4!
εIJK εLMN [εpqrsp

Is
q
Jsr

K×

εp1q1r1sp1

I sq1

J sr1
K(s′a1

J + 2s′a1

I + s′a1

K ) + (sa1
J + 2sa1

I + sa1
K )εp1q1r1s′p1

I s′q1

J s′r1

K

]×
× sa

I sb
I sc

J sd
J se

K sf
K s′rI s′pI s′tJ s′uJ s′vK s′wK 〈W ~E ~B|Qab Qcd Qef Q′

rp Q′
tu Q′

vw |W ~E ~B〉.
(C.8)

with

Rr r1
1 a1

= κ3`pε
a1rr1 (C.9)
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Rr1 r2
2 a1 a2

=
−1

2`12
p 32

∑
v∈Box

(
8

E(v)

)2 ∑

v(∆)=v(∆′)=v

µ2
kin

3! 4!
εIJK εLMN

[
εpqrsp

Is
q
Jsr

K(s′a1

J + 2s′a1

I + s′a1

K )×

εp1q1r1sp1

I sq1

J sr1
K(s′a1

J + 2s′a1

I + s′a1

K ) + εpqrsp
Is

q
Jsr

K(sa1
J + 2sa1

I + sa1
K )

εp1q1r1s′p1

I s′q1

J s′r1

K(s′a1

J + 2s′a1

I + s′a1

K )
]× sa

I sb
I sc

J sd
J se

K sf
K s′rI s′pI s′tJ s′uJ s′vK s′wK ×

× 〈W ~E ~B|Qab Qcd Qef Q′
rp Q′

tu Q′
vw |W ~E ~B〉.

(C.10)

And

Rr1 r2
2 a1 a2

= κ8
µ2

kin

`12
P

`1
P 6

`9
P

L12

(
`P

L
)12Υ

δa1a2 = κ4`
2
p(δ

r1
a1

δr2
a2

+ δr2
r1

δa2
a1

) (C.11)
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