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Résumé en Français

Les trous noirs sont une des prédictions les plus étonnantes de la Relativ-
ité Générale. Au niveau théorique, les principaux concepts révolutionnaires
introduits par la Relativité Générale comme l’espace-temps, la courbure, ou
la causalité jouent un rôle fondamental pour comprendre les solutions de
trous noirs. Les trous noirs font, dans le même temps, parti des solutions
non triviales les plus simples, autant conceptuelement que mathématique-
ment, de la théorie. Par conséquent, ils constituent un espace naturel pour
comprendre la Relativité Générale, ainsi qu’un domaine privilégié dans lequel
toute modification ou extension de cette théorie peut être vérifié. D’autre
part, au niveau de l’astrophysique, les trous noirs sont tout autant étonnants.
Ils sont la seule explication pour le devenir de certaines étoiles massives. Par
conséquent, ils sont fondamentales pour comprendre l’évolution des corps
célestes de notre univers.

Invraisemblablement, en elles-mêmes, les solutions mathématiques des
trous noirs annoncent également les limites de la Relativité Générale. Elles
souffrent du même problème que la solution de particule ponctuelle dans
l’Électromagnétisme: Une région avec une densité de charge infinie est un
non-sens physique. Dans ce dernier cas, une théorie complètement différente,
l’Électrodynamique Quantique, était nécessaire pour résoudre le problème et
donner une description précise de la façon dont se comportent effectivement
les champs à de courtes échelles, et, au cours de ce voyage, elle change aussi le
concept de particule et leurs interactions. Dans les trous noirs, la présence des
singularités dans leurs description mathématique, une région où la densité de
la matière est infinie, est également un non-sens physique. Elles mettent en
évidence la nécessité d’aller au-delà de la Relativité Générale et de chercher
une nouvelle théorie qui permet une meilleure compréhension.

Une question plus intéressante et fructueuse concernant les trous noirs
est le résultat théorique que, déjà au niveau classique, les trous noirs sta-
tionnaires imitent les lois de la thermodynamique. Par exemple, la masse
d’un trou noir stationnaire peut être considéré comme son contenu énergé-
tique. La variation de la masse est naturellement liée à la variation d’autres
propriétés intrinsèques du trou noir comme la charge, la vitesse angulaire et
l’aire géométrique de l’horizon du trou noir. Ce rapport est réalisé d’une
manière très particulière qui est complètement analogue à la première loi de
la thermodynamique. De même, le théorème de l’aire de Hawking qui affirme
que dans tout processus classique l’aire de l’horizon peut seulement grandir,
cela est aussi en analogie avec la deuxième loi de la thermodynamique, si
l’aire de l’horizon est identifié avec l’entropie du système de trou noir. La loi
zéro de la thermodynamique, dit qu’en équilibre thermique la température
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des systèmes physiques doit être uniforme. Dans les trous noirs, la grav-
ité de surface est uniforme sur l’horizon, c’est encore en analogie avec la loi
zéro, et suggère en plus que la gravité de la surface doit être identifié avec
la température du trou noir. Enfin, il y a aussi une analogie avec l’une des
formulations de la troisième loi de la thermodynamique qui nous dit qu’il est
impossible pour un système thermodynamique d’atteindre la température de
zéro absolu par un processus physique fait d’étapes finies. Les trous noirs
dits extrêmes sont des solutions particulières, caractérisé par une gravité de
surface nulle. Pour ces derniers, nous avons exactement la même situation
que dans la troisième loi: il est impossible de parvenir à un trou noir extrême
depuis un trou noir non extrême par un processus comportant un nombre
fini d’étapes. Cette analogie thermodynamique pour les trous noirs station-
naires a été dévoilée dans les années 70-80, et aujourd’hui, elle est considérée
comme une acquis résumé dans les soi-disant lois de la mécanique des trous
noirs. Ces lois sont intitulées mécaniques pour mettre en évidence le fait
que elles sont des résultats purement classiques et, de plus, qu’elles ne four-
nissent pas une compréhension complète des trous noirs comme des systèmes
thermodynamiques.

Le calcul semi-classique de Hawking [1] permet de comprendre le trous
noirs, qui jusqu’alors étaient uniquement comparés à des systèmes thermody-
namiques, comme de vrais systèmes thermodynamiques. En tenant compte
des champs de matière quantique autour des trous noirs classiques, l’analogie
thermique entre les trous noirs et les systèmes thermodynamiques standards
peuvent être exact. Les grands trous noirs produits par effondrement grav-
itationnel se comportent comme des corps noirs parfaits à une température
proportionnelle à la gravité de la surface une fois qu’ils ont atteint leur état
d’équilibre stationnaire. Du point de vue classique, ce phénomène prédit est
surprenant. à la base les trous noirs sont considérés comme des objets très
simples dont la caractéristique principale est qu’ils avalent la matière et ne
la laisse jamais s’échapper. Mais, du point de vue de la Théorie Quantique
des Champs, son rayonnement peut être considéré comme tout à fait naturel.
Il s’agit d’une propriété générique que les potentiels localisés qui perturbent
des champs quantiques sans masse, dans un espace-temps plat, induiraient
un rayonnement thermique (voir 14.2 dans [2]). En fait, c’est en utilisant
cette idée que la température, ou plus précisément l’effet de rayonnement de
Hawking, a été trouvée.

Comme ce fut le cas pour le problème de la singularité, la thermody-
namique des trous noirs a besoin aussi d’une compréhension plus profonde
de la Relativité Générale au niveau quantique. Aujourd’hui, il est largement
admis qu’un champ quantique interagissant avec un trou noir produit un
spectre thermique des particules rayonnantes. En outre, grâce à la première
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loi de la mécanique des trous noirs, il est possible d’associer à chaque trou noir
une entropie proportionnelle à l’aire de l’horizon. Par conséquent, la tempéra-
ture, et notamment l’entropie, apparaissent comme des propriétés génériques
de véritables trous noirs. Avec ces éléments, la compréhension des trous noirs
comme des systèmes thermodynamiques est pleinement accomplie. Cepen-
dant, une question naturelle se pose: est-ce que la thermodynamique des
trous noirs peut être comprise du point de vue de la mécanique statistique?
La réponse est inconnue. Mais, comme dans la plupart des systèmes ther-
modynamiques cette réponse devrait être fournie par une théorie quantique.
On s’attend à ce que les degrés de liberté microscopiques de la gravitation
quantique soient en mesure d’expliquer l’entropie trouvé indirectement par la
méthode semi-classique. En ce sens, la température du trou noir et l’entropie
peuvent être considérés comme des éléments forts qui poussent la recherche à
explorer les degrés de liberté quantiques et microscopiques associés aux trous
noirs. Et, dans un sens plus général, comme une motivation pour étudier les
extensions quantiques de la Relativité Générale.

Pour résoudre le problème une théorie quantique de la gravitation est
nécessaire. Comme il n’y a pas une telle théorie, cela est un problème diffi-
cile. Néanmoins, beaucoup de travail a été fait à partir de perspectives très
différentes, principalement à partir de la Théorie des Cordes et de la Gravi-
tation Quantique à Boucles. Ces sont les candidats de gravité quantique les
plus largement étudié de nos jours. Cependant, les réels progrès réalisés pour
résoudre le dilemme du trou noir quantique sont très subtiles parce que ces
théories ne sont pas complètes. Par conséquence, pour calculer des appli-
cations physiquement intéressantes plusieurs hypothèses doivent être faites.
D’ailleurs, il s’agit là d’une façon standard de procéder dans un contexte où
la théorie n’est pas complète.

Cette thèse aborde le problème des trous noirs quantiques dans différents
niveaux: depuis un cadre classique des lois thermodynamiques jusqu’aux
modèles quantiques microscopiques qui fournissent des degrés de liberté pour
expliquer leurs propriétés thermiques.

Pour traiter avec le régime de la gravité quantique nous adoptons l’approche
de la Gravitation Quantique à Boucles. C’est une théorie relativement
nouvelle, pas encore achevée, mais déjà assez bien développée au point qu’une
description physique raisonnable des trous noirs puisse être construite. Nous
nous servons de cette théorie au niveau mathématique à travers sa struc-
ture mathématique spécifique. Mais, nous l’utilisons aussi comme une source
d’intuition pour guider les hypothèses en cas de besoin.

En outre, en tant que principe directeur général pour aider à la com-
préhension des trous noirs, nous utilisons une perspective quasilocal. Cela
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signifie que nous faisons particulièrement attention à étudier le problème des
trous noirs en recherchant une description classique et quantique dans le voisi-
nage de l’horizon du trou noir, là où la nature géométrique de la gravitation
et l’analogie thermodynamique est fortement révélée.

Du point de vue quasilocal le concept de trou noir lui-même est reformulé.
Au tout début, nous introduisons une définition quasilocal de trou noir qui
est basée sur l’utilisation d’Horizons Isolés. Cette définition sera le point de
départ d’une partie du calcul présenté dans cette thèse.

Dans le même esprit quasilocal, nous explorons la première loi de la ther-
modynamique des trous noirs dans une perspective nouvelle sur la base des
observateurs proches de l’horizon. Il s’avère que la première loi peut être re-
formulée, quasilocalement, tout simplement en termes de variations de l’aire
de l’horizon du trou noir. Le rôle prépondérant de l’aire est très pratique
dans le contexte de la Gravitation Quantique à Boucles comme on le fera
remarquer plus tard.

Pour les mêmes motifs, la perspective quasilocal basée sur des observa-
teurs proche de l’horizon est utilisée pour examiner l’approche de la Gravi-
tation Quantique Euclidienne. Cette approche permet la construction d’une
fonction de partition de trous noirs dans une approximation semi-classique.
Nous montrons que le cadre quasilocal est compatible à la fois avec la en-
tropie de Bekenstein-Hawking et avec la première loi quasilocal mentionné
précédemment.

L’approche quasilocal des trous noirs quantiques a déjà été adoptée dans
des travaux précédents en utilisant les Horizons Isolés. Dans cette thèse, nous
explorons également, à partir d’une analyse de la structure symplectique,
l’extension de la quantification du modèle d’Horizon Isolé sphériquement
symétrique vers le cas plus général de l’Horizon Isolé axialement symétrique.

Enfin, dans le cadre de cette thèse, nous explorons aussi, à travers une
analyse statistique, l’entropie du trou noir des modèles quantiques micro-
scopiques basés sur l’approche discrète de la Gravitation Quantique à Boucles.
Un accent particulier est mis sur le modèle quantique de trou noir en rotation.
Les résultats ne sont pas concluants parce que plusieurs hypothèses doivent
être faites au fur et à mesure de la réalisation des calculs. Cependant, la per-
spective est encore prometteuse du fait que certains résultats semi-classiques,
concernant notamment l’entropie, puissent être reproduits.

Maintenant, prenons un peu de recul pour expliquer les motivations générales
de ce travail.

Le problème de la gravitation quantique.
Du point de vue théorique, la formulation d’une théorie cohérente qui repro-
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duise naturellement tant la Théorie Quantique des Champs que la Relativité
Générale dans certaines limites, est un problème ouvert principal en physique
aujourd’hui. Cela est appelé aussi le problème de l’unification puisqu’une telle
théorie devrait pouvoir expliquer les quatre forces présentes dans la nature.
Une démarche moins ambitieuse vers l’unification est la reformulation de la
Relativité Générale comme une théorie quantique. Aujourd’hui, ce problème
ouvert se pose comme une pierre angulaire des débats qui ont cours. Le
domaine de recherche qui abouti à cette reformulation théorique est appelé
Gravitation Quantique.

En dépit des solides arguments théoriques pour l’existence de la gravi-
tation quantique et la révolution conceptuelle de la vision du monde qu’elle
impliquerait, l’identification a priori du domaine d’application d’une telle
théorie est un problème très délicat. En outre, les données expérimentales
auxquelles nous pouvons accéder pour guider la recherche sont très rares.
Ces problèmes mettent la recherche en physique théorique dans une grave
crise. La plupart des progrès de la recherche, au sein de l’unification ou
dans la gravitation quantique, restent actuellement circonscrits au domaine
de la physique mathématique, mettant de ce fait sur la touche le domaine
expérimental. De ce fait, toutes les conséquences surprenantes que ces nou-
velles théories proposent aujourd’hui (dimensions supplémentaires, de nou-
velles particules, discrétisation de l’espace-temps, etc) ne peuvent pas être
directement corroborée.

Cependant, le défi théorique de formuler une telle théorie est en soit une
tâche difficile, et comme nous l’argumenterons maintenant, un principe di-
recteur. On pourrait penser qu’en raison de l’absence d’expériences (dans
le régime critique de la gravité quantique), on a beaucoup de théories en
compétition qui sont d’accord avec le régime expérimental auquel nous pou-
vons accéder aujourd’hui. La situation est en fait complétement le contraire.
Aujourd’hui, il n’y a même pas une théorie mathématiquement cohérente
capable de satisfaire les critères basiques d’être une théorie quantique et en
même temps reproduire la Relativité Générale dans son limite classique. En
ce sens, au stade actuel, la simple formulation cohérente d’une telle théorie
peut être considérée comme un premier défi.

De ce point de vue une stratégie historiquement fructuese pour compren-
dre les théories elles-mêmes, en restant toujours dans le domaine théorique, a
été la formulation des expériences pensées, c’es-à-dire, d’imaginer et de ten-
ter de résoudre des situations physiques à l’aide d’outils purement théoriques.
C’est là que les trous noirs pourraient jouer un rôle important dans la con-
struction de la gravité quantique et aussi d’une théorie unificatrice de toutes
les forces.



12 Contents

Pourquoi les trous noirs?
La découverte du rayonnement de Hawking est l’un des phénomènes concrets
où la gravité quantique devrait jouer un rôle. Étonnamment, les trous noirs
ont une entropie qui ne peut pas être expliquée simplement par les degrés
de liberté correspondant à des fluctuants classiques autour d’une solution
stationnaire (même situation que pour la température des trous noirs). Cela
suggère que cette entropie, jusque là calculée par une méthode indirecte, est
un phénomène intrinsèquement quantique qui devrait en fait être liée aux
degrés de liberté quantiques auquels le trou noir peut accéder. Cette image
est un simple analogie avec le rayonnement d’un corps gris dont le spectre est
expliqué par la structure quantique de la matière qui le compose. Dans ce
cas, l’entropie pertinente pour les processus thermodynamiques du système
est l’entropie totale calculée sur la description de sa structure atomique. Et
évidemment, ce n’est pas l’entropie calculée sur la simple perturbation de la
forme du système macroscopique (par exemple les modes de vibration d’un
objet solide).

Le problème général est d’identifier les degrés de liberté qui sont excités
dans les processus thermodynamiques. Comme indiqué dans [3] “Les pro-
priétés thermiques d’un état macroscopique sont capturées par l’expression
de son entropie en fonction de variables macroscopiques. L’interprétation
physique de l’entropie, c’est qu’elle est une mesure du volume de l’espace
de phase microscopique de l’ensemble d’états qui partagent les mêmes vari-
ables macroscopiques. Autrement dit, il s’agit d’une mesure de la perte
d’information dans la caractérisation macroscopique de l’etat.” En ce sens, il
semble que dans la thermodynamique des trous noirs les degrés de liberté de
la gravitation quantique sont indispensables pour expliquer les informations
du système tenu en compte par l’entropie. Ainsi, nous observons que l’étude
des trous noirs est une voie permettant d’obtenir une meilleure idée de ce à
quoi une théorie de la gravitation quantique devrait ressembler, et en même
temps, un lieu où toute tentative de théorie de la gravitation quantique doit
être appliquée.

C’est en raison de ce rapport entre les trous noirs et la gravitation quan-
tique que nous choisissons d’étudier les trous noirs dans le cadre fourni par
l’un des candidats à la théorie: la Gravitation Quantique à Boucles.

Pourquoi la Gravitation Quantique à Boucles?
La Relativité Générale nous dit que la structure de l’espace est dynamique et
qu’elle ne peut être comprise que si elle s’inscrit dans une structure plus com-
plexe appelée espace-temps. En contraste avec le reste des théories physiques,
la Relativité Générale n’est pas construite au sommet d’une structure de
l’espace-temps sous-jacente, c’est la théorie de l’espace-temps elle-même. En
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conséquence, sa formulation ne peut a priori pas s’appuyer sur aucun espace-
temps. C’est un fait simple mais profond, généralement désigné comme
l’indépendance du fond, nous l’adoptons ici comme un principe fondamen-
tal pour formuler des théories physiques.

La Théorie Quantique des Champs, et en particulier le Modèle Standard,
ignore complètement ce fait en utilisant comme fond un espace-temps fixe,
normalement l’espace-temps de Minkowski, lorsque tous les champs sont défi-
nis. Mais, en dépit de la réussite expérimentale fantastique de ces théories,
et précisément en raison de sa dépendance du fond, nous savons que le Mod-
èle Standard ne peut pas être le fin mot de l’histoire. Une nouvelle théorie
indépendante du fond est alors nécessaire.

La Gravitation Quantique à Boucles est une tentative pour construire une
version quantique seulement de la Relativité Générale qui soit indépendante
du fond. L’espoir est que si elle est finalement couronnée de succès, le formal-
isme mathématique et des idées similaires pourront être utilisés pour résoudre
le problème complet de comprendre l’unification de toutes les interactions.
La façon de procéder est de reformuler la Relativité Générale en termes de
nouvelles variables de connexion, appelées variables Ashtekar-Barbero, et
de construire une représentation de l’espace de Hilbert: la représentation
à boucles. L’introduction de ces variables peut être accomplie si l’on con-
sidère un feuilletage temporel de l’espace-temps, et effectuer un choix de
jauge partielle: la jauge temporelle. On pourrait penser que ce choix détruit
l’indépendance du fond. Cependant, le foliation temporelle est totalement
arbitraire et en fait, ce n’est rien d’autre que le point de départ standard de
la procédure pour une quantification canonique.

Le principal défi ouvert pour le programme de la Gravitation Quantique
à Boucle est reproduire la Relativité Générale. En ce sens, elle doit être prise
comme une théorie en progrès. En dépit de cela, les particulières développe-
ment de la théorie sur la nature discrétisée des quantités géométriques sont
simples et méritent déjà d’être testées dans des situations physiques con-
crètes. Les trous noirs sont l’un des phénomènes naturels dans lequels ces
tests peuvent être effectués. L’espoir ambitieux est que nous pouvons ap-
prendre des choses dans les deux directions, c’est-à-dire, sur de la nature
quantique des trous noirs, mais aussi sur la Gravitation Quantique à Boucles
comme une théorie incomplète.

Ensuite, nous résumerons le contenu de chaque chapitre.

Tout d’abord, dans l’introduction, Section 1.1, nous mettons en place
la définition quasilocal de trou noir: Horizon Isolé. En termes simples,
l’Horizon Isolé représente l’ensemble des propriétés minimales que nous de-
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mandons à n’importe quel espace-temps afin de s’assurer qu’il contient un
trou noir qui est en fait en équilibre.

Le Chapitre 2 est consacré à discuter une nouvelle version quasilo-
cal de la première loi de la mécanique des trous noirs. Le résultat
est simple: en considérant une famille d’observateurs proches de l’horizon,
l’échange d’énergie pertinente du trou noir avec son entourage est mesurée
simplement par les changements de l’aire de l’horizon lui-même. L’idée est
pleinement développé dans la Section 2.2. En préambule, trois dérivations
de la première loi standard sont présentées. Un lecteur familier avec les lois
de la mécanique des trous noirs pourrait les omettre. Les nouveaux résultats
de ce chapitre peuvent être également trouvés dans [arXiv:1110.4055/gr-qc]
et ont été publiés dans [4].

Dans le Chapitre 3 est présenté la première incursion de ce travail sur le
problème de la gravitation quantique en discutant l’approche semi-classique
de la gravitation quantique Euclidienne. Il se trouve que l’approche
semi-classique Euclidienne peut être adaptée à un cadre quasilocal de telle
sorte que la température locale, l’énergie quasilocal, et la loi de l’entropie de
Bekenstein-Hawking sont récupérées. Encore une fois, un lecteur entièrement
familier avec la function de partition Euclidienne pourrait aller directement à
la fin du chapitre, Section 3.3, où les nouvelles idées sont présentées. Toute-
fois, dans ce cas, pour bien comprendre la logique du raisonnement, le lecteur
est encouragé à lire le chapitre entier.

Le Chapitre 4 présente en détail le programme de la quantification
du trou noir. Il est divisé en deux sections principales: dans la Sec-
tion 4.1 nous allons revoir la procédure de quantification de l’Horizon Isolé
sphériquement symétrique. Dans la Section 4.2 nous effectuons la généralisa-
tion du programme de quantification pour le cas de l’Horizon Isolé axialement
symétrique. Nous identifions les principaux obstacles à un premier traitement
näıf, de nouvelles idées pour les éviter sont proposées, et un nouveau modèle
de quantification pour le cas de symétrie axiale est esquissée. En raison de
sa complexité, certains calculs techniques ont été relégués aux Annexes D et
E pour faciliter la lecture. Les principaux résultats de ce chapitre peuvent
être trouvés dans [arXiv:1212.5166/gr-qc].

Dans le Chapitre 5, nous effectuons plusieurs calculs pour l’entropie du
trou noir. Ils diffèrent dans la manière dont le moment angulaire est incorporé
à l’échelle microscopique. En outre, différents outils mathématiques sont
utilisés pour calculer l’asymptotique du nombre d’etats. Les résultats de
l’entropie sont résumés dans la table de la page 115, qui permet d’exclure
certains modèles microscopiques. Les travaux décrits dans ce chapitre sont
en cours et seront publiés en temps voulu [5].



1. INTRODUCTION

Black holes are one of the most astonishing predictions of General Relativity.
At the theoretical level, all the main revolutionary concepts introduced by
General Relativity such as spacetime, curvature, or causality play a funda-
mental role to understand the black hole solutions. Black holes are, at the
same time, among the most mathematically simple and conceptually non-
trivial solutions of the theory. Therefore, they constitute a natural arena to
understand General Relativity, as well as a preferential place where to check
any tentative modification or extension of that theory. On the other hand,
at the astrophysical level, black holes are also astonishing. Black holes are
the only explanation for the fate of certain massive stars. Therefore, they
are fundamental to understand the evolution of the celestial bodies in our
universe.

Incredibly, by themselves, the black hole mathematical solutions also an-
nounce the limitations of General Relativity. They suffer from the same
problem of Electromagnetism’s point particle solution: A region with infinite
charge density is a physical nonsense. In that case, a completely different
theory, Quantum Electrodynamics, was needed to solve the problem and
give an accurate description of how actually the fields behave at short scales,
and, along the way, it changes the concepts of particles and interactions. In
black holes, the presence of singularities in their mathematical description, a
region with infinite matter density, is also a physical nonsense. It highlights
the need to go beyond General Relativity and look for a new theory which
provides a deeper understanding.

A more interesting and fruitful issue concerning black holes is the theoret-
ical result that—already at the classical level—stationary black holes actually
mimic the laws of thermodynamics. For instance, the mass of a stationary
black hole can be thought as its energy content. The variation of the mass
is naturally related to the variation of other intrinsic properties of the black
hole such as the charge, the angular momentum, and the area of the black
hole horizon. That relation is realized in a very particular way that is com-
pletely analogue to the first law of thermodynamics. Similarly, Hawking’s
area theorem states that in any classical process the area of the horizon can
just grow, this is analogy with the second law of thermodynamics if the area
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of the horizon is identified with the entropy of the black hole system. The
zeroth law of thermodynamics states that in thermal equilibrium the tem-
perature of physical systems should be uniform. In black holes, the surface
gravity is uniform over the horizon, this is again in analogy with the zeroth
law, and further suggests that surface gravity should be identified with the
black hole temperature. Finally, there is also an analogy with one of the
formulations of the third law of thermodynamics that tells us that it is im-
possible for a thermodynamic system to reach an absolute zero temperature
by any physical process made of finite steps. The so called extreme black
holes are particular solutions characterized by having a zero surface gravity.
For them, we have exactly the same situation that in the third law: It is
impossible to reach an extreme black hole from a non-extreme black hole by
a finite number of physical steps. All this thermodynamical analogue pic-
ture for stationary black holes was unveiled in the 70s and 80s, and today,
it stands as a standard piece of knowledge summarized in the so called laws
of black hole mechanics. It is called that way to highlight the fact that these
laws are purely classical results, and, further, that they do not provide a
complete understanding of black holes as thermodynamic systems.

That thermodynamical picture for black holes can be in fact fulfilled with
the Hawking’s semiclassical calculation [1]. By considering quantum matter
fields around classical black holes, the thermal analogy between black holes
and standard thermodynamic systems can be made exact. Large black holes
produced by gravitational collapse behave like perfect black bodies at a tem-
perature proportional to their surface gravity once they have reached their
stationary equilibrium state. From the classical perspective, this predicted
phenomenon is surprising, black holes are viewed as extremely simple ob-
jects which principal characteristic is that they swallow matter and never let
it escape. But, from the Quantum Field Theory perspective, its radiation
can be seen as quite natural. It is a generic property that localized poten-
tials disturbing quantum massless fields in a flat spacetime would induce a
thermal radiation on those fields (see 14.2 in [2]). In fact, it is by using this
machinery that the temperature, or more precisely, the Hawking radiation
effect, was found.

As it was the case for the singularity problem, black hole thermodynamics
also claims for a deeper quantum understanding of General Relativity. To-
day, it is largely accepted that a quantum field interacting with a black hole
produces a thermal spectrum of radiating particles. Furthermore, through
the analogue first law, it is possible to associate with each black hole a partic-
ular entropy proportional to the area of the horizon. Therefore, temperature
and notably entropy, appear as generic properties of real black holes. With
these elements the understanding of black holes as thermodynamic systems
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is fully accomplished. However, immediately a natural question emerges:
Can black hole thermodynamics be understood from the statistical mechan-
ics perspective? The answer is unknown. But, as in most thermodynamic
systems that answer should be provided by a quantum theory. The expecta-
tion is that microscopic quantum gravitational degrees of freedom should be
able to explain the entropy found indirectly by the semiclassical method. In
that sense, black hole temperature and entropy can be considered as strong
insights that push the research to explore the microscopic quantum degrees
of freedom associated with black holes. And, in a more general sense, as a
motivation to study the quantum extensions of General Relativity.

To address the problem a quantum theory of gravity is needed. As there
is not such a theory this is a difficult problem. Nevertheless, a lot of work
has been done from quite different perspectives, mainly from String Theory
and Loop Quantum Gravity. These are the more extensively studied quan-
tum gravity candidates nowadays. However, the concrete progress in solving
the quantum black hole dilemma are very subtle as those theories are not
complete. The reason is that to compute physically interesting consequence
several assumptions should be done. This is a standard way to proceed in a
context where the theory—quantum gravity—is not complete.

This thesis addresses the problem of quantum black holes at a range of
different levels: Starting from the very classical framework of the thermo-
dynamical laws to the deeper microscopic quantum model that provides the
degrees of freedom to explain their thermal properties.

To deal with the quantum gravity regime we adopt the Loop Quantum
Gravity approach. This is a relatively new theory, not yet complete, but
developed enough to the point that a physically sensible description of black
holes can be given. We use this theory at the mathematical level through its
specific mathematical structure. But, we also use it as a source of intuition
to guide the assumptions when needed.

In addition, as a general guiding principle to deal with black holes, we
use a quasilocal perspective. It means that we make special emphasis in
studying the problem of black holes by looking for a classical and quantum
description in the vicinity of the black hole horizon where the geometric
nature of gravity and the thermodynamical analogy strongly reveals.

From the quasilocal perspective the concept of black hole itself is reviewed.
At the very beginning, we introduce a quasilocal definition for black hole that
is based in the use of Isolated Horizons. This definition will be the starting
point for some of the computation presented in this dissertation.

In the same quasilocal spirit, we explore the first law of black hole ther-
modynamics from a new perspective based on observers close to the horizon.
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It turns out that the first law can be reformulated, quasilocally, simply in
terms of variations of the area of the black hole horizon. The preponderant
role of the area is very convenient in the context of Loop Quantum Gravity
as will be pointed out later.

On the same grounds, the quasilocal perspective based on near horizon
observers is used to review the Euclidean quantum gravity approach. This
approach allows for the construction of a partition function for black holes
in a semiclassical approximation. We show that the quasilocal framework
is consistent both with the standard Bekenstein-Hawking entropy result and
with the quasilocal first law mentioned before.

The quasilocal approach to quantum black holes has been already adopted
in previous works by using Isolated Horizons. In this thesis we also explore,
starting from a symplectic structure analysis, the extension of the quantiza-
tion of the spherically symmetric Isolated Horizon model to the more general
axially symmetric Isolated Horizon case.

Finally, as a part of this thesis, we also explore, through a statistical
analysis, the black hole entropy from the microscopic quantum model based
on the Loop Quantum Gravity discrete approach. Special emphasis is put
on the rotating quantum black hole model. The results are not conclusive
as several assumptions must be made on the way. However, the perspective
is still promising as some of the semiclassical results regarding, for instance,
the entropy, can be reproduced.

Now, let us take a step back and comment on the general motivations of
this work.

The Problem of Quantum Gravity. From the theoretical point of
view the formulation of a coherent theory that naturally reproduces Quan-
tum Field Theory and General Relativity as particular limits, is a main open
problem in physics today. This is also called the problem of unification as
such a theory should by itself explain the four forces present in nature. A less
ambitious step in the direction of unification is the reformulation of General
Relativity as a quantum theory. Today, this separate issue is also a corner-
stone open problem. The research domain that looks for that theoretical
reformulation is called Quantum Gravity.

In spite of the strong theoretical arguments for the existence of a quan-
tum gravity theory, and the conceptual revolution of the world view it would
imply, the a priori identification of the application domain of such a theory is
a very subtle and difficult problem. Furthermore, the experimental data that
we can access to guide the research is scarce. These problems put the theoret-
ical physics research in a serious crisis. Most of the research progress, within
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the unification or quantum gravity problems, currently resides in the sphere
of mathematical physics, out of the experimental range, and, in particular, all
the surprising consequences those theories propose today—extra dimensions,
new particles, discretized spacetime, etc.—cannot be directly corroborated.

However, the theoretical challenge of formulating such a theory is by itself
a mayor task and, as we now argue, a guiding principle. One could think
that because of the lack of experiments (in the critical regime for quantum
gravity) one has a lot of competing theories which agree in the experimental
regime we can access today. The situation is quite the opposite. Today,
there is not even one mathematical consistent theory able to satisfy the basic
criteria of being a quantum theory and at the same time reproduce General
Relativity as its classical limit. In this sense, at the current stage, the simple
consistent formulation of such a theory can be thought of as a first challenge.

From that perspective a historically fruitful strategy to learn more about
the theories themselves, staying in the theoretical domain, has been to for-
mulate gedankenexperiments. That is, to imagine and try to solve thought
physical experiments only with theoretical tools. Here is where black holes
could play a mayor role in the road to quantum gravity and a further unifi-
cation of forces in physics.

Why Black Holes? The Hawking radiation is one of the concrete phe-
nomena where quantum gravity should play a role. Surprisingly, black holes
have an entropy which cannot be simply explained with the classical fluctuat-
ing degrees of freedom around a stationary solution—the same happens with
the black hole temperature. That suggests that this entropy, up to now com-
puted through an indirect method, is an intrinsically quantum phenomenon
that should in fact be related to the quantum degrees of freedom that the
black hole can access. This simple picture is in complete analogy with the
grey body radiation whose spectrum is ultimately explained by the quan-
tum structure of the body itself. In this case, the relevant entropy for the
thermodynamical processes of the system is the full entropy computed out
of its atomic structure description. And obviously, this is not the entropy
computed out of the simple perturbation of the shape of the macroscopic
system—e.g. vibration modes of a solid object.

The general problem here is to identify the degrees of freedom that are
excited in a thermodynamical process. As expressed in [3] “The thermal
properties of a macroscopic state are captured by the expression of its en-
tropy as a function of macroscopic variables. The physical interpretation
of the entropy is that is a measure of the volume of the microscopic phase
space of the set of states sharing the same macroscopic variables. That is,
it is a measure of the information lost in the macroscopic characterization
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of the state.” In this sense, it seems that in black hole thermodynamics the
quantized gravitational degrees of freedom are the essential ones to explain
the information of the system that its entropy accounts for.

Thus, we observe that the study of black holes is a path to get more
insight about what a theory of quantum gravity should look like, and at the
same time a place where any theory of quantum gravity should be applied.
It is because of this interplay between black holes and quantum gravity that
we choose to study black holes within the framework provided by one of the
candidates for a theory of quantum gravity: Loop Quantum Gravity.

Why Loop Quantum Gravity? General Relativity tells us that the
structure of space is dynamical and that it cannot be understood unless it
is embedded in a more complex structure called spacetime. In contrast with
the rest of physical theories, General Relativity is not built on top of any
underlying spacetime structure, it is the theory of the spacetime itself. As
a consequence, its formulation cannot rely on any a priori spacetime. This
is a simple but deep property, usually referred as background independence,
we think about it here as a fundamental principle to formulate truly physical
theories.

Quantum Field Theories, and in particular the Standard Model, com-
pletely ignores this fact by using a fixed background spacetime, normally
Minkowski spacetime, where all the fields are defined. But, in spite of the
full experimental success of such theories, precisely because of its background
dependence, we know that the Standard Model cannot be the end of the story,
and a new true background independent theory is needed.

Loop Quantum Gravity is an attempt to construct a background inde-
pendent quantized version of just General Relativity. The hope is that if it is
ultimately successful, a similar formalism and ideas can be used to address
the full problem of quantizing gravity and understand the unification of all
the interactions. The way to proceed is by reformulating General Relativity
in terms of new connection variables, called Ashtekar-Barbero variables, and
to construct a representation of the Hilbert space out of them: The loop
representation. The introduction of this variables can be only accomplished
if we consider a spacetime time-foliation, and perform a partial gauge choice:
The time-gauge. One could think that this choice breakdown the background
independence. However the time foliation is completely arbitrary and in fact
is nothing but the standard starting point of the canonical quantization pro-
cedure.

The main open challenge for the Loop Quantum Gravity program remains
to reproduce General Relativity. In this sense it should be taken as a theory
in progress. In spite of this, particular developments of the theory concerning
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the discretized nature of geometrical quantities are straightforward and de-
serves already to be tested on concrete physical situations. Black holes is one
of the natural phenomena where such tests can be done. The ambitious hope
is that, by doing so, we can learn things in both directions, i.e., more about
the quantum nature of black holes but also about Loop Quantum Gravity as
an incomplete theory.

Now, let us comment further on the structure of the present manuscript.

The logical structure of this thesis follows a standard physical analysis
that goes from the simpler macroscopic description to the more complex mi-
croscopic description. As stated before, in this thesis we study black holes
with the underlying motivation of quantum gravity—this is the big open
problem we are ultimately interested in. In direct connection with the mo-
tivation is the guiding question about the origin of the black hole entropy.
Therefore, in each chapter we deal with a subject concerning black hole en-
tropy but at different levels. In spite of the fact that each chapter can be
thought as independent to some extent, there is a clear logical path connect-
ing them. Roughly, the four following chapters deal with:

Ch.2. Black holes thermodynamics laws
Ch.3. Semiclassical derivation of the entropy
Ch.4. Quantum model of black holes from quantum gravity
Ch.5. Statistical mechanics analysis to compute the entropy

Thus, we are reproducing a standard framework of a globally physical anal-
ysis that goes from the more simple to the more complex description.

In Fig. 1.1 we present our understanding of the different approaches to
the study of black hole entropy. As represented there, we have at our disposal
a few derivations for the entropy with a value S = A/4 (in natural units). In
particular, in this thesis we stress the relevance of the quasilocal approach.
We exploit that, already without any fundamental quantum gravity theory,
the standard Bekenstein-Hawking entropy can be indirectly derived from a
quasilocal Euclidean appraoch. However, all those derivations are indirect in
the sense that none of them really clarify the degrees of freedom responsible
for that entropy. The hope is that a quantum gravity theory can do the
work from first principles. Our specific hope in doing this work is that Loop
Quantum Gravity will shed some light on the problem.

In the following we summarize the content of each chapter.

Already, as a part of this introduction, in Section 1.1, we set up a quasilo-
cal definition for black hole: Isolated Horizon. In simple terms, Isolated
Horizon stands for the minimum quasilocal properties we would ask to any
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Fig. 1.1: The r.h.s. of the diagram shows the standard approaches to compute
the black hole entropy. The l.h.s. displays the derivations based on the
quasilocal notions that we develop in this work. Dashed arrows are used
to remind the reader of the fact that the derivations are indirect. The
dotted lines are used to express the fact that those derivations on the
top are intimately linked with its Euclidean counterpart. At the bottom
other approaches to explain black hole entropy are symbolized.

spacetime in order to ensure that it contains a black hole which is actually
in equilibrium.

Then, the Chapter 2 is devoted to discuss a new quasilocal version
of the first law of black hole mechanics. The simple result is that by
considering a particular near horizon family of observers the only relevant
energy exchange of the black hole horizon with its surrounding is measured
by the area changes of the horizon itself. The idea is fully developed in
Section 2.2. As a preamble, three derivations of the standard first law are
presented. A reader familiar with the laws of black hole mechanics could skip
them. The new result of this chapter can be found in [arXiv:1110.4055/gr-qc]
and has been published in [4].

In Chapter 3 is presented the first incursion of this work into the quan-
tum gravity problem by discussing the Euclidean quantum gravity semi-
classical approach. It is found that the Euclidean semiclassical approach can
be adapted to a quasilocal framework in such a way that the local temper-
ature, the quasilocal energy, and the Bekenstein-Hawking entropy law are
recovered. Again, a reader fully familiar with Euclidean quantum gravity
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could go directly to the end of the chapter, Section 3.3, where the novel ideas
are presented. However, in this case, to understand the logical path it is
actually important to read the full chapter.

Chapter 4 presents in detail the black hole quantization program.
It is divided in two main sections: In Section 4.1 we will review the spher-
ically symmetric Isolated Horizon quantization procedure. In Section 4.2
we carry out the generalization of the quantization program to the axially
symmetric Isolated Horizon case. We identify the main obstructions to the
naive treatment, new ideas to avoid them are proposed, and a new quan-
tization model for the axially symmetric case is sketched. Because of its
complexity some technical material has been relegated to appendices D and
E to facilitate the reading. The main results of this chapter can be found in
[arXiv:1212.5166/gr-qc].

In Chapter 5 we carry out several computations for the entropy of the
black hole. They differ in the way that the angular momentum is incorpo-
rated at the microscopic level. Also, different mathematical tools are used to
compute the asymptotics of the number of states. The results for the entropy
are summarized in a table—in page 115—which allows to rule out some of
the microscopic models. The work described in this chapter is in progress
and will be published in due time [5].

Note: in page 143 there is a list of the symbols used in each chapter.

1.1 Isolated Horizons

The starting point to study black holes is to specify what they are. The usual
definition of black holes, given for instance in [2], says that black holes are
the spacetime regions that are left after subtracting from the whole space-
time manifold all points connected to the null future infinity I + through
null geodesics. Intuitively. It means we are defining black holes as space-
time regions from where any emitted light ray does not reach the far away
spacetime region, that is, regions where all rays remains trapped.

In particular, the boundary of such regions is called the black hole event
horizons. All the events happening inside this boundary are causally discon-
nected from the rest of the spacetime.

The preceding one, is a very intuitive definition of a black hole but it
has a very important problem that makes it useless for most applications:
It is teleological. To decide if a given point belongs or not to a black hole
interior you need to know the whole spacetime, the future, and in particular
the asymptotic structure of your spacetime, i.e., to know how your spacetime
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geometry and fields behave as you move away from the black hole.
Moreover, in dealing with black holes in quantum gravity further diffi-

culties appear. As they evaporate, the previous definition based on global
structure of spacetime is ill-posed. This has been illustrated in the context
of two-dimensional models [6, 7]. Nevertheless, one would expect that the
physical notion of a large black hole radiating very little and, thus, remain-
ing close to equilibrium for a long time could be characterized in a suitable
way and that such a characterization should help in studying the appropriate
semiclassical regime of the underlying quantum theory.

To study black holes, and to avoid dealing with asymptotic structures we
need a local notion. However, because of the equivalence principle, a strict
local characterization in spacetime is meaningless. The most we can aspire
to have is an extended characterization of spacetime over a finite region, that
is, to have a quasilocal characterization.

Therefore, it is useful to have a definition of black hole that uses only
the quasilocal properties of spacetime and such that it coincides with the
previous teleological one in most cases. There are different approaches in
this respect running from weak to strong conditions defined on surfaces that
can be related to the event horizon. The variability responds to the specific
application the definition is intended for (see [8] for a recent short review
on various proposals). In this respect, the Isolated Horizon definition is the
one we use because it is constructed to provide a good description of a black
hole in equilibrium—such that neither radiation nor matter falls in—while at
the same time allows for a dynamical evolution on exterior spacetime. The
following definition can be found discussed in [9, 12, 13, 14] or [15].

Definition

To define Isolated Horizons we start with a more general quasilocal defini-
tion of black hole horizons called non-expanding horizons. From there, the
Isolated Horizon definition can be obtained by simply imposing a couple of
extra requirements.

A spacetime with a non-expanding horizon satisfies the following proper-
ties:

• The spacetimeM has a null submanifold ∆ with the topology S2×R.

• The expansion of any null normal `a ∈ T (∆), the tangent space to ∆,
vanishes:

θ(`) ≡ qab∇a`b = 0, (1.1)

with qab the degenerated metric induced on ∆, and ∇a the covariant
derivative.
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• The Einstein field equations holds at ∆. The matter stress-energy
tensor Tab satisfy that −T ab`b is future causal for any future directed
null normal `a.

These conditions give rise to a number of interesting properties, in particular
we just mention the existence of a 1-form ωa such that for any tangent vector
Xa on ∆ the connection operator in spacetime, ∇a, satisfies

Xa∇a`
b = Xaωa`

b, (1.2)

where `a is a null vector on ∆.
To complete the definition of Isolated Horizon two more properties are

imposed:

• ∆ is equipped with a class of future directed null normals [`] related by
a positive constant factor: `a = c`′a ∈ [`] such that

L`ωa = 0, (1.3)

where L` is the Lie derivative with respect to the vector field `a.

• The connection ∇a onM induces a connection Da on ∆ according to

XaDaY
b ≡ Xa∇aY

b, (1.4)

with Xa and Y a two tangent vectors on ∆. The induced connection is
preserved by `a

[L`, D] = 0. (1.5)

The Equation (1.3) allows for a definition of surface gravity out of `a given
by κ(`) = `aωa such that it is constant on ∆: This is the so called zeroth law
of black hole mechanics—in the context of Isolated Horizons. Note that the
surface gravity is not uniquely defined as `a is not uniquely selected on [`].
However, we stress here that the uniqueness can be accomplished if we find
a natural normalization for the null generators, this point will be exploited
in Section 2.2.

Finally, it can be shown that `a is a symmetry of the degenerate intrinsic
geometry: L`qab = 0, this together with the last condition (1.5) guarantees
that the pair (qab, Da), that fully determines the geometric properties of ∆,
is preserved by any of the null generators `a. Hence, the picture of ∆ as
a horizon in equilibrium is accomplished, see Figure 1.2. In particular, the
horizons of all stationary black hole solutions are Isolated Horizons.
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Fig. 1.2: In this picture the Isolated Horizon conditions are imposed just at ∆. M1

and M2 are Cauchy surfaces. For instance, one expect that in the charac-
teristic formulation free radiation data can be imposed in the transversal
null surface without affecting the Isolated Horizon. In addition, as no
reference is made to the null infinity, I +, Isolated Horizons are not
equivalent to event horizons. And, in a particular spacetime they may
not coincide.

Consequences of these properties have been widely explored mostly in the
context of black hole mechanics and black hole quantization [9, 12, 13, 14].
For our specific applications, in Chapter 2, we will consider the quasilocal
surface for stationary observers that can be naturally constructed at the
neighbourhood of the Isolated Horizon, and in Chapter 4 we will use the
fact that Isolated Horizon conditions fix the geometry in such a way that
an action principle—which incorporates the Isolated Horizon as an internal
boundary—can be formulated.



2. BLACK HOLE MECHANICS

In this chapter we show that stationary black holes satisfy a simple quasilocal
first law of black hole mechanics given by

δE =
κ

8π
δA, (2.1)

where we use the thermodynamical energy E = A/(8π`) and the local surface
gravity κ ≈ 1/`. Here, A, is the horizon area and ` is a proper length char-
acterizing the distance to the horizon of a preferred family of near horizon
observers. These observers are stationary with respect to the near horizon
geometry and would see a locally isotropic thermal distribution [16], there-
fore, they are suitable for thermodynamical considerations. One of the main
properties of the quasilocal first law is that it does not require any asymptotic
structure to be defined, thus, we stress its true quasilocal nature in contrast
with the standard first law of black hole mechanics.

As a preamble, in this chapter we briefly review three derivations for the
first law of black hole mechanics: 1) by using the no-hair theorem and the
Kerr-Newman solution 2) by studying perturbations and the Einstein equa-
tion on stationary black holes , and 3) by studying the phase space of the
Isolated Horizons. Thereafter, the main new result is presented in detail
through different physical arguments and also extended to the more general
framework of Isolated Horizons. This new approach, based on physically
motivated local measurements, is part of the program for a quasilocal de-
scription of black hole mechanics, where the idea is to translate some of the
standard results to define new concepts in order to have a complete quasilocal
framework useful, in particular, to rephrase the quantum analysis.

In this direction, the proposed quasilocal first law already motivates in-
teresting applications in semiclassical computations of black hole physics, for
instance, as a part of this thesis, we develop the euclidean partition function
approach to compute black hole entropy based on the quasilocal first law,
see Chapter 3. Also, the new proposal has raised interest among the people
working on Loop Quantum Gravity. The interest is in part explained because
in Loop Quantum Gravity the area is a rather simple geometric quantum op-
erator and one of the central outputs of the theory. More precisely, if the
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area can be interpreted as a notion of energy—as we claim—it appeals for
a direct statistical mechanics analysis by using the eigenvalues of the area
quantum operator as the energy eigenvalues of the system. This idea has
been already employed in [17, 18] and will be further used in Section 5.3 to
build a partition function.

2.1 First Law of Black Hole Mechanics (preamble)

Two standard derivations of the first law of black hole mechanics are pre-
sented. First, considering a simple derivation based on the no-hair theorem
and using a specific charged and rotating black hole solution (Kerr-Newman).
Second, by a perturbation of stationary black holes with Killing Horizons
[19, 20, 21]. Furthermore, a third—less standard—derivation in the more
general context of Isolated Horizons is reviewed at the end.

2.1.1 First Law from the No-Hair Theorem

The no-hair theorem states that stationary black holes are simply described
by three quantities: the mass M , the angular momentum J , and the elec-
tric charge Q. It implies that any dynamical perturbation of a black hole
should settle down to another black hole characterized again by these three
quantities. We use this argument for the Kerr-Newman black hole solution.

The Kerr-Newman solution to the Einstein equation represents precisely
a black hole with a mass M , angular momentum J , and charge Q with
asymptotically flat conditions, see the explicit metric in (A.1). The area of
the black hole horizon is

A = 4π(r2
+ + a2), a ≡ J

M
, r+ = M +

√
M2 − a2 −Q2. (2.2)

The area is a function of only M , J , and Q. Thus, with A(M,J,Q) it is
possible to compute how small variations of the area are related to small
variations in the mass, the angular momentum and the charge

δA =
∂A

∂M
δM +

∂A

∂J
δJ +

∂A

∂Q
δQ, (2.3)

a straightforward calculation shows

∂A

∂M
=

8π

κ
,

∂A

∂J
= −8πΩH

κ
,

∂A

∂Q
= −8πΦH

κ
, (2.4)
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where we have used the following definitions of surface gravity, horizon an-
gular velocity, and horizon electric potential

κ =
r+ −M

2Mr+ −Q2
(2.5)

ΩH =
a

r2
+ + a2

=
dφ

dt

∣∣∣∣
H

(2.6)

ΦH =
Qr+

r2
+ + a2

= − Abχb
∣∣
H
, (2.7)

where in each line the first equality is the result of the straightforward calcu-
lation. In the second equality we use the fact that there is actually a natural
physical interpretation such that the same quantity can be computed from
an alternative expression. For the horizon angular velocity, it is the rapidity
of the azimuth angle coordinate φ—describing a point on the horizon—with
respect to the coordinate time t, see (A.1). For the electric potential, it is
the projection of the electromagnetic potential vector Ab on a Killing field
normal to the horizon χb. In the case of surface gravity κ the physical in-
terpretation if explained after Equation (2.15). Hence, we have the relation

δM =
κ

8π
δA+ ΩHδJ + ΦHδQ. (2.8)

As explained before, the no-hair theorem provides us with a physical process
interpretation of the previous variations. It ensures us that actually the
variations relate different stationary black hole solutions. In other words,
the highly dynamical spacetime of a black hole that is being perturbed by a
small amount of matter (characterized by certain mass, charge, and angular
momentum), and that after some evolution time stabilizes, can be simply
described by two stationary black hole solutions (one corresponding to the
initial state and one corresponding to the final state) in such a way that their
intrinsic parameters are related exactly by (2.8).

The simple equation in variations, (2.8), has a further and radical physi-
cal interpretation. To understand it we first should note that the black hole
mass is in fact an energy notion for black holes. The ADM approach defines
the energy content of the spacetime as the one naturally seen by static ob-
servers at infinity. For Kerr-Newman black hole solutions this energy turns
out to be simply the mass M . Similarly, the angular momentum and the
charge content of the spacetime can be defined by those static observers,
respectively, as the generator of rigid rotational symmetry and the integral
of the electric flux at infinity (charges in the ADM approach). Therefore,
previous equation controls how this energy notion changes as we change the
charge, the angular momentum or the area of the black hole. In analogy with
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the laws of thermodynamics, Equation (2.8) is naturally called first law of
black hole mechanics. From A(M,J,Q) it is trivial to check the integrability
condition of (2.8), i.e., that cross derivatives of “intensive” quantities are sat-
isfied, in fact they are simply the ordering interchange of second derivatives
of M(A, J,Q).

This rich physical interpretation of the first law suggests a more general
derivation based on the black hole horizon, that is the so called “physical
process version”. We discuss it in the following.

2.1.2 First Law from Perturbation of Stationary Black Holes

Suppose we have a black hole in a stationary and axially symmetric space-
time. Let ξa and φa be the Killing fields associated with these symmetries
(here we follow [20]), with ξa normalized to −1 at infinity and φa normalized
such that closed orbits have a period 2π. The mass and angular momentum
of the black hole can be computed as Komar integrals [2]

M = − 1

8π

∮
H

∇aξb dSab

J =
1

16π

∮
H

∇aφb dSab, (2.9)

where H is the two-surface defined by the black hole horizon. These quanti-
ties are exactly the ADM charges defined as integrals at infinity, but because
we assume empty spacetime outside the black hole and we have the Killing
equations ∇(aξb) = 0, ∇(aφb) = 0; Stokes’ theorem allows us to express them
as integrals at H. Let us stress here that if we do not consider the connec-
tion with the ADM charges and, consequently, with the notion of asymptotic
observers previous definition would be meaningless, i.e., the real physical in-
terpretation of the previous integrals as mass and angular momentum resides
in the asymptotic definitions.

Now, let us consider a physical process in which some small quantity of
matter falls through the horizon. After some complicated dynamical evolu-
tion the black hole will stabilize again. That falling matter can be described
by a small energy-momentum tensor δTab which is small enough in such a way
that changes of black hole geometry are negligible in the sense that we can
still use ξa and φa as approximate Killing field. The total mass and angular
momentum that crosses the horizon are

δM = −
∫

∆

δT abξ
b dΣa (2.10)

δJ =

∫
∆

δT abφ
b dΣa, (2.11)
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where ∆ is the horizon worldsheet. Again, this δM and δJ has the meaning
of mass and angular momentum for the observers at infinity, but now to
use Stokes’ theorem we should use, in addition to the Killing equation, the
energy-momentum conservation ∇aδTab = 0. The change in the area of the
horizon can be computed by looking at the transversal section of a congruence
of geodesics normal to the horizon. The rate of infinitesimal change of area of
this section is called expansion and denoted by θ. We compute the expansion
for the affine parametrized geodesic normal null vectors ka = ∂ a

V . In general,
the expansion satisfies the null1 Raychaudhuri equation

dθ

dV
= −1

2
θ2 − σabσab + ωabωab −Rabk

akb, (2.12)

where V is the affine parameter of ka, σab and ωab are, respectively, the shear
and twist of the transversal section of the geodesic congruence, and Rab is the
Ricci tensor [2]. In the background—unperturbed—geometry the expansion,
the shear, and the twist vanish at the horizon. As the amount of matter
is assumed to be small θ2, σ2, and ω2 are second order terms and hence
negligible. Furthermore, we use the Einstein equation Rab− 1

2
gabR = 8πδTab,

which projected on null vectors is simply Rabk
akb = 8πδTabk

akb. Hence, the
Raychaudhuri equation simplifies to

dθ

dV
= −8πδTabk

akb. (2.13)

In static black holes the Killing field ξa is also normal to the horizon. Instead,
in the rotating case there is a particular linear combination of the Killing
fields ξa and φa that is normal to the horizon, and therefore, proportional to
ka. It is given by

χa = ξa + ΩHφ
a, (2.14)

and defines the horizon angular velocity ΩH (it coincides with (2.6) for the
Kerr-Newman solution) as well as the surface gravity κ through

χa∇aχ
b|∆ = κχb|∆. (2.15)

At the horizon the proportionality between the two null normals2 is given by
χa|∆ = ∂ a

v = κV ∂ a
V = κV ka.

1 Note that if we consider null geodesic curves the coefficient of the first term in the
r.h.s. is −1/2 instead of the −1/3 for the spacelike or timelike geodesics Raychaudhuri.

2 Proof: Let us use V as the affine parameter such that ka∇aV = 1, and v the parameter
associated with χa, χa∇av = 1. The surface gravity κ can be defined by the equation
χa∇aχb = κχb at the horizon. Then, it is easy to show that V = eκv, where it has
been used that κ is constant over the horizon. With V = eκv it is trivial to show that
χa|∆ = κV ka.
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Integration of the Raychaudhuri equation on the horizon worldsheet ∆ of
the Raychaudhuri equation gives

δM − ΩHδJ =

∫
∆

δTab(ξ
a + ΩHφ

a)kb dV dS

= −
∮
H

∫ ∞
0

δTab χ
akb dV dS

= −κ
∮
H

∫ ∞
0

dV V δTabk
akb dS

= − κ

8π

∮
H

∫ ∞
0

dV V
dθ

dV
dS

= − κ

8π

∮
H

dS

(
V θ|∞0 −

∫ ∞
0

dV θ

)
=

κ

8π

∫ ∞
0

dV

∮
H

θ dS

=
κ

8π
δA, (2.16)

where the fact that surface gravity κ is constant over H has been used in the
third line. The Raychaudhuri equation has been used in the fourth line.

Let us explain in more detail the step in the fifth line. The surface integral
of V θ is neglected because of two reasons: First, the expansion θ is zero at the
infinite future—black hole reaches the stationary state. Second, as presented
in [20], the term is evaluated at V = 0. However, this last argument is not
exactly true as we now explain. V is the affine parameter of the geodesic null
generators of the horizon which is being perturbed. In fact, when evaluating
at the lower limit V = 0 what we aim to is to the integration of the term
V θ on the surface obtained by the intersection of the tracing back of the
future perturbed horizon to the past and the past (unperturbed) horizon.3

However, as far as there is a perturbation such a surface is not a bifurcated
horizon,4 that is, V does not vanishes as it would be in the unperturbed
case. However, the differences with zero of the affine parameter V which
truly parametrize that surface are of the order of the perturbation, and, as
the expansion is already first order, then, the term V θ evaluated on that
intersection is second order and therefore negligible. This subtlety has been
explained in [22] and we made it explicit here as the argument will be the
same in the more general case of Isolated Horizons.

3 Note that, precisely because of the parametrization, the are not the same surface.
4 Two-surfaces where the affine parameter of the horizon generator defined through the

Killing fields vanishes.
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Finally, as mentioned before, the expansion is the rate of an infinitesimal
area change θ = 1

dS
d
dV
dS, and the last integral in (2.16) is precisely the

sum of all these small changes over the whole horizon and through its whole
evolution. Therefore, it is the change in the total area due to the proces, that
is, the difference in the area of the past unperturbed horizon and the future
perturbed horizon. Written in a more standardized form

δM =
κ

8π
δA+ ΩHδJ, (2.17)

we have obtained the first law of black hole mechanics for uncharged black
holes.

If charged black holes are considered the generalization is straightforward.
However, in the literature the derivations are usually done with different and
less intuitive techniques,5 so, we sketch a simpler calculation here.

Consider a charged and rotating black hole spacetime, as before, ξa and
φa are Killing fields. Again, we consider some small matter distribution that
falls through the horizon, but now, possibly charged. Due to the charge the
whole energy-momentum tensor is not small any more but can be decomposed
as

Tab = T
(e)
ab + δTab + δT

(e)
ab , (2.18)

where, as before, δTab is a small perturbation of neutral matter fields that falls
through the horizon. T

(e)
ab is the electromagnetic energy-momentum tensor

T
(e)
ab =

1

4π

(
FacF

c
b −

1

4
gabF

cdFcd

)
, (2.19)

where Fab = ∇aAb − ∇bAa stands for the electric field produced by the
charged black hole as well as for the charged matter that falls in, then:6

∇aFab = −4πδjb, with δjb the small current source of the field. Finally

δT
(e)
ab = −2A(aδjb) + gabA

cδjc, (2.21)

is the energy-momentum tensor associated with the current source.

5 For instance, with the Hamiltonian formalism see [10], or with a generalization of the
Smarr formula see [11].

6 We recall that the action is given by

S =
1

2κ

∫
M

(
R− 1

4
F abFab + 4πAbδj

b + Lneutral

)√
−g d4x, (2.20)

and Tab ≡ − 1
2π

1√
−g

δ(SM
√
−g)

δgab , with SM the action of all matter fields.
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Now, we compute the flux integrals on the horizon∫
∆

T
(e)
ab χ

adΣb =
1

4π

∫
∆

FacF
c
b χ

adΣb =
1

4π

∫
∆

(∇aAc −∇cAa)F
c
b χ

adΣb

=
1

4π

∫
∆

(F c
b (χa∇aAc + Aa∇cχa) + Aa∇cF

c
b χ

a) dΣb

=
1

4π

∫
∆

(F c
b LχAc + 4πAaχ

aδjb) dΣb

=

∫
∆

Aaχ
aδjbdΣb = −ΦH

∫
∆

δjbdΣb

= −ΦHδQ, (2.22)

where integration by parts, the Killing equation, LχA
b = 0 (as χa is a symme-

try on the background), and the Maxwell equation have been used. Further-
more, we have used that the electric potential ΦH = −Abχb

∣∣
∆

is constant on
the null surface, and that the integral of the electric flux over ∆ corresponds
to the total charge that enters the black hole

δQ ≡
∫

∆

δjbdΣb. (2.23)

On the other hand, the integral of the current energy-momentum tensor at
the horizon becomes∫

∆

δT
(e)
ab χ

bdΣa = −2

∫
∆

δAbχ
bδjadΣa = 2ΦHδQ. (2.24)

Finally, to show the first law in this more general case it is enough to re-
produce the proof in Equation (2.16) with the sole difference that, now, the
whole energy-momentum tensor should be considered

κ

8π
δA = −

∫
∆

Tabχ
adΣb = δM − ΩHδJ − ΦHδQ, (2.25)

where the integrals (2.22) and (2.24), as well as the same expressions for δM
and δJ , (2.10) and (2.11), have been used.

Thus, the physical process argument applied to the generic rotating and
charged black hole spacetime confirms the validity of the first law

δM =
κ

8π
δA+ ΩHδJ + ΦHδQ. (2.26)

Let us remark that, even if the present derivation looks quasilocal as the
integrals involved in the first law are computed over the horizon worldsheet,
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it strongly rests on the asymptotic notions of charges M , J , and Q. All the
quasilocal integrals over H or over ∆ can be rewritten as integrals at infinity
as Killing fields are globally defined, and it is just there, in the asymptoti-
cally flat spacetime region, that they have a natural interpretation in terms
of static asymptotic observers. Otherwise, the quasilocal definitions of δM ,
δJ and δQ would be meaningless. Thus, to solve what would be an ambiguity
of the law (2.26), we are implicitly using an extra physically motivated ar-
gument: The measurements—of the energy, angular momentum, and charge
flux—by observers represented by the Killing fields at the asymptotic region.
Those measurements are interpreted along all the way up to the horizon
through the globally defined Killing fields. This remark would be relevant in
the next section, where we deal with a different derivation of the first law,
but the same underlying asymptotic assumptions will be present.

2.1.3 First Law for Isolated Horizons in the Hamiltonian Formalism

Now, we review a rather different derivation of the first law. The strategy
is to study the covariant symplectic structure,7 Ω(δ1, δ2), on the phase space
of General Relativity under the Isolated Horizon restrictions—as defined in
Section 1.1. In particular, we consider the construction of a time evolution
field ta and the related Hamiltonian flow. The result is that the analogous
first law for Isolated Horizon mechanics is a necessary and sufficient condition
to have a Hamiltonian flow. However, we will see that in this derivation
ambiguities are present unless we make use of extra input from the asymptotic
spacetime structure. We sketch the derivation in the simpler case of a charged
Isolated Horizon that does not have a rotational symmetry [12]. The analysis
for the rotating case is more involved and has been done in [14].

A first law for Isolated Horizons needs a notion of energy on the Isolated
Horizon. To achieve this a time evolution vector field ta is introduced on the
spacetimeM from which it is possible to define a vector field δt on the phase
space Γ. In order to guarantee that δt is a Hamiltonian flow we should find
a function Ht that satisfies

δHt = Ω(δ, δt), (2.27)

therefore, one should compute Ω(δ, δt) and work out which condition must
be imposed on ta to ensure that (2.27) is satisfied. As we will see in a mo-
ment the symplectic structure Ω(δ, δt) defined on Cauchy surfaces M can

7 In Appendix D we introduce the symplectic structure of General Relativity in the
context we will use for Chapter 4 but it could be useful now if the reader is unfamiliar
with the approach.
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be decomposed into boundary terms, one on the intersection with the Iso-
lated Horizon S∆ = ∆ ∩M and another at infinity—a time-like cylinder at
infinity. At infinity, it is natural to require that ta coincide with the time
symmetry generator of flat spacetime—flatness is imposed on the asymptotic
boundary—in this way the usual ADM energy, EADM , is recovered. On S∆,
as proposed in [12], the vector field ta is identified with the class of generators
that defines the Isolated Horizon: ta|∆ ∈ [`], the specific relation can change
at each point of the phase space.8 A vector field ta with this property is
called a live evolution field.

The symplectic structure is computed through the boundary term that
appears in the arbitrary variation of the action, see for example Appendix
D. The action of a phase space vector field—constructed out of a spacetime
vector field—on a generic field variable ψ is given by the Lie derivative:
δtψ = Ltψ. After standard computations, we just show the final result in
the notation of [12], where ε̃ denotes the two-volume form on S∆ and F is
the electromagnetic field 2-form

Ω(δ, δt) = − 1

8π

∫
S∆

taωaδ(ε̃)−
1

4π

∫
S∆

taAaδ(?F ) + δEADM (2.28)

= − 1

8π
κtδA− φtδQ∆ + δEADM , (2.29)

we have used that the horizon charge is given by Q∆ = 1
4π

∫
S∆
?F , and the

area horizon by A =
∫
S∆
ε̃. In the second line we have used that κt = taωa

and φt = −taAa are constant on the horizon. Therefore, in order to guarantee
that δt is Hamiltonian we have to require the existence of a function Et

∆ such
that

δEt
∆ =

1

8π
κtδA+ φtδQ∆. (2.30)

The last condition is the first law for Isolated Horizons in this context, and
the Hamiltonian is

Ht = EADM − Et
∆. (2.31)

Summarizing, the horizon first law appears as a condition for the live vector
field ta to be Hamiltonian.

Finally, let us stress that the notion of horizon energy Et
∆ is not unique

as it depends on the chosen ta. This ambiguity is explicitly present in κt
and φt. The reason is that asymptotic flatness condition fixes the metric and
defines a natural time translation vector field at infinity. On the other hand,
on the Isolated Horizon the metric is not fixed at all, thus there is not a

8 The class [`] is one for all the phase space but the constant in the relation ta = c`a is
a function of the phase space.
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local preferred time evolution vector field. If we consider static spacetimes,
it is possible to use the normalization of the Killing field at infinity to fix the
ambiguity at the horizon, see last comment on the previous section. However,
for general time evolution fields the behaviour near the horizon is not related
to the behaviour near the infinity.

2.2 Quasilocal First Law of Black Hole Mechanics

Now, we develop a truly quasilocal approach where the asymptotic struc-
ture and ADM definitions are avoided by using a new physically motivated
structure: quasilocal observers. As in the previous section we explain the
quasilocal first law at three levels: 1) by a simple analysis of free falling
particle process and using the previous derived first law 2) by using pertur-
bations and Einstein equations (analogous with 2.1.2), and 3) in the Isolated
Horizon framework.

2.2.1 Near Horizon Observers

We study the thermodynamical properties of a Kerr-Newman black hole as
seen by a family of stationary observers O, surrounding the horizon at a
small proper distance `2 � A, where A is the area of the horizon. We define
them in such a way that they follow integral curves of the Killing vector field

χa = ξa + ΩHφ
a = ∂at + ΩH∂

a
φ, (2.32)

where ξa and φa are the Killing fields associated with the stationarity and
axisymmetry of Kerr-Newman spacetime respectively, while ΩH is the horizon
angular velocity introduced in (2.6).

The observers O four-velocity is given by

ua =
χa

‖χ‖
. (2.33)

These observers are the unique stationary ones that coincide with the locally
non-rotating observers of [2] or zero angular momentum observers, ZAMOs
of [23] as `→ 0. Therefore, the angular momentum of these observers is not
exactly zero, but o(`). Thus, in the approximation `2 � A we can consider
them at rest with respect to the horizon: This makes them the preferred
observers for studying thermodynamics issues from a quasilocal perspective.

The family of observers that we have introduced here defines a two-surface
of stationary observers around the horizon. In spacetime their history is rep-
resented by a three-dimensional worldsheetW(O). For dynamical process, as
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the ones involved in the first law derivation, this two-dimensional hypersur-
face evolves in complicated ways depending on the details of the process—as
the horizon itself—but it is valuable to stress that in the asymptotic station-
ary situation, when the black hole stabilizes, we recover the simple description
of a surface at proper distance ` to the horizon.

In the standard first law we have derived before, (2.26), some of the
quantities are defined for an asymptotic observer or have a global meaning,
as we have already discussed, this is clear for M . Furthermore, ΦH can be
interpreted as the difference in electrostatic potential between the horizon
and infinity, ΩH is the angular velocity of the horizon as seen from infinity,
and κ—if extrapolated from the non-rotating case—is the acceleration of the
stationary observers as they approach the horizon as seen from infinity.

To construct a quasilocal form of the first law of black hole mechanics, it
is crucial to describe physics from the viewpoint of our family of observers
O.

2.2.2 Thought Experiment: Throwing a Test Particle

The first situation that we will consider involves the process of absorption of
a test particle by the black hole. Let us imagine we throw a test particle of
unit mass and charge q from infinity to the horizon. The geometry as well
as the electromagnetic field are stationary and axisymmetric, namely

Lξgab = Lφgab = LξAa = LφAa = 0.

The particle, described by the four-velocity vector wa, moves according to
the Lorentz force equation

wa∇awb = q Fbcw
c, (2.34)

with four-velocity wa. In the asymptotic region where the electromagnetic
and the gravitational fields can be neglected, the energy of the particle is
E = −waξa|∞, but along the whole particle trajectory the conserved energy
is

E ≡ −waξa − qAaξa. (2.35)

Similarly, the conserved angular momentum is

L ≡ waφa + qAaφa. (2.36)

As the particle gets absorbed, the black hole settles down to a new state
with δM = E , δJ = L and δQ = q. The standard first law of black hole
mechanics, (2.26), implies

κ

8π
δA = E − ΩHL− ΦHq. (2.37)
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For our observers having four-velocity ua the local energy of the particle is

Eloc = −waua. (2.38)

Using (2.33), the definitions of E , L and ΦH ≡ −χaAa we find

Eloc = −w
aξa + ΩHw

aφa
‖χ‖

=
E − ΩHL− qΦH

‖χ‖
. (2.39)

Finally from (2.37)

Eloc =
κ

8π
δA, where κ ≡ κ

‖χ‖
. (2.40)

From the point of view of our quasilocal observers, the horizon has absorbed
a particle of energy Eloc. The change in energy of the system E as seen by O
must be δE = Eloc. All this implies a quasilocal version of the first law

δE =
κ

8π
δA. (2.41)

A direct calculation, Appendix A, shows that

κ ≡ κ

||χ||
=

1

`
+ o(`). (2.42)

The local surface gravity κ̄, up to o(`) terms, is nothing else but the minimal
acceleration these observers need just to keep their position without falling
into the black hole.9 In contrast with the standard surface gravity (2.5),
the previous equation shows that κ̄ for the locally non-rotating stationary
observers is universal, i.e., it is independent of the mass M , angular momen-
tum J and charge Q of the Kerr-Newman black hole. From (2.41) we get the
quasilocal notion of energy

E =
A

8π`
+ o(`), (2.43)

as the above quantity leads to the local first law when varied. This provides a
natural quasilocal notion of horizon energy that can be useful for thermody-
namics considerations. Its physical interpretation is restricted to the realm
of small changes close to equilibrium.

9 The acceleration ab = ua∇aub = χa∇aχ
b

‖χ‖2 and ‖a‖ = κ
‖χ‖ + o(`) which is equivalent

to one of the definitions of surface gravity κ ≡ lim(‖a‖‖χ‖), where the limit is taken
approaching to the horizon.
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The idea is to associate the above energy and first law to the horizon
itself by taking our ` as small as possible without being zero. An effective
quantum gravity formulation suggests that ` should be of the order of the
Planck scale [17], ` ∼ `p, but this is not essential for the analysis presented
here.

One can wonder about the constant of integration in (2.43), however, in
thermodynamical systems the absolute value of the energy is defined always
up to a constant, therefore what is relevant for thermodynamical processes
is the dependence that the energy has in terms of the physical variables of
the system. Here, we learn that black holes are thermodynamics systems
that are described by special hovering observers who have an energy which
is primarily dependent on the area horizon.

2.2.3 Refined Thought Experiment: The Field Theoretical Version

A stronger field theoretical version of the previous arguments can be formu-
lated as an analogy with the so called “physical process version” that proves
the standard first law discussed in 2.1. In our case it has the virtue of being
even simpler than the standard one.

Let the matter falling into the stationary black hole be described by a
small perturbation of the energy-momentum tensor δTab whose back-reaction
to the geometry will be accounted for in the linearized approximation of
Einstein’s equations around the stationary black hole background. Let us
consider an uncharged system for the moment, the generalization will be
addressed at the end. Because of energy-momentum tensor conservation and
the Killing equation for χb, the current defined as

Ja = δT abχ
b, (2.44)

is also conserved ∇aJ
a = 0.

Applying Gauss’s law to the spacetime region bounded by the black hole
horizon ∆ and the timelike worldsheet of the observers W(O) we get∫

∆

dV dS δTabχ
akb =

∫
W(O)

JbN
b, (2.45)

where Na is the inward normal ofW(O) and ka = ∂aV a null geodesic normal
to ∆, with V an affine parameter along the generators of the horizon. The
origin V = 0 is chosen to coincide with point 1 in Figure 2.1 (bifurcate
horizon). We have also assumed that δTab vanishes in the far past and far
future of the considered region. Using the fact that χa = κV ka on H, the
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previous identity takes the form

κ

∫
∆

dV dS V δTabk
akb =

∫
W(O)

‖χ ‖ δTabuaN b, (2.46)

Notice that the integral on the right is closely related to the energy-flux
associated with the observers, which is equal to δE. Now, the Raychaudhuri
equation in the linear approximation is

dθ

dV
= −8πδTabk

akb, (2.47)

where θ is the expansion of the null generators ka. Finally, a direct calculation
shows that ‖χ‖, evaluated on W(O) in terms of the proper distance to the
horizon `, is constant up to first order in a stationary solution. Then, we can
define W(O) such that, this is true for the whole evolution. Therefore, we
can simply take out ‖χ‖ from the integral on the r.h.s. of (2.46) and obtain∫

∆

dV dS V
dθ

dV
= −8π‖χ ‖

κ
δE + o(`2), (2.48)

By an integration by parts the integral on the left is equal to −δA. Ex-
plicitly,

−
∫ ∞
V1

dV

∮
dS V

dθ

dV
=

∫ ∞
V1

dV

∮
dS θ(V ) +

∮
dS V1θ(V1) = δA, (2.49)

where in the last term we dropped the boundary contribution at V = ∞
using that θ(∞) = 0. If V1 is the value of the affine parameter of the horizon
generators before enough the falling matter, we can apply the same argument
detailed after the demonstration (2.16), and therefore, that term is second
order in the perturbation .

Finally, using κ ≡ κ/‖χ ‖ we get the desired result

δE =
κ

8π
δA+ o(`). (2.50)

Note that, in the expression for the energy as seen by the quasilocal
observers it is clear that neither the angular momentum or the charge entering
into the black hole appear explicitly, i.e., we do not split up neither χa nor
δTab as in the standard case.

However, to incorporate charge into the analysis we should note that if
we consider a small perturbation of the Killing fields χa = χa(0) + λχa(1), and
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that—because of the electromagnetic field—the energy momentum tensor of
the background is not zero any more. This implies

∇aJa = Tab∇aχb 6= 0, (2.51)

in fact this terms has the order of the perturbation, and therefore it could
be relevant. Thus, when using Gauss’ law the following volume term should
be considered in the r.h.s. of (2.48)∫

V ol

Tab∇aχbd4x. (2.52)

Nevertheless, because the four-volume V ol is the thin region enclosed between
the horizon ∆ and the observers surface W(O), this term is order o(`) and
therefore negligible. The rest of the steps follow in the same manner such
that (2.50) is still true.

The previous field theoretical argument can be further generalized to in-
clude Isolated Horizons as we will see in the following.

Fig. 2.1: Conformal diagram representing the perturbation of an initially station-
ary black hole with a bifurcate horizon. The dashed line represents the
true black hole horizon, the stationary observers worldsheet is denoted
by W(O). The quantity Ain is the area of the initially stationary back-
ground while Aout is the final area of the black hole horizon. The grey
region represents the matter δTab falling into the black hole.
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2.2.4 Isolated Horizons

Here we prove the validity of the quasilocal form of the first law (2.41) in the
more general framework of Isolated Horizons introduced in Section 1.1. In
contrast with the previous derivation of the first law for Isolated Horizon—
shown is Subsection 2.1.3—that was found as a formal mathematical consis-
tency, the first law derived here is more physical in character, i.e., changes
in the area and energy of the system can be seen as the consequence of the
absorption of matter fields by the horizon along its history.

Isolated Horizons are equipped with an equivalence class of null normal
[χ] where equivalence is defined up to constant scaling10. The generators χa

define a notion of Isolated Horizon surface gravity κIH through the equation
∇χχa = κIHχa. It is clear that κIH is not completely defined within [χ]
because it gets rescaled when χa is rescaled. The near Isolated Horizon
geometry can be described in terms of Bondi-like coordinates that we now
explain in detail [24, 9].

Near Isolated Horizon Coordinates

From the class [χ] we can choose a particular generator and define an affine
parameter v along ∆: χa∇av = 1. Then, v induces a foliation of ∆ of
topological two spheres Sv. Let us take a particular one Sv and define the
null surface Nv generated by the past light cone at each point of Sv, of course,
this can be repeated for each Sv (see figure 2.2). This surface is the geodesic
extension of −na, with na a future directed null vector orthogonal to Sv and
normalized such that χana = −1. Let r be an affine parameter along −na,
such that r = r0 on ∆, this defines a second coordinate. Finally choosing
x1, x2 two coordinates constant along χa orbits: χa∇ax

i = 0, and set also
(v, xi) constant along integral curves of na. Thus, (v, r, xi) is a coordinate
system in the neighbourhood of ∆. In particular χa is naturally extended in
the neighbourhood outside ∆. In these coordinates, the near Isolated Horizon
metric can we written [9]

gab = qab + 2dv(adrb) − 2(r − r0)[2dv(aωb) − κIHdvadvb] + o[(r − r0)2],(2.53)

where qab is the induced metric on Sv. Then, qabn
a = qabχ

a = 0, and ωa is
the 1-form intrinsic to Isolated Horizons with the property χaωa|∆ = κIH.
The form notation is used: dra = ∇ar, such that ra = ∂ar and ra∇ar = 1.
Also, one has from the Isolated Horzion definition [25]

Lχgab|∆ = 0. (2.54)

10 here we adopt χa ∈ [χ] notation to denote a vector in the class of null generator of the
horizon in order to avoid confusion with the constant proper distance to the horizon `.
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Fig. 2.2: Bondi-like coordinates

Thus, χa can be used to define the near horizon observers O. The proper
distance ` to the horizon from a point with coordinate r along a curve normal
to both χa and qab can be computed by using a spacelike vector orthogonal
to the observers worldsheet W(O), Na such that

Naχa|W(O) = 0, and Naqab|W(O) = 0. (2.55)

The surfaceW(O) is in the neighbourhood of ∆, therefore, the metric (2.53)
is a good approximation to compute these conditions. The vector turns out
to be

Na = ∂ar +
1

2κIH(r − r0)
∂av , (2.56)

remember that χa = ∂av . In terms of these coordinates the proper distance is

` =

∫ √
gabNaN bdn =

√
2(r − r0)

κIH
, (2.57)

on the other hand
‖χ‖ = 2κIH(r − r0). (2.58)

Therefore, in this context, we define the local surface gravity by

κ =
κIH
‖χ‖

=
1

`
. (2.59)

Notice that in contrast with κIH, κ is uniquely defined for the class [χ]: κ̄
is invariant under rescaling of χa. The form of the Raychaudhuri Equation
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(2.47) is the same for the generators of Isolated Horizons, but now this is due
to the fact that their expansion, shear, and twist vanish by definition. Then,
the argument following the Equation (2.43) holds. Similarly, the quasilocal
first law is

δE =
κ

8π
δA, (2.60)

where the energy E = A
8π`

, and we have used that `2 � A.
Summarising, even though we have first justified the quasilocal first law

(2.60) starting from the analysis of the standard first law for stationary space-
times and its translation in terms of the quasilocal observers O, the final
analysis in the context of Isolated Horizons implies that the result can be
recovered entirely from quasilocal considerations that know nothing about
the global structure. In this thesis we are proposing to use this remarkable
fact in order to reverse the perspective, and take the quasilocal definition of
Isolated Horizons with their null normals [χ], the quasilocal first law (2.60),
the energy (2.43), and the intrinsic notion of surface gravity (2.59)—defined
in terms of quasilocal observers (2.33)—as an alternative structure behind
black hole thermodynamics. Furthermore, because the notion of energy pro-
posed is simply proportional to the area, this framework is specially suitable
for the statistical mechanical procedures which are applied in Loop Quantum
Gravity, where the area, as a quantum operator, has been studied in great
detail.

As an extra comment, notice also that the quasilocal first law and the
universality of κ implies the Gibbs relation E = TS where T = `2

pκ̄/(2π),
and S = A/4`2

p. That simple property of usual thermodynamical systems
is not realized by the quantities taking part in the standard first law (2.26).
Therefore, it is an extra bonus of this quasilocal description.

On the Physical Interpretation of the Quasilocal Energy

In previous section we derived a quasilocal first law Isolated Horizons. To
do so, we have studied the response of black holes to matter infall from the
point of view of near horizon observers, fundamental ingredients were the
measure of local matter flow entering through the horizon and local surface
gravity κ̄ ≈ 1/` that keeps observers fixed in their trajectories. The result
(2.60) immediately suggests the following notion of local energy

E =
κ̄

8π
A, (2.61)

now, we will see how this energy can be written as a Komar-like integral.
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First we establish some basic results. The acceleration of observers fol-
lowing χa trajectories is

ab = ua∇au
b =

χa

‖χ‖
∇a

(
χb

‖χ‖

)
=
χa∇aχ

b

‖χ‖2
=

1

2
∇b log ‖χ‖2. (2.62)

This is the local force which should be exerted to hold a unit test mass in
place [2]. Then, for an arbitrary topological two-sphere S embedded in a
spacelike hypersurface, we can compute the total local force needed to keep
in place a unit surface mass density distributed on S.

F =

∫
S

N babdS, (2.63)

where Na is a spacelike unit normal orthogonal to ua and also orthogonal to
S. Since ubab = 0 clearly, N b = ab/‖a‖. Now, this total force can be written
as a Komar-like integral

F =

∫
S

N bab dS = −
∫
S

εabcd∇cud, (2.64)

which is derived as follows

F =

∫
S

N bua∇aub dS =

∫
S

(N bua −Naub)∇aub dS

=

∫
S

ε̃abNcd∇cud =

∫
S

6ε̃[abNcd]∇cud

= −
∫
S

εabcd∇cud, (2.65)

in the first line we have used Naub∇aub = 1
2
Na∇a(u

bub) = 0, then Nab =
2u[aN b] is the normal bi-vector to S, and ε̃ab is the area element of S. The
surface 2-form has been rewritten as a volume 4-form, by using the normal
bi-vector εabcd = −6N[abε̃cd].

For our preferred family of near horizon observers we have

N bab = ‖a‖ =
κ

‖χ‖
+ o(`) =

1

`
+ o(`). (2.66)

Therefore, provided we use S = SO as the spacelike surface where near
horizon observers lay, it is possible to compute the integral trivially∫

SO

N bab dS =
1

`
A+ o(`). (2.67)
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Thus, neglecting o(`) terms, a Komar-like energy formula is obtained for
the energy of the quasilocal observers

E =
1

8π

∫
SO

N bab dS = − 1

8π

∫
SO

εabcd∇cud, (2.68)

the coefficient is fixed by using the differential first law. Note that, as ua is
not a Killing field, this formula depends on the surface we choose: W(O).
However, this surface can be constructed for every black hole. Therefore, this
construction can be used as a notion of energy.
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3. EUCLIDEAN PARTITION FUNCTION FOR
BLACK HOLES

Thermodynamics deals with the study of macroscopic properties of systems
which interact through quasi-static processes with the surrounding environ-
ment. Macroscopic quantities such as the energy, volume, temperature, en-
tropy, as well as the processes that change them, are studied through the
standard four laws of thermodynamics.

While the macroscopic quality of a system can be understood as a certain
limit once we have a microscopic model of the same, a quasi-static process is
difficult to define. It can be defined tautologically by saying that it is a pro-
cess such that thermodynamics laws work. The mathematical framework of
thermodynamics was originally developed to explain the physics of gases, and
they are still today the paradigmatic example. However, this framework can
be also successfully applied to a wide range of systems even outside physics.
The key is that all them share a general feature: They are described by a huge
number of degrees of freedom. From that description, the thermodynamics
of the system can be understood, and emerges, from the probabilistic study
of its microscopic components. The study of systems with a large number of
microscopic degrees of freedom is the branch of physics known as statistical
mechanics [27].

The main tool in statistical mechanics is the so called partition function.
It is defined as the sum of all distributional probabilities where each one is
assigned to a microstate configuration that the system can access. Differ-
ent general computing procedures can be established by considering some of
the macroscopic quantities fixed, these are called ensembles. For instance,
in the canonical ensemble the sum is over all probability distribution of mi-
crostates such that volume and the number of particles are fixed. This sum
is sometimes called the canonical partition function. Analogously, in the
grand canonical ensemble, which describe a system where particles are not
conserved, we can define the grand canonical paritition function.

From the partition function, macroscopic averages of the thermodynamics
quantities can be explicitly computed and, consequently, the laws of thermo-
dynamics can be reproduced. In this respect, the role of the entropy is
paradigmatic as, even if it is a macroscopic quantity, it cannot be measured
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directly on systems. Whereas, in most cases, statistical mechanics concretely
offers a way to compute it. This is exactly our perspective on the problem
of the black hole entropy: One must have a statistical mechanics description
to explain its entropy.

In the previous chapter we developed a new version of the first law of
black hole mechanics that tells us how black holes exchange energy with
their surroundings from a quasilocal setup. This new law—as well as the
usual law—is in analogy with the thermodynamical first law, the only miss-
ing piece is the concept of temperature that is completely absent for a clas-
sical description of black holes. In the standard approach the temperature
is provided by the Hawking radiation [1], which is a purely quantum effect.
In our approach it is enough to consider the Unruh temperature [28] for lo-
cal accelerated observers—consistent with the Hawking temperature—which
characterize the radiation near the horizon. This is the temperature that a
thermal bath should have in order to keep the black hole in equilibrium.

Once the laws of thermodynamics for black holes are established one
should ask about the statistical mechanics description which could explain
it. That is, the microscopic description that allows us to build a partition
function.

When Hawking predicted that black holes radiate, he analyzed quantum
fields on a curved spacetime as a background. On one side its prediction is
strong because it is not necessary to know the quantum details of the black
hole, but, by the same reason his approach is indirect as it did not identify the
microscopic black hole states associated with this thermal properties. Never-
theless, two years after this prediction, Gibbons and Hawking [29] explored
in this direction and found a simpler, formal, and fruitful way to study the
black hole thermodynamics. They borrowed a different strategy to construct
a statistical partition function through path integrals from Quantum Field
Theory: The Euclidean partition function [30].

The Euclidean partition function allows us to put classical black holes
directly in a proper quantum context and gives us a way to understand the
thermodynamics of black holes. However, as we will see, it is a semiclassi-
cal approach as quantum degrees of freedom are not singled out. Therefore,
though Euclidean black hole partition function is a mayor step towards a
black hole quantization, nevertheless, at the end of the analysis, black hole
still deserve a fundamental quantum treatment. Such a fundamental treat-
ment should provide a standard partition function constructed by summing
probability distributions associated with black hole microstates. This is the
approach we follow in Chapter 5.

Hence, in this chapter we follow Hawking’s way, to make a step towards
quantization, and use the Euclidean partition function approach. We do it
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by using the quasilocal perspective from where our new first local law is built.
The main result is that the Euclidean partition function method using

quasilocal observers is also a framework suitable to study the thermodynam-
ical properties of black holes. In particular, we will be able to compute its
entropy and show that its leading behaviour, as a function of the horizon
area, is given by S = A/4, i.e., the usual Bekenstein-Hawking entropy law.
As a by-product, we show that the role of the energy is played exactly by the
quasilocal notion of energy defined in Chapter 2, and, that the temperature
is the Unruh local temperature of accelerated observers. Thus, the approach
is consistent with the quasilocal framework.

This chapter is organized in three sections as follows: First, we review
the construction of the Euclidean partition function. Second, the Gibbons
and Hawking application to gravity is reviewed for Schwarzschild geometry.
Finally, we apply the quasilocal perspective developed in the previous chapter
to define a quasilocal Euclidean partition function.

3.1 Preliminaries: Partition Function as a Path Integral

Let us start by considering a quantum system characterized by a Hamilto-
nian operator Ĥ and a complete basis of normalized eigenstates {|Ψn〉}n,
i.e. Ĥ|Ψn〉 = En|Ψn〉. The statistical partition function for the canonical
ensemble is defined by

Zs(β) =
∑
n

e−βEn =
∑
n

〈Ψn|e−βĤ |Ψn〉, (3.1)

where β = 1
kT

is the inverse of the temperature of the system, and k is the
Boltzmann constant. From now on, we choose units such that k = ~ = 1.
The sum in (3.1) is over each individual state, but, another way to express
the partition function is by summing over energies. In this case, we should
introduce a degeneration due to states with the same energy. If the energy
spectrum is “dense enough” we can approximate the sum by an integral. Let
us denote the density of states for a given energy by N(E) = eS(E), then

Zs(β) =

∫ ∞
0

dE e−βEeS(E), (3.2)

thus, the partition function is simply the Laplace transform of the density of
states. We will see that the function S(E), when evaluated at the equilibrium
energy, gives in fact the canonical entropy of the system.

On the other hand, in standard Quantum Mechanics it is possible to com-
pute the transition amplitude between two states by simply using the evolu-
tion operator, e−iĤt, which controls the deterministic dynamics in quantum
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theories. In Quantum Field Theory, the transition amplitude can be formally
written as a path integral of the phase eiS[φ], with S[φ] the classical action
of the theory, and φ representing all fields involved. Thus, the transition
amplitude formally satisfies

〈Ψf |e−iĤt|Ψi〉 =

∫
D[φ]eiS[φ], (3.3)

the similarity between the r.h.s. of (3.1) and the l.h.s. of (3.3) suggests
a different way to compute the partition function. Let us consider time
as a pure imaginary number t = −iτ with τ real. Then, take both, the
initial and the final states in the transition amplitude, as the same eigenstate
Ψf = Ψi = Ψn. Finally, by summing over all possible eigenstates of the
system we obtain the partition function exactly as defined by (3.1)

Ze(β) =

∫
D [φ] e−SE [φ], (3.4)

where now β = τ . Thus, the “time” τ , which by virtue of the state iden-
tification is periodic, is interpreted as the inverse of the temperature of the
system (for a pedagogical example see [31]). The complexification of time is
usually called Wick rotation as it can be represented by a −π/2 rotation on
a time complex plane. Because of the periodicity in τ , the classical field φ
in the path integral should satisfy time periodic boundary conditions. For
Lorentz invariant field theories the Wick rotation changes the signature of
spacetime from Lorentzian (−,+,+,+) to Euclidean (+,+,+,+), thus, the
previous expression is called the Euclidean path integral. In the same vein

SE[φ] ≡ − iS[φ]|t→−iτ , (3.5)

is called the Euclidean action.
A path integral formula for the partition function is interesting because it

expresses the statistical mechanics fundamental tool in terms of the classical
fields directly. This provides a framework suitable for semiclassical approx-
imations as we will see in a moment. It is also a completely different and
covariant method to compute the partition function for quantum systems.

If the system is not in a strong quantum regime the path integral can
be estimated around classical solutions by the method known as the steepest
descend approximation, also called the saddle point approximation. In our
case, it consists basically in the estimation of the path integral by evaluating
the integrand at the saddle point of SE[φ]. The leading order is

Ze(β) ∼ e−SE [φ0]+···, (3.6)
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where SE[φ0] is the Euclidean action evaluated at the saddle point φ0, i.e.,
a stationary point of the action or equivalently a particular solution of the
equations of motion that satisfies the boundary conditions. The dots in (3.6)
contain corrections due to quantum fluctuations that will be ignored at this
level. We use ∼ to relate quantities that have a similar asymptotic behaviour.

Now, let us use the partition function in its more standard form (3.1) to
compute physical macroscopic quantities. We are assuming that the system
under consideration satisfies the Boltzmann probability distribution, thus,
we have that

pn =
e−βEn

Z
, (3.7)

is the probability for the system to be in a quantum state with an energy
En. The von Neumann entropy is defined by

S = −
∑
n

pn log pn = βĒ + logZ, (3.8)

and the average energy of the system is given by

Ē = −∂β logZ(β) =
∑
n

Enpn. (3.9)

The equation for the entropy can also be formally obtained by identifying
the statistical and the Euclidean partition functions

Zs ∼ Ze (3.10)∫ ∞
0

dEe−βEeS(E) ∼ e−SE [φ0]+··· (3.11)

S = βĒ + logZcl + · · · , (3.12)

where in the last line we have used the saddle point approximation, such that,
the energy that defines this point is E = Ē, then, we took the logarithm and
used the notation Zcl = e−SE [φ0] for what would be the“classical contribution”
to the partition function.

Path integrals are not rigorously defined for general physical theories thus,
there is a possible mismatch between the two different expressions for the par-
tition function in (3.10). This is frequently manifest by the appearance of
divergences on the path integral side, so, the Euclidean path integral partition
function should be treated carefully for each specific example. In particular,
it should also be kept in mind that by using the path integral we have not
control of the fundamental quantum degrees of freedom of the system. Of
course, these are problems concerning the semiclassical approximation meth-
ods and must be cured by an ultimate underlying quantum theory.
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In [29] the use of this semiclassical method in General Relativity is pro-
posed as a glimpse of a quantum treatment for gravity. The starting point is
to compute

Ze(β) =

∫
D [φ] e−SE [φ], (3.13)

where an Euclidean action for General Relativity should be defined. We use
the Einstein-Hilbert action plus the Gibbons-Hawking-York boundary term
which makes the variational principle well-defined [29, 32]. Written in terms
of the metric tensor φ = gµν the Euclidean action is

SE [g] = − 1

16π

∫
M
R dV +

1

8π

∫
∂M

(K −K0) dΣ, (3.14)

where R is the scalar curvature, dV the four-volume element on M, K the
trace of the extrinsic curvature of the three-surface ∂M, which is the bound-
ary of M and has dΣ as three-volume element. K0 is an arbitrary constant
that does not depend on the spacetime metric and, hence, its variation is
automatically zero. This constant is fixed by using a physical argument and
will play an important role in what follows.

Before going further, a word of caution is in order. The previous ex-
pression (3.13) does not have a precise mathematical definition. Gravity
is not a renormalizable theory in the standard quantum field theoretical
approach and the perturbative expansion of its path integral is not well-
defined. Furthermore, when trying to define the Euclidean continuation for
the Einstein-Hilbert action, SE [g] in (3.14), there is not a general prescrip-
tion to analytically continue general spacetimes with Lorentzian signature to
spacetimes with Riemannian signature [2] (for example in the Kerr metric, in
the usual coordinates, the transformation t→ −iτ makes the metric and the
action complex). In addition to this, the partition function defined this way
is not bounded, as shown in [33] for a certain family of conformal Euclidean
metrics it diverges. Nevertheless, having said that, for specific examples in
gravity the method explained before gives interesting results, see for instance
its use in the simpler case of 2+1 black holes in [34]. In four dimensions there
are metric solutions, notably static metrics, where the Wick rotation can be
performed consistently, allowing for the use of the method.

Summarizing, in this section we have introduced the Euclidean partition
function and described a method to estimate it. The goal of this chapter
is to explore the possibility of giving a quasilocal meaning for the Euclidean
partition function in the context of black holes. Before that, in order to
contextualize the result, we briefly review the Euclidean partition function
approach with the spherically symmetric black hole.
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3.2 Partition Function for Schwarzschild Solution

Here we will partially follow the classic work of Gibbons and Hawking [29].
Let us start by writing the Schwarzschild solution

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2. (3.15)

The ADM formalism provides a notion of global energy for gravitating sys-
tems, for the Schwarzschild solution—a spherically symmetric black hole at
rest with respect to the asymptotic structure—it is simply given by the mass,
E = M . Thus, the statistical partition function (3.2) is

Zs(β) =

∫ ∞
0

dMe−βMeS(M). (3.16)

In the last expression the quantum corrections are disregarded. This partition
function can be seen as a mere toy model, however, it will be useful for us
when we compare it with the Euclidean version.

On the other side, we can use the Euclidean approach. In the Euclidean
section1 the real “time” parameter τ = it should be β-periodic to avoid a
conical singularity,2 and the period can be identified with the temperature

β =
1

TH
= 8πM, (3.19)

which is the temperature associated with the Hawking radiation for the spher-
ically symmetric black hole. The scalar curvature vanishes for Schwarzschild,
R = 0. Thus, the Euclidean action (3.14) is just the boundary term used to
define correctly the action principle [29]

logZcl(β) = −SE(Ψ0) = − 1

8π

∫
∂M

(K −K0)dΣ, (3.20)

1 If the coordinates are thought of complex variables the Euclidean section is the sector
where time is purely imaginary.

2 The Euclidean Schwarzschild metric reads

ds2
e =

(
1− 2M

r

)
dτ2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (3.17)

there is possibly a singularity at r = 2M . By using the coordinate ρ = 4M
√

1− 2M/r,
the metric is

ds2
e = ρ2d (τ/(4M))

2
+ (r/(2M))

4
dr2 + r2dΩ2, (3.18)

and we see that at the origin, ρ = 0, there is a conical singularity unless we restrict the
variable τ to be β-periodic with β = 8πM .
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where ∂M has the topology S1 × S2 due to the periodicity in τ . K0 is a
constant under variations of the action. The variational principle is defined
in such a way that the metric is keep fixed at the boundary surface, thus, K0

can almost depends on the intrinsic metric at that boundary surface and it
is still constant. To study the asymptotic behaviour of the boundary we can
take a sphere of coordinate radius r and study the far away regime r � 2M .
The boundary integral of K blows up with r, but, we can use the K0 term to
regularize it. A natural way is to choose K0 as the trace of extrinsic curvature
of a sphere with radius r but computed as embedded in a flat spacetime,3

see Fig. 3.1.

Fig. 3.1: The extrinsic curvatures are computed on a large sphere which is the
boundary of a spacetime: With a black hole for K (left), and in an
empty spacetime for K0 (right). As sketched, the empty spacetime can
be thought as the area zero limit of the black hole spacetime.

The result is

logZcl(β) =
β

2

[
(2r − 3M)−

√
1− 2M

r
2r

]
, (3.21)

the second term naturally diverges in the same way for r � 2M and the whole
quantity is regular for r →∞. This choice for K0 has the additional property
that it produces SE = 0 for a flat spacetime. The boundary, characterized by
the asymptotically flat conditions, is reached when the radius of the sphere
goes to infinity. Expanding in the regime r � 2M we get a finite contribution

logZcl(β) ≈ −βM
2
. (3.22)

Now, we can try to estimate the entropy of the system by identifying both
definitions of partition functions Zs ∼ Ze. The direct computation cannot

3 This definition is ad-hoc for the Schwarzschild spacetime, in a general case there could
be boundaries that cannot be simply embedded in flat spacetime.
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be performed directly,4 but we can avoid this problem by simply computing
the entropy directly from the formal expression (3.8), where Z is replaced by
the estimation of the Euclidean partition function, and β = 8πM . If we use
the notion of energy, Ē = M , provided by the ADM framework as an extra
ingredient, the result is the standard Bekenstein-Hawking entropy

S = 4πM2 =
A

4
, (3.24)

where we have have used the fact that the area of the horizon is A = 16πM2.
Now, if we look closely at (3.22), it is clear that

Ē ≡ −∂β logZcl 6= M, (3.25)

which is in fact inconsistent with the use of Ē = M . To obtain consistency
we should study the topological issues concerning the Euclidean black hole.5

The main remark is that for the Euclidean metric the appearance of a
conical singularity implies a curvature singularity that has been overlooked
up to here. We pay attention to it in the following.

The partition function defined as the Euclidean path integral, with the
boundary conditions discussed above is a function of β, and this curvature
contribution modifies the dependence. For an Euclidean manifold with a
conical singularity and a deficit angle of 2π(1 − α) the curvature acquires a
non trivial term [35, 36]. Near the region with the conical singularity the
curvature scalar is

R = R̄ + 4π(1− α)δΣ2 (3.26)

where Σ2 is the two-horizon surface, δΣ2 is the Dirac delta on the four-
manifold such that:

∫
M fδΣ2 =

∫
Σ2
f , and R̄ is the scalar curvature computed

in the smooth manifold. Note that in the four manifold the conical singu-
larity is a two-dimensional extended object, in consequence it can also be
understood as a two-dimensional internal boundary term, also called corner
term [37]. It can be shown, by studying the canonical action [38], that for
black hole boundary conditions the equations of motion imply that this extra

4 We might use the inverse Laplace transform to compute the entropy, formally

eS(M) =
1

2πi

∫ +i∞

−i∞
dβ eβM−β

M
2 +···, (3.23)

this integral does not converge, to make it convergent we can rotate the contour to the
real axis as done in [30], however, this procedure does not seem very satisfactory.

5 Note that in the Hawking approach [30] before the relation β = 8πM is used before

computing the energy, such that logZcl = − β2

16π , with this Ē ≡ −∂β logZcl = M is trivially
obtained, but, this procedure seems arbitrary to us.
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term vanishes for any exact solution (see (19) in [38]). Thus, it does not con-
tribute to the leading saddle point approximation. However, the Euclidean
partition function as a quantum object has contributions from metrics that
are not solutions of the Einstein equation. Some of those can, in principle,
have conical singularities, then, there is a hidden dependence on β in the
Euclidean partition function than can be relevant to compute derivatives as
in (3.25). We should make this dependence manifest in the Euclidean action.
For the Euclidean black hole we introduced the imaginary time t = −iτ , and
the periodicity should be imposed on the real coordinate τ → τ + β. If we
leave β free for a moment, the deficit angle, which can be easily read from
(3.18), is

2π(1− α) = 2π − κβ, (3.27)

where κ = 1/(4M) is the surface gravity for Schwarzschild already introduced
in the previous chapter. Thus, the Euclidean action evaluated on a metric
which can have a conical singularity is the boundary term plus the deficit
angle

SE[Ψ0] = 4π

∫
(1− α)δΣ2dV +

1

8π

∫
∂M

(K −K0)dΣ.

= −1

4
(1− α)A− β

2

[
(2r − 3M)−

√
1− 2M

r
2r

]
≈ −(2π − κβ)

A

8π
+ β

M

2
, (3.28)

where in the second line we have used that
∫
δΣ2dV = A is the area of

the horizon, and in the third line we have used that the boundary is at
r � 2M . Now, with this refinement the Euclidean partition function allows
us to compute the energy of the system. For Schwarzschild, we have

logZcl = −βM
2

+ (2π − κβ)
A

8π

Ē = −∂β logZcl =
M

2
+
κA

8π
= M, (3.29)

where the exact value of β = 8πM has not been used in the derivation.
By doing this the partition function is simply self-consistent with the ADM
energy: We do not need it as an extra input.

In summary, by fixing correctly the arbitrariness K0 in the boundary term
and by considering the contribution of the conical singularity, the Euclidean
approach—in the leading saddle point approximation—provides us with a
temperature TH = 1

8πM
, an entropy S = A

4
and a notion of energy Ē = M
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which are consistent with the known results of Hawking temperature, its
use on the standard first law which gives the entropy, and the ADM energy,
respectively. The analysis of the conical singularity is not included in the
original work [29].

3.3 Partition Function in the Quasilocal Approach

To construct a quasilocal description of the black hole mechanics in terms of
the Euclidean partition function, we basically need two ingredients. First we
need to define a three-dimensional timelike surfaceW(O) at a proper distance
`2 � A to the horizon. The proper distance ` is measured by hypothetical
observers laying on W(O) and stationary with respect to the horizon (see
Appendix A for a description in terms of coordinates). The surface W(O)
will be thought of the boundary of the spacetime. This allows us, as discussed
in the previous chapter, to define a physically motivated notion of energy in
terms of local measurements carried out by the observers on this surface.
However, in this context the quasilocal energy found in (2.61) is not part of
the assumptions. Instead, in the same way that the ADM energy emerges in
the procedure of the previous section, the quasilocal energy emerges naturally
from the following quasilocal approach.

For the Schwarzschild solution, the quasilocal Euclidean partition func-
tion in the saddle point approximation is

logZe ≈ logZcl = −SE = − 1

8π

∫
W(O)

(K −K0) dΣ +
1

8π
(2π− α

2π
)A, (3.30)

where, up this point, the only difference with the previous treatment is the
introduction of W(O) as the spacetime boundary.

The second ingredient is the fixation of the arbitrariness of the boundary
term, K0. In the standard approach the required boundary condition is
asymptotic flatness of spacetime. In that case it is natural to fix the arbitrary
quantity, K0, in order to make SE = 0 for flat spacetime, i.e., when there is
not black hole. But, this choice is not useful in the quasilocal approach. In
the quasilocal case we need to have the horizon to make sense of W(O), the
stationary observers, and their quasilocal energy measurements. However,
in the limit where there is no black hole, A → 0, the surface over which
we define the quasilocal energy does not exist. To address this issue we
consider the opposite limit, A → ∞, which can be thought of a huge black
hole and where, therefore, we still have a horizon. In this limit, if we take
any small patch of the surface W(O) where the near horizon observers lay,
as A → ∞ the surrounding spacetime of those observers becomes exactly
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Fig. 3.2: For a large black hole any small patch of the horizon can be seen as a
Rindler spacetime.

Rindler, see Fig. 3.2. This means that all the possible corrections due to
the curvature of the spacetime near the horizon, disappear in this limit. In
Rindler spacetime we can still define a surface W(O) a distance ` from the
horizon. The extrinsic curvature on this surface is exactly K0 = 1/`. As the
Rindler spacetime is flat, this choice has a similar interpretation than that
of the asymptotic boundary in the empty spacetime.

To avoid the conical singularity we need again to ask for a “time” period-
icity. In the quasilocal frame the natural time variable is the proper time of
the observers on W(O). In the near horizon region the metric reads

ds2
e = `2d(κτ)2 + [r/(2M)]4dρ2 + r2dΩ2, (3.31)

thus, the proper time τ̃ = `κτ should have the following periodicity τ̃ →
τ̃ + 2π`, then, the period is simply

β̃ = 2π`, (3.32)

which is naturally the inverse of the Unruh temperature that can be obtained
using quantum field theoretic consideration about accelerated observers in
Rindler spacetime. Taking all this into account, the boundary term can be
straightforwardly computed

− 1

8π

∫
W(O)

(K −K0)dΣ = β̃
5`

16M
+ o(`4), (3.33)

where the extrinsic curvature K has been computed explicitly in Appendix B
(for Schwarzschild see directly (B.13)). Hence, we can express our partition
function as a function of β̃

logZcl(β̃) = β̃
5`

16
+ (2π`− β̃)

A

8π`
, (3.34)
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in particular we can compute the energy

Ē = −∂β̃ logZcl =
A

8π`
+ o(`) = Eloc, (3.35)

which is consistent with the expected quasilocal energy defined in the pre-
vious chapter (2.43). Note that in comparison with the asymptotically far
away view, here, the energy comes entirely from the conical defect. The en-
tropy can be computed again using the general expression (3.8), but now we
replace β by β̃ and Ē by Eloc, from (3.32) and (3.35), respectively,

S = 2π`
A

8π`
+
π`2

4
=
A

4
+ o(`2). (3.36)

Therefore, the result is that the quasilocal energy of the observers plus the
local temperature—obtained as the period used to regularize the Euclidean
metric—combined in the general entropy formula produce, again, the so
called Bekenstein-Hawking entropy.

In summary, the Euclidean partition function within the quasilocal ap-
proach, at first order in `, naturally reproduces the local (Unruh) temperature

T̃ = 1
2π`

, the Bekenstein-Hawking entropy S = A
4
, and the quasilocal energy

notion Eloc ≈ A
8π`

.
As a last remark it should be emphasized that, as in the previous chapter,

the use of the quasilocal approach in the Schwarzschild example is easy to
generalize, as far as the quasilocal structure around the black hole horizons
is similar. For instance, in the Kerr solution, from the far away perspective
the Wick rotation turns the metric complex due to the crossed terms with
the from dtdx. But, as shown in Appendix C, for the quasilocal approach
those crossed imaginary terms are o(`) and can be neglected in the first
approximation.
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4. BLACK HOLE QUANTIZATION

The program of black hole quantization, that we develop here, is the product
of the combination of three main subjects: Isolated Horizons, Loop Quan-
tum Gravity, and Chern-Simons theory. The core of our strategy to get a
quantum description of black holes is to impose the Isolated Horizons as a
condition already at the classical level, i.e., we reduce the General Relativity
phase space by imposing an internal boundary such that it has the properties
defining an Isolated Horizon. In this sense, we have a theory of gravity with
a generic spacetime that contains one black hole. Afterwards, quantization
is carried on by using the techniques of Loop Quantum Gravity. The Chern-
Simons theory appears at the quantum level as a natural way to describe the
degrees of freedom of the Loop Quantum Gravity over the black hole horizon.

This general strategy has been developed as an application of Loop Quan-
tum Gravity to study black hole quantum physics originally in [39] and
restudied recently in [15, 40] by considering a less restricting gauge condition.

Our approach puts special emphasis on the symplectic structure defining
the phase space. In physics, the symplectic formulation of a theory state
that over the phase space Γ there is a symplectic structure Ω(δ1, δ2) defined
as a 2-form on the cotangent space of Γ. In fact, the symplectic structure
is a reformulation of the Poisson bracket and therefore, it is a fundamental
ingredient to have a well-defined Hamiltonian evolution in any theory. In
standard mechanics, this structure has the important property that does not
depend on time. On diffeomorphism covariant field theories this property
is translated to an independence of the Cauchy surfaces, if this is true, the
symplectic structure is said to be preserved.

Another interesting property of the symplectic formulation is that canon-
ical transformation of variables are simply equivalent to diffeomorphism on
the Γ space—where the fields are the coordinates on the phase space Γ—such
that Ω(δ1, δ2) is preserved. A fundamental result in this respect is the Dar-
boux’s theorem: It states that on each small patch of a given phase the sym-
plectic structures is essentially unique as all possible symplectic structures
on Γ are locally related by a diffeomorphism transformation. Since we deal
with different sets of variables, it is exactly the former property what makes
the approach useful for us. The progress achieved in the quantum gravity
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proposal known as Loop Quantum Gravity is deeply based in the use of an
alternative set of variables called Ashtekar-Barbero connection variables. In
the standard Hamiltonian formalism they can be obtained, precisely, by using
a canonical transformation of the standard Palatini conjugate variables.

On the other hand, as we will see, to show that Ω(δ1, δ2) is preserved in
covariant theories, we need to study the behaviour of fields at the boundaries
of the spacetime [41]. In fact, the preservation of the syplectic structure can
be rephrased by saying that Ω(δ1, δ2) is preserved if and only if boundary con-
ditions guarantee that the symplectic flux does not escape through spacetime
boundaries, i.e., it vanishes on spacetime boundaries.

Our characterization of black holes involves the particular type of space-
time boundaries given by the Isolated Horizon conditions. Hence, we should
pay special attention when performing the diffeomorphism transformation
of Ω(δ1, δ2) to obtain the Ashtekar-Barbero connection variables such that
Isolated Horizon conditions still allow for a preserved symplectic structure.

The quantization procedure does not differ much from the Loop Quantum
Gravity one. Actually, what we aim at is to adapt the classical formulation
such that Loop Quantum Gravity procedure can be applied and the quantum
degrees of freedom of the horizon singled out. So, basically the strategy
consists in incorporating the Isolated Horizon on the symplectic structure
formulation of the theory. Then, we chose a particular time foliation of
the spacetime such that we can impose the corresponding time gauge, and,
within that framework, the Ashtekar-Barbero variables can be introduced.
Afterwards, the partial quantization of Loop Quantum Gravity can be done
in such a way that it is possible to directly use the coarse grained spacetime
degrees of freedom that the theory provides.

However, because of the existence of an internal boundary, there are differ-
ences with respect to the usual Loop Quantum Gravity quantization recipe.
Already at the classical level the symplectic structure acquires a boundary
term. Interestingly, this boundary term can be thought as a symplectic struc-
ture of a purely connection theory on a three-dimensional manifold, which
in fact has not classical degrees of freedom. This is how the Chern-Simons
theory comes into the game.

As a general remark, it should be noted that the procedure developed in
this chapter does not deal with the quantization of black holes in General
Relativity from first principles, in the sense that we borrow results from a
proposal to quantize General Relativity—Loop Quantum Gravity—and we
make an effort to adapt them in a classical situation where a black hole is
present. Our approach does not obtain black holes as a solution of a full
quantum gravity theory. Nevertheless, the hope is that the Loop Quantum
Gravity theory reduces to General Relativity as a classical limit and therefore,
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it should recover black holes as solutions. As this is still an open problem
here we make a shortcut and simply impose the black hole solution from the
very beginning in the general sense of Isolated Horizons. By doing it, we do
not fix the geometry in the whole spacetime but just some specific geometric
structure that defines the black hole horizon.

To address the quantization problem further simplifications are used. In-
stead of dealing with a general Isolated Horizon we will assume some symme-
tries. The simplest Isolated Horizon is the spherically symmetric one. In this
family the horizon of the Schwarzschild solution is the main representative.
Thus, we start by presenting the complete program sketched above for the
spherically symmetric case, Section 4.1. Then, we deal with the next natural
generalization: The axially symmetric Isolated Horizon. In this family the
main representative is the horizon of the Kerr solution. This is the subject of
Section 4.2 and the main new contribution contained in the present chapter.

As stated above, a big portion of the program is concerned with the
definition of the symplectic structure. In spite of the slight generalization—
from spherically symmetric to axially symmetric—we will see that many deep
technical differences emerge such that they almost rule out the applicability
of the program. However, one of our results is a method to construct a
new set of connection variables, such that, with them it is possible to mimic
the approach of the spherically symmetric description. At the same time, we
show that the symplectic structure for the axially symmetric Isolated Horizon
built out of these variables is preserved. This is a cornerstone proof needed
for the rest of the program which we present at the end of Section 4.2.

4.1 Spherically Symmetric Isolated Horizon

In this section, we briefly review the results about the quantization proce-
dures developed in [15, 40], for the spherically symmetric Isolated Horizons
(also called Type I Isolated Horizons in the classification proposed in [15])
in the context of Loop Quantum Gravity. We present in some detail the
quantization program of the spherically symmetric case as a natural intro-
duction of the perspective and the notation we will use in the next section.
For a reader unfamiliar with symplectic geometry formalism we recommend
reading Appendix D first.

4.1.1 Symplectic Framework with Ashtekar-Barbero Variables

The main goal of this section is to prove that the introduction of Ashtekar-
Barbero connection variables when considering Isolated Horizon as an inter-
nal boundary of our spacetime, and, with the further requirement of spherical
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symmetry of the horizon, gives rise to the following symplectic structure in
the phase space

κγΩ(δ1, δ2) = 2

∫
M

δ[1Σi ∧ δ2]Ai −
aH

π(1− γ̄2)

∫
H

δ1Āi ∧ δ2Ā
i. (4.1)

The interesting feature of Ω(δ1, δ2) is that—in addition to the usual bulk term
defined on the Cauchy surface M—there is a boundary term at the horizon
H = ∆∩M , where ∆ is the null surface in the definition of Isolated Horizon.
Notice that the horizon term—integral on H—correspond to a Chern-Simons
symplectic structure.

To obtain (4.1), let us start by writing the symplectic structure of General
Relativity in terms of the Palatini variables, for a detailed derivation see
Appendix D,

←J(δ1, δ2) =
1

κ
δ[1←Σi ∧ δ2]←K

i, (4.2)

where Σi = εijke
j ∧ ek is called the desitized triad—or gravitational elec-

tric field [43]—while Ki is the extrinsic curvature1. The left-pointing arrow
denotes pullback to the Cauchy surface M . The partial time gauge fixing
condition ←e

0 = 0 is imposed on the whole spacetime and in particular can

be used on the Cauchy slide M . These are the three-dimensional hypersur-
faces where the symplectic density is integrated in order to define a proper
symplectic structure.2

Now consider the Isolated Horizon. The region H is assumed to have
a fixed spherically symmetric geometry. The only allowed variations of the
fields are non-physical, i.e., the diffeomorphisms on H—those which preserve
the Isolated Horizon conditions—and the internal gauge symmetry. By using
it, it is possible to show [15] that the symplectic structure constructed out
of J(δ1, δ2) is preserved in the presence of a spherically symmetric Isolated
Horizon.

1 Without using forms, a more common way to express these variables is [42]

Eia =
1

2
εabcεijke

j
be
k
c, Ki

a =
1√
E
KabE

ib, (4.3)

with E = det(Eia), eia the triad obtained by a ADM decomposition and Kab = 1
2Lnqab

the extrinsic curvature, na is the unit normal and qab = gab + nanb the induced metric of
any layer of the time foliation.

2 Technically, as far as we are not factoring out the degeneracy subspace of Γ produced
by precisely the symmetries in the allowed variations, we are dealing with a presymplectic
structure, but certainly the focus is on this one as we will study the interplay between gauge
symmetries and boundary conditions, then, for symplicity let us just call it symplectic
structure [41].
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Let us make a technical observation about the previous statement. As we
are already considering Isolated Horizons, the preservation of the symplectic
structure is a non-trivial assertion. In the proof, total derivatives appear,
so, we should get rid of boundary terms. In fact, precisely because we are
in the spherically symmetric Isolated Horizon case, the following expression
vanishes on the horizon

vyKi ∧ Σi = 0, (4.4)

and, as it will be clear below, even if it appears fleetingly in the proof of (4.1)
it is essential for it. We stress it here because it is precisely this expression
which will become a problem when we try the same recipe for the axially
symmetric case: In that case it does not longer vanish.

Thus, for the spherically symmetric Isolated Horizon, using the equations
of motion, and in particular (4.4), it can be proved (see Equation (73) in
[15]) that

Ω(δ1, δ2) =
1

κ

∫
M

δ[1Σi ∧ δ2]Ki, (4.5)

is independent of the chosen Cauchy surface, M .
Let us go back to the main goal: To introduce the Ashtekar-Barbero

variables. The symplectic structure is defined on the space of solutions of
the theory, thus, when manipulating Ω(δ1, δ2) the equations of motion can
be explicitly used. In order to introduce the Ashtekar-Barbero variables it is
necessary to make explicit use of the First Cartan equation,

deI + ωIJ ∧ eJ = 0, (4.6)

let us write its pullback to the Cauchy surface, M , and use time gauge←e
0 = 0

←ω
0
j ∧←e

j = 0

←de
i +←ω

i
j ∧←e

j = 0, (4.7)

the second equation can be rewritten using the SO(3) connection defined as
Γi = −1

2
εijkω

jk

←de
i + εijk←Γ

j ∧←e
k = 0, (4.8)

from this it is easy to prove

←Σi ∧ δ←Γ
i = −d(←e

i ∧ δ←ei). (4.9)

Given a connection we can simply define another connection by adding a
vector as this does not change its transformation properties. With the time
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gauge condition the full SO(3,1) connection ωIJ naturally decomposes in two
pieces: The SO(3) connection Γi and the vector—under the SO(3) action—
given by Ki = ω0i. In this way, we introduce the Ashtekar-Barbero connec-
tion variable

Ai ≡ Γi + γKi = −1

2
εijkω

jk + γω0i, (4.10)

where γ is an arbitrary constant known as the Immirzi parameter.
Equation (4.9) allows us to write the symplectic structure density in terms

of the Ashtekar-Barbero variables plus an exact 3-form

γκ←J(δ1, δ2) = δ[1←Σi ∧ δ2](γ←K
i +←Γ

i) + d(δ1←e
i ∧ δ2←ei).

= δ[1←Σi ∧ δ2]←A
i + d(δ1←e

i ∧ δ2←ei). (4.11)

To obtain the symplectic structure we integrate the density over the Cauchy
surface M , namely

γκΩ(δ1, δ2) =

∫
M

δ[1Σi ∧ δ2]A
i +

∫
∂M

δ1e
i ∧ δ2ei, (4.12)

notice that a boundary term appears explicitly. If the border of our spacetime
is taken to be asymptotically flat, this boundary term is automatically zero
and we can simply keep the bulk term being certain that there is not sym-
plectic flow escaping to infinity [44]. This result is what makes the Ashtekar-
Barbero variables suitable to describe the gravitational degrees of freedom
consistently at the classical level. When further boundaries and/or different
boundary conditions are imposed we should be particularly careful with this
term. Here, besides the asymptotically flat infinity, we also impose Isolated
Horizon conditions as an internal boundary of our spacetime and this term
is no longer zero, so, we should keep it and study it.

To prove the main result of this section (4.1) we need to study in detail
the allowed phase space variations of the boundary Isolated Horizon term,
i.e., take ∂M = H in (4.12). By doing this, we will be able to prove∫

H

δ[1ei ∧ δ2]e
i = − aH

2π(1− γ̄2)

∫
H

δ[1Āi ∧ δ2]Ā
i, (4.13)

from which (4.1) follows immediately. This is a key equation of the approach
as the r.h.s. can be interpreted as a Chern-Simons symplectic structure on
the boundary for the connection Āi.

We must start by establishing some preliminary equations satisfied by the
variables at the Isolated Horizon. The first crucial equation is

⇐F
i(A) = −π(1− γ2)

aH ⇐Σ
i, (4.14)
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where F i(A) = dAi + 1
2
εijkA

j ∧ Ak is the curvature of the Ashtekar-Barbero
connection, aH is the horizon area, and the double left-pointing arrows ⇐Σ

i

denotes the pullback onto the horizon H. There is a general way to prove it by
using the Isolated Horizon condition applied to the Second Cartan equation,
it can be found in [15]. For completeness, we give a simpler proof in the
concrete example of Schwarzschild horizon geometry in Appendix E. In the
proof of (4.14), the following equation is also needed

εi jk⇐K
j ∧⇐K

k =
2π

aH⇐
Σi, (4.15)

we also refer the reader to [15] for a general version in the context of spher-
ically symmetric Isolated Horizons, or to Appendix E, where it is checked
in the simplified case of Schwarzschild horizon geometry. Combining (4.14),
with (4.15) we obtain that for a connection Āi = Γi+ γ̄Ki—which is reduced
to the Ashtekar-Barbero connection just if we choose γ̄ = γ—the curvature
at the horizon is

⇐F
i(Ā) = −π(1− γ̄2)

aH ⇐Σ
i, (4.16)

thus, at the horizon the connection is not unique, there is a γ̄-dependent
family of connections Āi which satisfy the same curvature equation. The
parameter γ̄ is a second ambiguity of the description that appears at the
classical level when we introduce connection variables at the horizon.

With the previous elements established we devote the rest of this subsec-
tion to a detailed proof of (4.13).

As we noticed before, the region H is assumed to have a fixed spher-
ically symmetric geometry. The only allowed variations of the fields are
non-physical: The diffeomorphisms on H—those who preserve the Isolated
Horizon conditions—and the SU(2) gauge internal symmetry, i.e., the sym-
metry remaining after the partial time gauge fixing (←e

0 = 0).

At H, the infinitesimal field variations decompose in two pieces

δ = δv + δα, (4.17)

where δv are the infinitesimal diffeomorphism transformations while δα are
the infinitesimal gauge transformations. Both are vectors in the tangent
space of the phase space Γ and are “parametrized” by v and α, respectively.
The parameter v is a vector field tangent to the horizon, generator of dif-
feomorphisms, v : H → T (H). The space T (H), is the tangent space of
the two-manifold H. Analogously α is an element of the su(2) algebra and
therefore an SU(2) group generator, α : H → su(2). As infinitesimal varia-
tions of fields are linear objects we can study infinitesimal diffeomorphisms
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δv and infinitesimal internal gauge transformations δα independently. In the
following the pullback to the manifold H will be assumed for all fields to
simplify the notation. The general transformations of our fields restricted to
H are simply

δĀi = δvĀ
i + δαĀ

i

δei = δve
i + δαe

i. (4.18)

The infinitesimal diffeomorphisms are given by the Lie derivative, δv = Lv,
explicitly

δvĀ
i = LvĀ

i = d(vyĀi) + vydĀi

δve
i = Lve

i = d(vyei) + vydei, (4.19)

we use the notation vyei = vaeia for the so called interior product,3 and
Cartan’s formula for the Lie derivative (see Equation (5.80) in [31]).

The infinitesimal group actions on the variables differ because ei is a
vector while Āi is a connection, explicitly

δαĀ
i = −dĀαi = −dαi − εijkĀjαk

δαe
i = [α, e]i = εijkα

jek. (4.20)

Now, let us rewrite the Equation (4.16) simply as F i(Ā) = c Σi.

We will prove the following

δvĀ
i ∧ δĀi = 2c δve

i ∧ δei + t.d. (4.21)

δαĀ
i ∧ δĀi = 2c δαe

i ∧ δei + t.d. (4.22)

where t.d. stand for total derivative, a term that will disappear when we
integrate on H as it is a manifold without boundary. For infinitesimal dif-
feomorphisms we have4

3 In our notation y has priority, for example vyeiAj = vaeiaA
j
bdx

b while vy(eiAj) =
va(eiaA

j
b − eibAja)dxb.

4 The form products defined on a 2-manifold satisfy the following rules with regard to
ordering interchange of vy

A(2)vyB(1) = −vyA(2) ∧B(1)

A(1)vyB(2) = vyA(1) ∧B(2),

where the superscript keeps tracks of the degree of the form, for example A(2) is a two-form.
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δvĀ
i ∧ δĀi = −δ(vyĀidĀi) + d

(
vyĀiδĀi

)
= −δ

(
vyĀiFi(Ā)

)
+ t. d.

= −c δ
(
vyĀiΣi

)
+ t. d.

= −c δ
(
εijkvyΓiej ∧ ek

)
+ t. d.

= −2c δ
(
εijkΓ

i(vyej) ∧ ek
)

+ t. d. (4.23)

where we have used that5 vyĀiεijkĀj ∧ Āk = 0 to reconstruct F i(Ā), the
Equation (4.16), that in spherically symmetric case Ki ∼ ei (see (E.35))
such that vyKiΣi ∼ vyeiεijkej ∧ek = 0, and the definition of Σi = εijke

j ∧ek.
For the triad term, we have

δve
i ∧ δei = −δ

(
vyeidei

)
+ d(vyeiδei)

= δ
(
vyeiεijkΓ

j ∧ ek
)

+ t.d.

= −δ
(
εijkΓ

i(vyej) ∧ ek
)

+ t.d. (4.24)

where we have used the pullback of the First Cartan equation in the time
gauge: dei + εijkΓ

j ∧ ek = 0.
For the infinitesimal group transformation we have

δαĀ
i ∧ δĀi = −(dαi + εijkĀ

jαk) ∧ δĀi
= αi

(
δdĀi + εijkĀ

j ∧ δĀk
)
− d(αiδĀi)

= αiδFi(Ā) + t.d.

= c αiδΣi, (4.25)

where we use again the Equation (4.16).
And, finally for the triad term

δαe
i ∧ δei = εijkα

jek ∧ δei

=
1

2
αiδ
(
εijke

j ∧ ek
)

=
1

2
αiδΣi. (4.26)

Now, notice that (4.23) and (4.24) imply (4.21), while (4.25) and (4.26) imply
(4.22). Therefore, we have proven that for the allowed variations on H

δĀi ∧ δĀi = 2c δei ∧ δei + t.d. (4.27)

5 Note that we are using the pullback on a two-surface and v is precisely tangent to this
surface. Then, using an arbitrary basis the proof is easy.
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integrating in H and using the constant c from (4.16) we find∫
H

δ[1ei ∧ δ2]e
i = − aH

2π(1− γ̄2)

∫
H

δ[1Āi ∧ δ2]Ā
i. (4.28)

which finishes the proof.
The appearance of γ̄ as an arbitrary parameter in the boundary term is

natural as the original boundary term does not contain such a parameter.
This ambiguity is analogous with the Barbero-Immirzi ambiguity γ defining
the Ashtekar-Barbero variables: Both parameters γ and γ̄ are introduced to
construct a connection description, on the bulk and the boundary, respec-
tively.

In summary, the symplectic structure for General Relativity written in
terms of Ashtekar-Barbero connection variables, with a spherical symmetric
Isolated Horizon as an internal boundary, and asymptotic flatness condition
as an external boundary, is

κγΩ(δ1, δ2) =

∫
M

2δ[1Σi ∧ δ2]Ai −
aH

π(1− γ̄2)

∫
H

δ1Āi ∧ δ2Ā
i. (4.29)

The boundary term is a purely connection term living in the 2+1 manifold
∆ = H×R defining the Isolated Horizon. Therefore, it is natural to consider
a 2+1 Chern-Simons theory with the connection Āi living in ∆. This theory
would have exactly the same symplectic term on H. Furthermore, it fits well
in the framework because the Isolated Horizon condition requires that the
variations δĀi at the internal boundary to be pure gauge/diffeomorphism. On
the other hand, a 2+1 Chern-Simons theory (in empty spacetime) is precisely
a pure gauge theory:6 There are not local degrees of freedom. However, we
have shown that the curvature of the connection, F i(Ā), actually does not
vanish but satisfies

⇐F
i(Ā) = −π(1− γ̄2)

aH ⇐Σ
i, (4.30)

therefore, Σi would play the role of an external source for the Chern-Simons
curvature at ∆. So, at this classical level the interpretation is not completely
fulfilled. In fact, we have not given an action principle for General Relativ-
ity coupled to a Chern-Simons theory at the boundary ∆ such that (4.30)
appears as an equation of motion. However, here we can take a step further:
Classical theories are just approximations for more fundamental quantum
theories. Hence, we use these indications at the classical level to construct

6 Actually if the spacetime is not simply connected or has a non-trivial homotopy group
there are global degrees of freedom. In fact, this is the property we will exploit in the
following, when we introduce topological defect.
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a quantum model for the spherically symmetric Isolated Horizon based on a
quantum Chern-Simons description of horizon degrees of freedom. We will
see that, in this quantized model, Equation (4.30) is not a problem as Σi

will be a distributional source for the Chern-Simons curvature, such that
the source is not everywhere but is just concentrated on particular points:
Topological defects on H.

4.1.2 Quantization

Now, we review the elements used to build a quantum description of the
spherically symmetric Isolated Horizons developed in [40].

To construct a quantum model of the black hole we use the framework of
Loop Quantum Gravity. We briefly sketch it to introduce the quantum area
operator.

Loop Quantum Gravity is a theory that attempts to quantize gravity (see
a review in [42], and the full proposal in [43]). It has been developed from the
Hamiltonian formulation for vacuum General Relativity as a starting point.
In this sense, it is a canonical quantization of the gravitational field. In
particular, it means that time plays a special role because the Hamiltonian
approach requires a time foliation of the spacetime. The central idea in the
Loop Quantum Gravity strategy is to use the holonomy or loopy represen-
tation for quantum states. To build the holonomies it is essential to have a
connection variable: In this case the Ashtekar-Barbero connection.

The standard procedure for a canonical quantization consists in iden-
tify the pair of classical canonical conjugate variables and promote them to
operators. Such operators act on a certain Hibert space, H , which is the
quantized version of the off-shell phase space of the theory. Consequently, the
equations of motion of the theory also become operators on H , and should
in principle be solved there. For example, in standard quantum mechanics
the classical Hamiltonian evolution is transformed into a quantum evolution
by promoting the Hamiltonian to an operator, then, in a particular basis, this
is translated into the Schödinger equation, and by solving it, the quantum
evolution of states defined on a Hilbert space is obtained.

In the Hamiltonian analysis of General Relativity the equations of motion
are contained in the so called constraints. In the Cartan formulation we have
the scalar, the vector, and the Gauss constraints [42].

The loop representation space in Loop Quantum Gravity partially solves
the quantum constraints (classical constrains where conjugate variables are
promoted to operators). For instance, there is a simple basis where this
representation solves the Gauss constraint. It is the so called spin-network
basis. Spin-networks are graphs (networks) G ∈ M composed of edges and
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nodes where each edge carries an SU(2) spin irreducible representation (a
coloured graph). The quantum states are functions defined on this graph.
This basis does not solve the scalar constraint which controls the dynamical
evolution of the quantum states. The vector constraint can be formally solved
by studying the dual of the space of function over the spin-network space (see
Section 4.3 in [42]). As far as the dynamical part is missing, the Hilbert space
constructed out of the states defined on the spin-network basis is simply called
kinematical Hilbert space.

Now, we focus directly on the quantization of the conjugate variables
(Σi, Ai) used in this framework. Given a spin-network G ∈ M the action of
the densitized triad 2-form (4.29) is naturally defined on two-surfaces of M ,
in such a way that it only acquires non-trivial values at the intersections of
the graph with the surfaces. Each of these intersections between the two-
dimensional surface H and the one-dimensional link—which belong to the
graph—is called puncture, it is denoted by p ∈ G ∩ H, and it carries a
particular SU(2) irreducible representation. See Fig. 4.1.

Fig. 4.1: Diagrammatic representation of an edge of the graph that pierce a surface.
The intersection is called puncture.

Explicitly,

εabΣ̂i
ab(x) = 2κγ

∑
p∈G∩H

δ(x, xp)Ĵ
i(p), (4.31)

with Ĵ i(p) ∈ su(2) an algebra valued operator associated with each puncture
p with coordinates xp. It satisfies the su(2) algebra commutation relations

[Ĵ i, Ĵ j] = εijkĴ
k. The action of Σ̂i depicted in (4.31) is the same for an

arbitrary two-surface S ⊂M , here we are already using the horizon surface,
S = H, because it will be the one used in this application.

Classically, the area of an arbitrary surface can be written in a coordinate
invariant way as a surface integral of a simple function of the densitized triad.
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Then, it is possible to construct a quantum description of the area as an
operator acting on the spin-network basis of the Hilbert space, we find in
this way

âH |{jp,mp}n1 ; · · · 〉 = 8πγ`2
p

n∑
p=1

√
jp(jp + 1) |{jp,mp}n1 ; · · · 〉 , (4.32)

where |{jp,mp}n1 ; · · · 〉 denotes a particular spin-network state which pierces
the surface n times and such that each edge piercing at p carries an SU(2)
irreducible representation labelled by jp and mp.

With these few ingredients we can already have an application to the
previous classical analysis. The Equation (4.30) relates the curvature of
the connection at the boundary with the densitized triad. Therefore, (4.76)
suggests that the quantum version of (4.31) is simply

− aH
2π(1− γ̄2)

εabF̂ i
ab = κγ

∑
p∈G∩H

δ(x, xp)Ĵ
i(p), (4.33)

where in the r.h.s. aH is assumed to be a constant fixed by the Isolated
Horizon conditions.

Now, let us consider an SU(2) Chern-Simons theory coupled to n particles
defined on the 2+1 manifold ∆ (for a general review of Chern-Simons theories
at the classical level see [46, 47], for a short introduction closer to this context
see [48]). Given an SU(2) algebra valued connection A = Aiτi = Aiaτidx

a

with τi ∈ su(2),7 we can define a Chern-Simons action over the Isolated
Horizon as

S0[A] =
k

4π

∫
∆

Tr

[
A ∧ dA+

2

3
A ∧ A ∧ A

]
, (4.35)

where k is the Chern-Simons label, and Tr[·] is the trace over the group
algebra (Killing form). The previous action can be generalized to describe
particles on the manifold coupled to the connection field. Let us denote
Λp ∈ SU(2) the group valued particle degrees of freedom, it follows that

Sp[A,Λ1, · · · ,Λn] =
n∑
p=1

λp

∫
cp

Tr
[
τ3

(
Λ−1
p dΛp + Λ−1

p AΛp

)]
, (4.36)

7 We have τi = − 1
2σi where σi are the Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (4.34)
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where cp ⊂ ∆ is the world-line of the p-particle, λp is an arbitrary coupling for
each particle and τ3 ∈ su(2) characterizes the particle at rest. The equation
of motion for the connection is simply

k

4π
εabF i

ab(A) =
n∑
p=1

δ(x, xp)S
i
p , (4.37)

where we define
Sip = λpTr

[
τ3Λpτ

iΛ−1
p

]
. (4.38)

Then, the curvature is different from zero just at the places where the defects
p are situated. In the absence of particles the Chern-Simons connection is
said to be trivial as it does not describe local degrees of freedom: Local
gauge symmetry can be used to make the connection trivial. However, when
particles are considered, the value of the curvature at the points where they
are located adds local degrees of freedom to the connection. The particle
source is distributional and can be thought of a collection of topological
defects. The presence of the punctures modifies the topology of the manifold.
In this sense, it is said that the theory is topological: It is characterized
entirely by the topology of the manifold.

The similarities of equations (4.33) and (4.37) suggest an identification
of both descriptions. This is the perspective we adopt here. Then, Ĵ i(p),
at the quantum level, can be interpreted as the source for the Chern-Simons
curvature. As operators, the identification of the descriptions can be written
formally as

Σ̂i ⊗ I = I⊗ k

4π
F̂ i, (4.39)

last expression means that the action of both operators is on the tensor
product of two different Hilbert spaces (given below) but in such a way that
their eigenvalues coincide. As a by product the Chern-Simons level is given
by

k =
aH

4π`2
pγ(γ̄2 − 1)

. (4.40)

In the identification (4.39) we are considering the quantized Chern-Simons
theory, this is not a minor step, in fact, it is a technical one that goes beyond
the purpose of this section. For an introduction to the canonical and covariant
quantization of the Chern-Simons theory we refer the reader to [48]. Here we
will just define the Hilbert space obtained and remember that from the path
integral Chern-Simons quantization it is easy to prove that k is an integer.8

8 If we perform a gauge transformation of the connection with group elements that are
not connected to the identity the Chern-Simons action is not invariant: It produces a
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For this identification (4.39) to make sense the Hilbert space for a fixed
spin-network graph should be decomposed as a tensor product

HG =
⊕

{jp}p∈G∩H

H{jp} ⊗H CS(j1 · · · jn), (4.41)

where H CS is the Chern-Simons Hilbert space on ∆ ∩ M while H{jp} is
the spin-network Hilbert space on M such that the endings of the edges at
H are precisely the sources for the topological defects. More precisely, the
representation labelled by jp at each topological defect coincides with the one
carried by the edge. Note that the structure of the graph beyond H is left
completely free.

One interesting property of H CS emerges when we study its observables.
As Chern-Simons is a connection theory where we can define non-local gauge
invariant quantities through holonomies along closed paths: Wilson loops,
see [42] for their use in the context of Loop Quantum Gravity. This are the
observables.

For instance, if a holonomy encloses a region of H without any de-
fects/particles, its curve can be contracted to one point and therefore the
holonomy is said to be trivial: Equal to the group identity, see Figure 4.2.
On the other hand, one can analogously compute a holonomy that encloses
all the defects, its value is given by the exponential of the sum of the cur-
vature eigenvalues of all the punctures. As H has the topology of a sphere,
both holonomies can be deformed one into the other, thus, they are simply
equivalent. This means, that the second holonomy which encloses all the
punctures is also the identity. Then, noticing that the value of the holonomy
that encloses a puncture is given by the exponential of the curvature on this
puncture modulo k/2, we can conclude that, the sum of all curvature eigen-
values at the deficits is zero modulo k/2 (for a formal approach see [49, 48]).
This is the so called closure constraint. We will use its explicit expression in
the next section.

The closure constraint strongly reduces the Chern-Simons Hilbert space
in such a way that

H CS(j1, j2, . . . , jn) ⊂ Inv(j1 ⊗ j2 ⊗ · · · ⊗ jn), (4.42)

where the r.h.s. is the group invariant part of the tensor product of all the
representations associated with the punctures. The Hilbert space H CS is

discretized winding number θ which depends in the topology of the group as well as the
topology of the manifold. To make the path integral gauge invariant we must require
ei2πkθ = 1 . In last expression the winding number θ can take the particular value θ = 1,
therefore, to satisfy the equation in a general case k should be an integer.
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Fig. 4.2: The horizon H is a closed surface, therefore, the holonomy enclosing the
empty region A is equivalent to the holonomy enclosing the region B
which contains all the punctures (labelled by jp).

contained in the l.h.s. of the Equation (4.42) because there is a subtlety on
the group definition that we now introduce.

When we considered the Chern-Simons theory we started by looking at
the classical theory, the group involved was the SU(2), here we will consider
a generalization of the group to a so called quantum group. Quantum groups
appear as a useful tool to describe the quantization of the Chern-Simons
theory [48].9

The symbol

j1 ⊗ j2 ⊗ · · · ⊗ jn, (4.43)

denotes the tensor product of the irreducible representations of SUq(2), and,
Inv(⊗`j`) in (4.42) refers to its invariant part under the SUq(2) action. The
main implication of the use of SUq(2) instead of SU(2) is that the dimension
of the Hilbert space changes and, in particular, it is finite. In principle, this
allows us to count the states involved in the construction, and therefore, to
compute the entropy. The explicit formula for the dimension of the Hilbert
space will be further explained and used in Chapter 5. There, the statistical

9 The emergence of quantum groups in the quantization of Chern-Simons theories is
still controversial and not rigorously proven. However, they have been useful as a way
to construct a regularized quantization of the phase space Poisson brackets, see Equation
(3.28) in [48]. These objects are not really groups but are related to the original group,
in this case SU(2), as they are constructed by modifying the group algebra through the
introduction of an extra parameter q. The symbol Uq(su(2)) is also used [50]. For our pur-
pose it will be enough to remember that the Hilbert space for the punctures is constructed
out of a generalization of the irreducible representations of SU(2).
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consequences of this quantization model are further explored.
This finishes our review of the quantum description of black holes in the

reduced context of spherical symmetry. In the next section we explore the
possibility of generalizing the same framework to the more general case of
rotating Isolated Horizons.

4.2 Axially Symmetric Isolated Horizons

To deal with the rotating case we restrict the Isolated Horizons by asking
an additional condition: The existence of a Killing vector field φa defined on
the horizon ∆ such that it generates a rotational symmetry around a pre-
ferred symmetry axis. We call this new structure the Kerr Isolated Horizon
or rotating Isolated Horizon. The phase space of rotating Isolated Horizons
has been characterized already in [25]. However, its quantization in the Loop
Quantum Gravity framework has remained elusive due to what it seemed
at first a technical issue. The presence of angular momentum means that
there is a non-trivial charge generating rigid rotations around the symmetry
axis. Therefore, as far as Isolated Horizons are internal boundaries, diffeo-
morphisms associated to vector fields tangent to the horizons are not simply
gauge symmetries of the symplectic structure.10

Although the braking of some of the gauge symmetries by the boundary
conditions has nothing pathological in itself and can be found in more fa-
miliar contexts,11 it introduces serious problems for the quantum theory if
one tries to approach the issue of quantization using Loop Quantum Gravity
techniques. The reason is that diffeomorphism invariance is at the heart of
the definition of the Loop Quantum Gravity framework. Consequently, it
can only accommodate boundary conditions that respect this fundamental
symmetry.

This is apparent from the central role played by diffeomorphism invari-
ance in the models leading to the black hole entropy calculations for the
spherically symmetric boundary condition considered in the previous sec-
tion. More precisely, kinematical states of the spherically symmetric system
are given by spin network states puncturing the horizon and endowing it
with an area eigenvalue within the range [aH − ε, aH + ε]. The degeneracy of
such kinematical states is infinite as it is labelled by the coordinates defining

10 To prove that the symplectic structure is preserved the boundary terms should be zero
even in the Palatini formulation, this is not true any more when rotating Isolated Horizons
as an internal boundary are considered.

11 Notice that this is in strict analogy to the fact that diffeomorphisms that do not fall
off at infinity are not gauge symmetries of the phase space of asymptotically flat solutions
of general relativity.
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the embedding of the punctures on the horizon. Physical states are however
finitely many. The reason is that they are obtained by modding out gauge
symmetries which in this case include diffeomorphisms tangent to the hori-
zons. This is crucial for the finiteness of the entropy. This central step is not
justified in the naive treatments of the rotating case. The lack of diffeomor-
phism invariance in the phase space of the Kerr Isolated Horizon makes the
usual program inapplicable.

An approach to deal with generic quantum Isolated Horizons (including
rotation) has been proposed in [51]. However, the question of the fate of
the diffeomorphism symmetry is unclear in such treatment. In particular,
in such formulations both the leading order of the entropy calculation and
the logarithmic corrections remain the same as the one of a non-rotating
spherically symmetric model. In this work we emphasize the central role
of diffeomorphism invariance in the construction of the model of quantum
rotating horizons. This will change the nature of the admissible states to be
counted in the entropy calculation.

One can recover a manifestly diffeomorphism invariant description of the
phase space of a rotating Isolated Horizon by appropriately including new
degrees of freedom that restore the broken symmetry. This has been shown
explicitly in [52] using vector variables. We will adapt the same idea to the
connection variable formulation presented here. In fact what we aim at is a
generalization of the Chern-Simons formulation just presented.

However, the first naive attempt to follow this strategy fails due to the
fact that—in contrast to the spherically symmetric case, and for instance,
in the Kerr solution—the pullback to the horizon of the Ashtekar-Barbero
connection does not satisfy the simple boundary condition found in (4.30),
[53]

F i(A) 6= cΣi. (4.44)

for some constant c. As this boundary condition is a key equation for the
Chern-Simons treatment in the non-rotating case this seems to rule out the
possibility of describing the boundary degrees of freedom in terms of a Chern-
Simons theory in the rotating model. Additional heuristics that seems to
preclude the Chern-Simons treatment of the rotating case comes from the
natural assumption, first put forward by Krasnov [54], that quantum states
of rotating horizons with total angular momentum J should satisfy an addi-
tional constraint taking the form J ∼

∑
p jp (where jp are the eigenvalues of

the spin operators associated with punctures of the horizon). In other words
one assumes that the total angular momentum of the black hole is made up
from microscopic contributions from individual spins at the punctures. This
suggestion is certainly appealing from an intuitive perspective. Nevertheless,



4.2. Axially Symmetric Isolated Horizons 81

the point is that if such a constraint would be true then this would further
preclude the use of a Chern-Simons formulation as, as explained in the end
of previous section, in such formulations one always obtains the closure con-
straint which naively tells us that the total angular momentum vanishes:∑

p jp ∼ 0.
The two apparent difficulties described in the previous paragraph are

nicely avoided as follows. We will show that one can introduce a new con-
nection A i, defined on the horizon, such that by definition one has

F i(A ) = cΣi, (4.45)

for c a constant almost everywhere on the horizon (we get to this key subtlety
in a moment). If one uses A i as the connection dynamical field instead of Ai

then the boundary symplectic structure takes the Chern-Simons form as far
as the connection field is concerned. However, on the basis of our discussion
in the previous paragraph, this would seem to contradict Krasnov’s natural
intuition that the total spin contributed by the bulk geometry Σi should be
simply related to the spin of the black hole. Therefore, intuitively to have
a Chern-Simons description Equation (4.45) should somehow be broken, at
least in the deep quantum description. We will see that in fact there is a
natural way to do it. The reason is that when we consider A i there are
singularities at the north and south poles of the horizon as defined by the
symmetry axis. Classically, one expects these singularities to be related to
some bad choice of coordinates as black hole horizons are smooth manifolds.
The expectation is founded in the underlying standard property of smooth-
ness of the manifolds. As we will deal with the quantization of the system
where this assumption is not necessarily valid anymore, we sacrifice smooth-
ness of the description on these two points and take the singularities as a
part of the classical framework suitable to produce a quantum picture. We
will show that the equation satisfied by the Cherns-Simons connection is

k`2
p

4π
F i(A ) =

Σi

8πγ
+
J

2
δi1δN +

J

2
δi1δS, (4.46)

where J is the macroscopic angular momentum and the delta symbols δN/S
represent singularities of the curvature at the north and south poles of the
horizon as defined by the singularities of the Killing field ϕa associated with
the axial symmetry. The previous constraint implies, in the quantum theory,
that the total spin contribution of spin network punctures must add up to J
(actually modulo k/2 as we will see later). Note that when J = 0 we recover
the k of the previous section. Admissible states can be depicted as in Figure
4.3.
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s

n

Fig. 4.3: The admissible states of the rotating black hole are in correspondence
with invariant vectors in the Chern-Simons Hilbert space H k

CS = Inv[j1⊗
j2⊗· · · jn⊗ j]k where {ji}ni=1 are the spins carried by spin network punc-
tures (with arbitrary n) and there are two additional (macroscopic) punc-
tures at the south and north poles carrying spins J/2 respectively. The
subscript k is there to remind us that the notion of invariant space is that
of the quantum group SU(2)q with q fixed by the level k.

The geometric picture associated with the admissible states is similar to
the one presented in polymer models of the horizon geometry introduced in
[55] and later in [56].

4.2.1 Rotating Horizons

In this section we present the variables used in order to describe the boundary
degrees of freedom as a Chern-Simons theory. We will show explicitly a
classical solution in these variables such that the Isolated Horizon conditions
imply a consistent phase space description. The pullback of the Ashtekar-
Barbero connection of Kerr geometry on the horizon has been computed in
[53]. Here we follow a different approach: Instead of computing the pullback
of a bulk connection in Kerr geometry we construct a connection field A i

from the Kerr horizon data. More precisely, the Chern-Simons connection A
is required to satisfy the following set of conditions that will completely fix
it, up to gauge transformations and diffeomorphisms tangent to the horizon
H. First, we require that the following equation is satisfied

k

4π
F i(A ) =

1

8πγ`2
p

Σi, (4.47)
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where k is the Chern-Simons level which is a function of the area aH and
the angular momentum J of the Isolated Horizon that will be determined
in what follows. The 2-forms of the previous equation are pullback to the
horizon two-surface H. The densitized triad field Σi (the pullback of εijkei∧ek
to H, where ei is the co-tretrad field) is part of the geometric data provided
by the Kerr horizon geometry.

The above equation fixes the connection A i up to an arbitrary rotation.
That rotation is any rotation around the internal axis leaving Σi, seen as an
internal vector, invariant. Explicitly, if A1 is also a solution of (4.47) then
A2 = gA1g

−1− gdg−1 is a solution of (4.47) with the same Σi if g ∈ U(1)Σ ⊂
SU(2) is such that gΣg−1 = Σ. We view this as an intrinsic ambiguity in the
choice of the variable A i and not as a gauge transformation. In particular the
bulk connection is (by definition) unaffected by the transformation described
above. Hence, we can and will exploit this freedom to fix our variable A i so
that an additional condition is satisfied, namely

v⊥y(Ai −A i)Σi = 0, (4.48)

where v⊥ is the unique normal direction to the axisymmetric Killing field
φa = ∂aφ on the horizon. In the usual spherical coordinates the previous
condition can simply be written as (∂θ)y(Ai −A i)Σi = 0. We also require

Lφ(A iΣi) = 0, (4.49)

where, again, φa is the axial Killing vector field on the Kerr horizon. With
these conditions the connection A i is almost completely fixed by the data
provided by Σi and Ai of the Kerr Isolated Horizon. The remaining freedom
is fixed by the condition

J =
1

8πγ

∫
H

φy(Ai −A i) Σi, (4.50)

where J is the total angular momentum of the spacetime. These conditions
are needed and will be explicitly used in the proof of the conservation of
the symplectic structure in the next section. Given k, equations (4.47) to
(4.50) uniquely determine the connection A i up to gauge transformations
and tangent diffeomorphisms (transforming Ai,Σi and A i together).

In order to study the properties of A i in more detail we will construct
an explicit solution. The properties of this solution discussed below are all
gauge and diffeomorphism invariant. We start with a spherically symmetric
connection Ai0 (see Appendix E)
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A1
0 = cos(θ)dφ

A2
0 =

1√
2

(sin(θ)dφ+ γ̄dθ)

A3
0 =

1√
2

(γ̄ sin(θ)dφ− dθ).

The parameter γ̄ is not determined for the time being. The previous con-
nection will be used as a seed to construct the Chern-Simons connection A i.
The parameter γ̄ labels a one-parameter family of suitable connections. In
[15] the seemingly natural choice γ = γ̄ was made. We will see here that
the inclusion of rotation gives us the means to fix this ambiguity in a more
physical way by requiring that the level of the Chern-Simons theory (com-
puted below) vanishes for the extremal Kerr black hole aH = 8πJ . This is a
suitable choice as the disappearance of the level in the extremal case will in
turn imply that the entropy of an extremal black hole vanishes [57].

The curvature of the previous connection is

F i(A0) = δi1
(γ̄2 − 1)

2
sin(θ)dθ ∧ dφ. (4.51)

The solution that we are looking for can be obtained via an active diffeomor-
phism φW acting on A0 sending dφ → ∂φW (φ)dφ. Such action should not
be confused with a gauge transformation as the diffeomorphism acts only on
A0. The action on the connection is A0 → φ∗WA0 and it follows that

F i(φ∗WA0) = δi1
(γ̄2 − 1)

2
sin(θ)∂φW (φ)dθ ∧ dφ. (4.52)

Now Equation (4.47) becomes the following Equation for W (φ)

k ∂φW (φ) =
aH

4πγ(γ̄2 − 1)`2
p

. (4.53)

Thus, φ∗WA
i
0 solves (4.47) if W (φ) = 1

k
aH

4πγ(γ̄2−1)`2p
φ. The area of the horizon,

similarly to the spherically symmetric case, appears in the preceding formula
because we have Σi = aH

4π
δi1 sin(θ)dθ ∧ dφ.

As mentioned above our connection has to satisfy also the condition (4.48)
which is accomplished by fixing the U(1)Σ ambiguity. Considering all this
our solution is given by

A = g[φ∗WA0]g−1 + gdg−1, (4.54)

which is completely fixed (up to gauge transformations) by equations (4.47),
(4.48), (4.49), and (4.50) and hence by the data contained in Ai and Σi
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for a Kerr Isolated Horizon. Now, it is easy to show from (4.54) that in a
circulation of an infinitesimal loop C around the poles our variables satisfy

k

4π

∮
C

A 1 =
aH

8πγ(γ̄2 − 1)`2
p

. (4.55)

The previous equation will be used to fix the value of the Chern-Simons level
k. We require that

k

4π

∮
C

A 1 =
k

2
+

J

2`2
p

. (4.56)

From equations (4.55) and (4.56) we obtain

k =
aH

4πγ(γ̄2 − 1)`2
p

− J

`2
p

. (4.57)

The level of the Chern-Simons connection is given by the usual non-rotating
level minus the Isolated Horizon angular momentum in Planck units. We
choose to fix the ambiguity parameter γ̄ =

√
(2 + γ)/γ so that the Chern-

Simons level takes the simpler form

k =
aH

8π`2
p

− J

`2
p

(4.58)

which has the important property that it vanishes in the extremal case
aH = 8πJ . We will comment further on the importance of this choice.
Equation (4.56) implies the presence of conical singularities in the curvature
F i(A ) at the poles. We will see in the following section that these singular-
ities are useful for the implementation of the Chern-Simons quantization of
the rotating Isolated Horizon. One can remember the presence of the singu-
larities at the poles if one writes the curvature equation over H in its entirety
(including the poles) as

k

4π
F (A )i =

Σi

8π`2
pγ

+ pδi1δN + pδi1δS, (4.59)

where δN and δS are Dirac delta functions centred on the north and south
poles, respectively, and

p =
k

2
+

J

2`2
p

. (4.60)
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4.2.2 Conservation of the Symplectic Structure

In this section we present the symplectic structure and prove that it is con-
served provided that the boundary conditions hold. The symplectic struc-
ture is constructed in terms of the connection A i introduced in the previous
section. Additional variables are necessary to preserve diffeomorphism in-
variance in the rotating case (see [52] or the discussion above). These are a
two-form J (that will acquire the physical meaning of the angular momentum
density on shell) and its conjugate momentum, a scalar field Φ.

Now, we will study the allowed variation at the horizon in the same spirit
that in the previous subsection. The only allowed variations on the horizon
are tangent diffeomorphisms and SU(2) gauge transformations [58]. We start
with the SU(2) gauge transformations denoted by δα for αi(x) ∈ su(2), i.e,
a Lie algebra valued scalar on M . For the bulk variables we have

δαΣi = [α,Σ]i = εijkα
jΣk

δαA
i = −(dAα)i = −dαi − εijkαjAk, (4.61)

while for boundary variables the transformation is

δαA
i = −(dA α)i

δαΦ = (α1|N + α1|S)/2

δαJ = 0. (4.62)

Note that the angular momentum density J is gauge invariant by construc-
tion and the scalar field transforms in a distributional way: Only the values
of αi on H at the symmetry axis (the north and south poles) change Φ, (this
particular transformation will justified in a better way in the proof of the
symplectic structure preservation under gauge transformation).

We restrict diffeomorphisms to vector fields v that vanish at the north and
south poles of H and, therefore, leave the north and south poles invariant.
The transformation δv is

δvΣ
i = LvΣ

i = d(vyΣi)

δvA
i = LvA

i = vydAi + d(vyAi)

δvA
i = LvA

i = vydA i + d(vyA i)

δvJ = LvJ = d(vyJ )

δvΦ = LvΦ = vydΦ. (4.63)

Proposition: In terms of the Ashtekar-Barbero variables the presymplectic
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structure of the rotating Kerr horizon takes the form

ΩM(δ1, δ2) = ΩB(δ1, δ2) + ΩH(δ1, δ2)

=
1

κγ

∫
M

2δ[1Σi ∧ δ2]Ai +
k

4π

∫
H

δ1Ai ∧ δ2A
i − 16π

κ

∫
H

δ[1Φ δ2]J , (4.64)

where k is the level of the Chern-Simons boundary term and κ = 8πG.
ΩB(δ1, δ2) denotes the first (bulk integral) term in the second line, while
ΩH(δ1, δ2) denotes the last two (surface integral) terms.

Proof: We prove the result by first looking at variations which are pure
SU(2) gauge transformations. Then, we show the invariance under pure
diffeomorphisms. The idea is to prove that both kind of cotangent vectors
are degenerate direction for the symplectic structure.

Invariance under Infinitesimal SU(2) Transformations

We want to check that

ΩM(δα, δ) = ΩB(δα, δ) + ΩH(δα, δ) = 0, (4.65)

for δα which is a local SU(2) transformation as given in (4.61) and (4.62).
The first contribution ΩB(δα, δ) yields

ΩB(δα, δ) =
1

κγ

∫
M

(
[α,Σ]i ∧ δAi+δΣi ∧ dAαi

)
(4.66)

= − 1

κγ

∫
M

[
d(αiδΣ

i)−αiδ(dAΣi)
]

=− 1

κγ

∫
H

αiδΣ
i, (4.67)

where we have used the Gauss law δ(dAΣ) = 0 and that boundary terms at
infinity vanish. At the boundary itself we have to take special care of the
singular nature of our connection variables at the poles. Therefore, we split
H in two small patches around the poles N and S, and an intermediate strip
H∗ = H\(N ∪ S), see Fig. 4.4.
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Fig. 4.4: The horizon H is divided into three regions H = H∗ ∪N ∪ S such that
the north and the south singularities lie inside N and S, respectively.

Thus, we obtain

k

4π

∫
H

δαAi ∧ δA i = − k

4π

∫
H

dA α
i ∧ δAi

= − k

4π

∫
H∗
d(αiδAi) +

k

4π

∫
H∗
αiδF

i(A )

− k

4π

∫
N∪S

(dαi + εijkA
jαk) ∧ δAi

= − k

4π

∫
∂H∗

αiδAi +
1

κγ

∫
H∗
αiδΣi

=
k

4π

∫
∂N

αiδAi +
k

4π

∫
∂S

αiδAi +
1

κγ

∫
H

αiδΣi

=

∫
H

αiδ

(
1

κγ
Σi + p δNδ

i
1 + p δSδ

i
1

)
,

where on the second line we have integrated by parts, on the third line we have
used (4.59) on H∗, on the fourth line we have used the oriented boundaries
∂H∗ = −(∂N ∪ ∂S), and finally on the fifth line we have used (4.56). Then

ΩH(δα, δ)=
k

4π

∫
H

δαAi ∧ δA i − 8π

κ

∫
H

δαΦ δJ

=
1

κγ

∫
H

αiδΣi + (α1|N + α1|S)δp− 4π

κ
(α1|N + α1|N)

∫
H

δJ , (4.68)

Hence, the symplectic structure has δα as a degenerate directions: ΩM(δα, δ) =
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ΩB(δα, δ) + ΩH(δα, δ) = 0, if the following condition is satisfied

8π

κ

∫
H

J = p, (4.69)

then, it is because of the appearance of this equation in the symplectic con-
servation proof that we assume the distributional transformation rule for Φ,
(4.62).

Invariance under Infinitesimal Diffeomorphisms

Now, we focus on the invariance under infinitesimal diffeomorphisms. We
want to show that for a tangent vector field v ∈ T (H) we have

ΩM(δv, δ) = ΩB(δv, δ) + ΩH(δv, δ) = 0.

For the bulk term, using (4.63), we obtain

ΩB(δv, δ) =
1

κγ

∫
M

[
LvΣi ∧ δAi − δΣi ∧LvA

i
]

=
1

κγ

∫
M

[
dA(vyΣ)i ∧ δAi − δΣi ∧ vyF i + d(vyAi δΣ

i)
]

=
1

κγ

∫
M

[
d(vyΣi ∧ δAi) + vyΣi ∧ dA(δAi)− δΣi ∧ vyF i

+d(vyAi δΣ
i)
]

=
1

κγ

∫
M

[
d(vyΣi ∧ δAi) + vyΣi ∧ δF i − δΣi ∧ vyF i

+d(vyAi δΣ
i)
]

=
1

κγ

∫
M

[
d(vyΣi ∧ δAi) + δ(Σi ∧ vyF i(A)) + d(vyAi δΣ

i)
]

=
1

κγ

∫
H

δ(vyAi Σ
i). (4.70)

The horizon term yields
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ΩH(δv, δ) =
k

4π

∫
H

LvA
i ∧ δAi −

8π

κ

∫
H

[LvΦ δJ − δΦ LvJ ]

= − k

4π

∫
H

[δAi ∧ vyF i(A ) + δAi ∧ dA (vyA i)]

−8π

κ

∫
H

[vydΦ δJ − δΦ d(vyJ )] (4.71)

= − k

4π

∫
H

[δ(vyAi)F
i(A ) + δFi(A ) vyA i]

−8π

κ

∫
H

[vydΦ δJ + δ(dΦ) ∧ vyJ ]

= − k

4π

∫
H

δ(vyAi F
i(A ))− 8π

κ

∫
H

δ(vydΦJ )

= − 1

κγ

∫
H

δ[vyA i Σi + 8πγ vydΦJ ]. (4.72)

Now, equation ΩM(δv, δ) = 0 is satisfied if the following equation holds

1

κγ

∫
H

δ[vy(Ai −A i) Σi − 8πγ vydΦJ ] = 0 (4.73)

for all v ∈ T (H). Equation (4.73) is nothing else but the diffeomorphism
constraint in these variables. The classical solution corresponding to Kerr is
Φ = φ, where φ is the Killing parameter associated with axisymmetry. In
this case (Ai −A i)φΣi/(8πγ) is the angular momentum density satisfying

J =

∫
H

J =
1

8πγ

∫
H

(Ai −A i)φ Σi, (4.74)

where J is the total angular momentum of the Kerr solution. This provides
the physical interpretation of the l.h.s. of the Equation (4.69) found above.
It tells us that the value of the pole singularities is given by the angular
momentum of the black hole

p =
8πJ

κ
. (4.75)

4.2.3 Quantization

Once the boundary description is captured by a Chern-Simons symplectic
structure plus the Chern-Simons-like source Equation (4.59), the quantiza-
tion is basically analogous to the one applied in the non-rotating case. There
are, however, new aspects here that have to be treated carefully. The most
obvious one is that in addition to the Chern-Simons connection A i we have
the field J and its conjugate Φ in the boundary symplectic structure and their
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quantization needs to be addressed too. The second issue is that the Chern-
Simons constraint (4.59) contains two classical singularities at the north and
south poles of the sphere and these are new features specific of the rotating
system. Here we will start by ignoring the first problem and go directly to
the second. In the last part of this section we will comment on the first.

As in the non-rotating case the form of the symplectic structure leads us
to handle the quantization of the bulk and horizon separately. We first discuss
the bulk quantization. As before we first consider the bulk Hilbert spaces
HG provided by Loop Quantum Gravity and defined on a graph G ⊂ M .
The quantum operator associated with Σi in (4.59) reads again

εabΣ̂i
ab(x) = 2κγ

∑
p∈G∩H

δ(x, xp)Ĵ
i(p). (4.76)

Now, consider a basis of HG of eigenstates of both ~J(p) · ~J(p) and J3(p) for
all p ∈ G ∩ H with eigenvalues ~2jp(jp + 1) and ~mp, respectively. These
states are spin network states, here denoted by |{jp,mp}n1 ; ···〉, where jp and
mp are the spins and magnetic numbers labelling the n edges puncturing the
horizon at points xp. They are eigenstates of the horizon area operator âH
as well

âH|{jp,mp}n1 ; ···〉 = 8πγ`2
p

n∑
p=1

√
jp(jp + 1)|{jp,mp}n1 ; ···〉. (4.77)

Now, along the same lines of the previous quantization treatment, we propose
a quantum version of (4.59)

k

8π
εabF̂ i

ab =
∑
p∈γ∩H

δ(x, xp)Ĵ
i(p)− δ(x, xN) Ĵ iN − δ(x, xS) Ĵ iS, (4.78)

where, for all purposes, we define the operators associated with the singular-
ities as

Ĵ iN =
J

2`2
p

ẑi and Ĵ iS =
J

2`2
p

ẑi, (4.79)

where ẑi is a normalized internal direction representing the symmetry axis.
This means that we keep its classical value. To this choice makes sense we
should select form the Hilbert space those states compatible with a classical
angular momentum. Equation (4.79) tells us that the horizon Hilbert space
H H

G∩H that we are considering can be thought, as before, of the Hilbert
space corresponding to the quantum Chern-Simons theory in the presence
of particles but with a new feature: Two of the punctures are considered
as having classical macroscopic values (4.79), classical punctures. By using
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the same argument based on holonomies enclosing all punctures, Fig. 4.2
(where now two special extra punctures should be added), we notice that the
closure constraint is still present. However, instead of restricting the sum
of all punctures coming from the spin-network to vanish, now, the sum is
related to the value of the special punctures at the poles. The precise way
this relation is realized is left for future work. However, at the operator level,
a natural generalization of the closure constraint based on Equation (4.78) is

∑
p∈γ∩H

Ĵz(p) = j∑
p∈γ∩H

Ĵy(p) = 0∑
p∈γ∩H

Ĵx(p) = 0, (4.80)

where we use j = J/`2
p. These are formal expressions because they are

actually inconsistent due to quantum uncertainties (they do not commute).
Nevertheless, we can take a step further and propose a different quantum
version of the previous conditions.

From the point of view of quantum geometry (bulk perspective), ad-
missible states that solve the above constraint in the strongest possible way
compatible with the uncertainty principle are coherent states of the collection
of punctures satisfying the conditions∑

p

mp = [j]k (4.81)[∑
p

Ĵ i(p)

][∑
p

Ĵi(p)

]
= [j(j + 1)]q(k), (4.82)

where −jp ≤ mp ≤ jp denote the usual magnetic quantum numbers and in
the last equality, the r.h.s. denotes the SU(2)q(k) Casimir operator. The
spin-network state mimics the coherent state of the form |j, j〉. That is, in
the Wigner notation |j,m〉, the state |j, j〉 is the coherent state that would
have a particle with angular momentum j.12 In other words, from the set
of all possible spin-network states |{jp,mp}n1 ; ···〉 we select those which, by
summing all their projected contribution of magnetic number mp, contribute
with a macroscopic angular momentum j. Furthermore, we incorporate in the
condition (4.81) two quantum properties from the Chern-Simons formulation:

12 These states are coherent in the sense that they minimize the uncertainty ∆j.
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First, the value of the defect (puncture) is defined modulo the Chern-Simons
level, this is the meaning of [·]k. Second, if we work with the quantum
group structure used in the quantization of Chern-Simons, the operators
Ĵ i(p) belong to the algebra deformation SU(2)q(k) and therefore we should
consider the SU(2)q(k) Casimir operator. It is given simply by the standard
Casimir operator but as a q−number

[x]q(k) =
qx − q−x

q − q−1
. (4.83)

The states we are dealing with can be graphically represented as shown in
Figure 4.3.

From the point of view of the boundary Chern-Simons theory the con-
straints are simpler. The two classical punctures (singularities) are aligned
along the same axis. In the Chern-Simons description this amounts to a sin-
gle puncture carrying the total macroscopic spin of the black hole. This one
particular case explored in Chapter 5. Admissible states span the intertwiner
space j1 ⊗ j2 ⊗ · · · ⊗ jn → j, if condition (4.81) is satisfied, and finally we
also impose the area condition

aH − ε ≤ 8πγ`2
p

n∑
p=1

√
jp(jp + 1) ≤ aH + ε. (4.84)

Finally we need to address the quantization of J and Φ and the imposition
of the condition (4.73), namely∫

H

δ[vy(Ai −A i) Σi − 8π vydΦ j] = 0,

for all vector fields v tangent to H. At the classical level the previous con-
straint completely reduces the (J ,Φ) degrees of freedom. This is due to the
fact that it is an additional first class local constraint for two local degrees
of freedom. Here we will simply assume that the constraint holds also at
the quantum level without imposing any further constraint. This can be
rephrased by saying that for each spin-network state satisfying the above re-
strictions there is only one solution of the previous equation for the quantum
counterpart of J and Φ. In other words we expect the admissible states
are indeed labelled by the spin quantum numbers satisfying the above con-
straints up to diffeomorphisms. This assumption is similar to the one made
generically in the context of quantum states of Isolated Horizons as far as the
bulk Hamiltonian (scalar) is concerned. It would certainly be useful to elimi-
nate it; this is probably within the reach of present background independent
quantization techniques.
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With this comment we finish the description of our model of quantum
rotating Isolated Horizon. This model has many heuristic ingredients coming
from the classical black hole theory as well as from the quantization proposal
of Loop Quantum Gravity or Chern-Simons Quantization. However, the
model is detailed enough such that further analysis can be performed. In
particular, it is possible to work out a statistical counting of the proposed
quantum states based on (4.81), (4.82) and (4.84); and, therefore, to test
further if the model predicts novel macroscopic physical properties for the
black hole thermodynamics.

4.2.4 Discussion

In this section we have constructed a model of a rotating Isolated Horizon
which is axisymmetric and has angular momentum J . The classical descrip-
tion of the system is based on a SU(2) Chern-Simons connection plus addi-
tional auxiliary fields that restore diffeomorphism invariance. In the quan-
tum theory the connection is constrained to be flat almost everywhere. As in
spherically symmetric models, there are conical singularities with a strength
that matches the quantum flux of the area encoded in the spin quantum
numbers of spin network edges ending at the horizon. In addition to these,
there are two conical singularities at the north and south poles (as defined by
the singularities of the axisymmetric Killing field) with combined strength
equal to [J/~]k/2.

The ambiguity condensed in the parameter γ̄ appearing in the definition
of the SU(2) boundary Chern-Simons connection can be fixed in the rotating
case by the requirement that the level of the Chern-Simons theory vanishes in
the extremal case. This requirement implies that the number of states of an
extremal horizon is unity and hence that their entropy vanishes as suggested
in [57].

In [54] a tension was pointed out between the analogue of Equations
(4.81), the area spectrum of Loop Quantum Gravity, and the fact that clas-
sically J can vary between 0 and aH/(8π). The tension disappears in the
present model as we have incorporated the angular momentum as special
classical punctures which allow the coexistence of the closure constraint and
the intuitive idea of the angular momentum as composed by the microscopic
structure.

In that reference the analogue of (4.81) was postulated with the important
difference that the r.h.s. did not contain the [·]k symbol. In that case one
sees that there is a spin state configuration such that the maximum angular
momentum of the horizon is Jmax ≈ aH/(8πγ). The fact that, classically,
Jmax = aH/(8π) would seem to imply γ = 1. Moreover, as the spectrum of
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the area is non-linear in the spins, it was conjectured in [54] that the extremal
black holes would be represented by single puncture states with a large spin:
In the large spin limit the spectrum becomes linear. None of these conclusions
are valid in our model due to the appearance of the symbol [·]k/2 on the r.h.s.
Indeed any classically allowed angular momentum value leads to a consistent
set of constraints and there are no restrictions on the value of the Immirzi
parameter γ. No matter how close we are from the extremal situation the
black hole states that dominate the statistical mechanical treatment have
many punctures (of the order of aH/`

2
p) which is compatible with the idea

that these states approximate continuum geometries well.
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5. ENTROPY COMPUTATIONS

The origin of the black hole entropy is still nowadays a subject of controversy.1

For the physical black hole solution—in four dimensional spacetime—there
are not crystal clear computations that reproduce the Bekenstein-Hawking
semi-classical result from a fundamental approach, i.e., that identify the mi-
croscopic degrees of freedom. There are several attempts to solve the prob-
lem, for example, in the stringy community the calculation relies on a con-
formal symmetry. One idea is to recover the Bekenstein-Hawking entropy
through the use of the Cardy formula which relates the entropy with the
central charge that appears in the algebra of the generators of the confor-
mal symmetry. Unfortunately, such a symmetry, which in the BTZ black
hole emerges naturally in the asymptotic region [60, 61], is not generically
present in the case of four-dimensional black holes. For example in the case
of the axially symmetric (Kerr) black hole, there have been recent attempts
to find such a symmetry in the near horizon region [62]—the Kerr/CFT
correspondence—, however, the way to find such a symmetry is very partic-
ular, and it does not seem to be a generic property of black hole horizons.
Furthermore, in this approach, it is not clear which are the local degrees of
freedom that would reproduce the entropy.

In this chapter we compute the entropy of black holes from a completely
different point of view given by the Loop Quantum Gravity approach pre-
sented in Chapter 4. In the seminal work [63], Rovelli proposed a very con-
crete way to compute the entropy by arguing that the degrees of freedom
that are relevant in the computation of black hole entropy are those laying
exclusively on the black hole horizon, and further, that they are in fact just
those emerging by quantizing the gravitational field. In that proposal the
computation is performed by simply counting the eigenvalues of the area
quantum operator provided by Loop Quantum Gravity. In this respect, the
quantization program—presented in the previous chapter—is the product of
an effort to put these seminal ideas on better formal grounds. As it was
shown, the program has progressed as a better control of the quantum grav-

1 The stimulating dialogue transcript on [59] is a good example of the confrontation
between different approaches.
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itational degrees of freedom of the horizon proposed in [63] is accomplished:
The punctures given by the piercing of the spin-network graph on the horizon
surface can be described by a Chern-Simons theory with topological defects.

This chapter, in some sense, goes back to the historical origin of the Loop
Quantum Gravity entropy computation and stars from there. That is because
all the microscopic models presented here use the area spectrum for the hori-
zon as it was the original idea. However, several new ingredients are imple-
mented. For instance, we consider black holes with an angular momentum,
the possibility of quantum group deviations, as well as new mathematical
techniques to compute the asymptotics of the number of states in its leading
and sub-leading approximation. In particular, dealing with rotating black
holes—i.e., with angular momentum—is relevant because it is believed that
the entropy computation for rotating black holes can be used to discern be-
tween different quantum gravity approaches [64]. The Bekenstein-Hawking
entropy does not differ for rotating or static black holes, and therefore to
recover this law is a first requirement for all quantum gravity proposals,
however, the quantum correction to the dominant term can depend on the
angular momentum—as indeed some of our models show—and thus they
could be useful to compare theories which produce the same leading term.

The present chapter is organized as follows: In Section 5.1 we compute
the dimension of the Hilbert space of the quantum states of the horizon. A
further generalization by considering the representation of quantum group is
used, the derivation of it is reviewed in Appendix F. Section 5.2 is the main
body of this chapter. There, we introduce the mathematical tools used to
compute the asymptotic behaviour of the number of states, the approxima-
tions and assumptions are discussed, and finally the computation is carried
out for several models. The results are organized in a table at the end of the
section. Section 5.3 is an extra bonus where we present a different computa-
tion of the entropy through the canonical partition function were ideas such
as the indistinguishability of the punctures and holographic degeneration—
explained there—are implemented.

5.1 Dimension of the Hilbert Space

In the previous chapter we introduced the Hilbert space were quantum states
associated with the horizon live. The closure constraint strongly reduces the
allowed states on the Hilbert space by selecting just those that are invariant
under the action of SU(2)q. In principle, there could be even more restric-
tions to select the physical states of the Hilbert space, for instance, extra
constraints of dynamical originating in the Hamiltonian constraint. Here we
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ignore this possibility and assume that the reduction to physical states can
be faithfully described by

H k
CS(j1, · · · , jp) ≡ Invk(j1 ⊗ · · · ⊗ jp), (5.1)

on the left hand side we have the SU(2)q invariant subspace of the tensor
product of the vectors. Each vector transforms under the SU(2)q irreducible
representations which are carried by each of the p punctures. Here we will
explicitly work out the dimension of this space, which is in fact, the number
of physical states in our quantum horizon model.

First, let us review in detail the derivation of the formula for the dimension
of the Hilbert space associated with p punctures but assuming that each one
carries simply an SU(2) irreducible representation. Afterwards, the quantum
group equivalent for SU(2)q will be worked as well.

Each SU(2) irreducible representation can be labelled with half integers
j` = 1

2
, 1, 3

2
, . . . and has a dimension d` = 2j` + 1. Irreducible representation

are square d`×d` matrices D
(j`)
mn (g), with g ∈ SU(2) and m,n = −d`, −(d`−

1), · · · , d` − 1, d`.
Group integration is defined thought the Haar measure in such a way

that arbitrary group dependent functions can be integrated. In the SU(2)
case, the Haar measure is left- and right-invariant. Let us use it to define the
intertwiner operator as the integration of the product of p SU(2) irreducible
representations

Im1m2···mpn1n2···np ≡
∫
SU(2)

D(j1)
m1n1

(g)D(j2)
m2n2

(g) · · ·D(jp)
mpnp(g) dg, (5.2)

the intertwiner is by construction an SU(2) invariant object (left and right), it
can be proved by simply acting with the corresponding group representation
and using the basic property D(j) l

m (g′)D(j)
ln(g) = D(j)

mn(g′g). Furthermore,
by contracting the intertwiner with itself and using the properties of the Haar
measure, in addition to the natural normalization

∫
SU(2)

dg = 1, it is easy to

prove that intertwiners are projector operators I2 = I

I l1l2···lp
m1m2···mp Il1l2···lpn1n2···np = Im1m2···mpn1n2···np , (5.3)

therefore, intertwiners are operators that projects tensor product of vectors
of the corresponding representation space into its SU(2) invariant component

I : j1 ⊗ j2 ⊗ · · · ⊗ jp −→ Inv (j1 ⊗ j2 ⊗ · · · ⊗ jp) . (5.4)

It is always possible to choose a basis such that the projector operator is
represented by a diagonal matrix with ones at its diagonal entries. In this
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basis it is apparent that the dimension of the invariant subspace is simply
the trace of the intertwiner. This property is, of course, independent of the
basis

dim (Inv(⊗`j`)) = Im1m2···mp
m1m2···mp =

∫
SU(2)

dg

p∏
`=1

χ(j`)(g), (5.5)

where χ(j)(g) are the trace of the SU(2) irreducible representations, also
called characters. They are given by

χ(j)(g) ≡ D(j)
mm(g) =

sin((2j + 1)θ/2)

sin(θ/2)
, (5.6)

in the last equality the standard Euler angles have been used to compute the
SU(2) characters. If the same coordinates are used to write the Haar measure
the final formula for the dimension of the invariant SU(2) intertwiner space
is

D∞(d) =

∫
SU(2)

dg

p∏
`=1

χ(j`)(g) =
1

π

∫ 2π

0

dθ sin2(θ/2)

p∏
`=1

sin(d`θ/2)

sin(θ/2)
, (5.7)

where d = (d1, . . . , d`). The notation D∞ will be clear in a moment when
we consider the generalization of this formula for quantum groups.

Quantum groups are well-defined mathematical objects that can be con-
structed out of a deformation of any group Lie algebra. For an extended
introduction on the subject see [65]. For our purpose, it is enough to con-
sider a few properties which allow us to compute the equivalent of (5.7).
They are presented in Appendix F. The algebra deformation for a quan-
tum group is controlled by a parameter q. In particular, the quantum group
SU(2)q is a more general structure defined in such a way that it reduces to
the standard group SU(2) when q = 1. In the general theory q is a complex
number but when q is taken to be a root of unity the number of irreducible
representations is finite. In Chern-Simons models of the quantum horizon
the Chern-Simons level k is assumed to be proportional to the area of the
classical black hole horizon. Then, it is natural to take q(k) dependence such
that limk→∞ q(k) = 1, and, at the same time, root of unity such that the
dimension of the Hilbert space is finite. One simple option we take from the
literature [50] is

q = exp

(
iπ

k + 2

)
. (5.8)

Let us denote byNk(j) ≡ dim
(
H CS(j1, · · · , jp)

)
the dimension of the Hilbert
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space constructed out of the quantum group structure. It is formally com-
puted in Appendix F, the result is

Nk(j) =
2

k + 2

k+1∑
d=1

(
sin

(
πd

k + 2

))2−p p∏
`=1

sin

(
πd(2j` + 1)

k + 2

)
, (5.9)

where p is the number of punctures, and j = (j1, · · · , jp) are the labels of
the irreducible representation. There is a intuitive way to understand the
previous formula, the use of the quantum group accounts for a sort of dis-
cretization of the angle in the formula (5.7) given by θ → 2πd`

k+2
, consequently,

the integral becomes a sum but in the index range ` ∈ [0, k + 1]. To slightly
simplify the formula let us use Dk(d) = Nk−2(j), and for matter of conve-
nience d = (d1, · · · , dp) where d` = 2j` + 1.

Dk(d) =
2

k

k−1∑
d=1

sin2

(
πd

k

) p∏
`=1

sin
(
πdd`
k

)
sin
(
πd
k

) , (5.10)

this formula has an equivalent combinatorial expression which can be nicely
interpreted as functions naturally appearing in discrete random walks [50].
From combinatorial formulae and by using the integral form of the Kronecker
delta we can show the following integral formula for Dk(d), the details of the
derivation appear in Appendix F

Dk(d) =
2

π

∫ π

0

dθ sin2(θ)
sin ((2r + 1)kθ)

sin(kθ)

p∏
`=1

sin (d`θ)

sin(θ)
, (5.11)

where r is an integer defined with the [·] floor function by

r ≡
[

∆p

2k

]
=

[∑
`(d` − 1)

2k

]
. (5.12)

This coefficient carries the quantum group generalization of (5.7), which is
simply recovered in the regime r = 0. Thus, the notation used in (5.7)
becomes clear: The dimension of the intertwiner space in the SU(2) repre-
sentation can be recovered by taking the limit k → ∞ of the dimension of
the intertwiner space of the SU(2)q quantum group representations.

Now, we go back to physics and use that Dk(d) counts the number of
states for a fixed puncture configuration of the horizon. Then, the microstate
counting problem can be well-posed.

Remark: Before continuing we would like to make a side remark con-
cerning Dk(d). It will be used to motivate an alternative computation for
the entropy in section 5.3.
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Let us consider the following transformation on the labels of the punctures

j` → is` −
1

2
=⇒ d` → is`, (5.13)

with s` real. Now, combine this with the assumption of “large spin” s` � 1
such that

p∏
`=1

sin

(
πdd`
k

)
→ ip

p∏
`=1

sinh

(
2πds`
k

)
≈ ip

2p
exp

(
2πd

k

p∑
`=1

s`

)
. (5.14)

In the Chern-Simons Isolated Horizon models the label k corresponds to a
large macroscopic quantity, see Equation (4.40) or (4.58). Therefore, in the
regime k � 1, the previous equation plugged in the expression for Dk(d),
(5.10), results in the following approximation

Dk(d) ≈ 2

k

ip

2p
sin2−p (π) exp

(
2π

p∑
`=1

s`

)
. (5.15)

Now, there is an interesting fact about this expression. In the original
Ashtekar self-dual variables the spectrum of the area-squared operator is
negative (this is apparent in Equation (49) of [66]), for instance, on a surface
pierced by a link with spin j` we have

â2
H |j`〉 = −(8π`2

p)
2j`(j` + 1)|j`〉, (5.16)

let us apply the transformation (5.13) and also the “large spin” assumption

â2
H |s`〉 = (8π`2

p)
2(s2

` + 1/4)|s`〉 ≈ (8π`2
p)

2s2
` |s`〉. (5.17)

The framework which could support this possibility, and in particular give a
meaning to the transformation (5.13), has been further explored in [67]. It
opens a renewed interest on the old complex formulation of Loop Quantum
Gravity [68]. Then, the area operator spectrum in this context would be
simply aH ≈ 8π`2

p

∑p
`=1 s`. The interesting observation is that, with the

three ingredients: The transformation d` → is`, the large spin s` � 1 and
k � 1 approximations, there is a regime such that the degeneration is

Dk(d) ∼ exp

(
2π

p∑
`=1

s`

)
= exp

(
aH
4`2
p

)
. (5.18)

where a factor, which is indeed complex and deserves further interpretation
[67], has been omitted. Thus, the dimension of the Hilbert space of a fixed
graph could reproduce by itself the standard Bekenstein-Hawking area law.
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At this level the computation is precise, however, it requires further jus-
tification. For instance, the “large spin limit” is widely studied in Spin Foam
models as an approximation needed to recover the semi-classical limit of
quantum gravity theory [69]. On the other hand, the quantization procedure
for Ashtekar self-dual variables is not fully understood. Nevertheless, here
we will consider this remark to simply motivate the use of a degeneration
that goes as the exponential of the area which will be explored in Section
5.3. Now, let us go back to the problem of the counting of microstates.

5.2 Asymptotics of the Number of States

Number of States

The quantum model a black hole horizon developed here admits a statistical
analysis as it provides a detailed description for the quantum states. Here
we start by adopting the microcanonical perspective and devote ourselves
to the task of computing the asymptotic behaviour of the number of states
that our models has. To do so, a few approximations will be done in order
to make the technical problem tractable. In addition, classical inputs will
be used, specifically we will assume a macroscopic area aH and an angular
momentum J for the black hole. They will be incorporated in the counting
process as a global constraint and in the strength value of special classical
punctures (explained below), respectively.

The total number of states associated with a given puncture configuration
d = (d1, . . . , dp) and a Chern-Simons level k, is given precisely by Dk(d)
computed in (5.11). Even if the macroscopic area of a given black holes is
fixed, the number of punctures is not, because each puncture can contribute
with a different area. Therefore, we should sum over all possible punctures as
well as over all possible representations they can carry, while the macroscopic
area is kept fix. To do that we use the Loop Quantum Gravity formula for
the area spectrum in terms of the puncture strengths2

aH = 8πγ`2
p

p∑
l=1

√
jl(jl + 1) = 4πγ`2

p

p∑
`=1

√
(d` − 1)(d` + 1), (5.19)

The representations of the quantum group have finite dimension, in fact,
when using the q parameter shown in (5.8) , the label runs d` ∈ [2, k + 1].3

2 Note that in this formula we are not using the quantum group modified Casimir
operator of SU(2)q. Instead, we keep the SU(2) Casimir for simplicity and because for
large k both coincide. However, it could be interesting to explore this direction.

3 For d` = k+ 2 the Verlinde coefficient is zero and for d` > k+ 2 is negative, see (F.4)
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Using (5.19) as a constraint, the total number of states in this model of
quantum black hole horizons is

N(a) =
∞∑
p=0

k+1∑
d=2

δ

(
a− 1

2

p∑
`=1

√
(d` − 1)(d` + 1)

)
Dk(d) , (5.20)

with a = aH/(8πγ`
2
p) the normalized area. Note that for a fixed area there is

a maximum number of punctures p allowed. Each puncture contributes with
a minimum area a0 = 4π

√
3γ`2

p so pmax = aH/a0 = 2a/
√

3. As we will see
in a moment the formulae simplify if pmax → ∞ is considered. Therefore,
we will use the working assumption that the tail in the sum after pmax is
negligible when we study the asymptotic N(a) for a� 1.

To study the asymptotic behaviour of N(a) we will use the Laplace
method that is explained in what follows.

Laplace Method

The Laplace transform of the number of states is given by4

Ñ(s) =

∫ ∞
0

da e−asN(a) , (5.21)

by studying Ñ(s) we can discriminate between different asymptotic behaviours
of N(a). For instance if N(a) behaves as a polynomial, N(s) converges for

all s. If N(a) grows faster than an exponential, Ñ(s) diverges for all s. But,

if there is some s such that Ñ(sc) is convergent for s > sc and divergent for
s < sc, it means that sc is a critical coefficient and N(a) ∼ esca would be the
asymptotic behaviour of the number of states.

If the leading asymptotic behaviour is in fact exponential, it is possible
to go further and test the sub-leading behaviour by using the generalized
Laplace transform [50]

Ñ2(s, t) =

∫ ∞
0

da e−asa−tN(a). (5.22)

It should be evaluated at the critical coefficient s = sc, then, an equiva-
lent analysis to find a second critical coefficient (exponent) t = tc can be

4 Remark: Note that in Chapter 3 the statistical partition function was defined by the
Laplace transform of the degeneration (number of states) in terms of the energy, see (3.2).
Here we are doing exactly the same computation but considering the degeneration in terms
of the area. If we consider the framework developed in Chapter 2, such that the area is a
measure of the energy of the black hole, we are in fact, computing the partition function
for that framework.
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performed. If both coefficients are found the asymptotic behaviour of the
number of states is

N(a) ∼ esca atc−1. (5.23)

And, from the number of states the microcanonical entropy of the system is
(the Boltzmann constant is set to one)

S = logN(a) = sca+ (tc − 1) log a. (5.24)

Thus, the Laplace method to compute the asymptotic behaviour of N(a)
provides a way to compute the leading and sub-leading order of the entropy.

Now, let us apply this technique in the counting of microscopic states for
the models which incorporate angular momentum.

Microscopic Quantum Models for a Rotating Horizon

In Chapter 4 the model for a quantum rotating black hole was presented.
In order to deal with angular momentum at the quantum level, the Chern-
Simons formulation of horizon degrees of freedom was modified by adding two
special punctures at poles. Each of them carries half of the classical angular
momentum j/2 = J/(2`2

p) of the black hole. In the state counting formula a
natural contribution from these new classical punctures can be obtained by
a simple modification of (5.11)

Dk(d) =
2

π

∫ π

0

dθ
sin((2r + 1)kθ)

sin(kθ)
sin2(dJθ)

p∏
`=1

sin(d`θ)

sin(θ)
, (5.25)

where two independent special punctures with a degeneration dJ = 2(j/2)+1
has been added

sin2(dJθ)

sin2(θ)
, (5.26)

the special punctures also modify the coefficient r by

r =

[
∆p

2k

]
=

[∑p
l=1(dl − 1) + j

2k

]
, (5.27)

in the rest of the calculation it will be useful to define a dimensionless rotation
parameter

a? ≡ 8πJ

aH
=

j

aγ
, (5.28)

which for the standard Kerr-Newmann solution controls the transition be-
tween regimes of the non-rotating, Schwarzschild solution—case a? = 0—and
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the extreme black hole solution—case a? = 1. In the previous chapter we
also found as an appropriate Chern-Simons level the one that vanishes in the
extreme black hole

k =
aH

8π`2
p

− J

`2
p

= γa(1− a?) . (5.29)

The degeneration (5.25) is a complicated formula. To make it tractable we
make the simplifying assumption that the spectrum of the area operator is
linear. Specifically, a is taken as

a ≈
p∑
`=1

j` =
1

2

p∑
`=1

(d` − 1) , (5.30)

this is a weak assumption if the semi-classical regime of Loop Quantum Grav-
ity is dominated by large spins as some results on Spin Foam models suggest
[69]. Using the fact that j` ≤

√
j`(j` + 1) ≤ j`+

1
2
, it is possible to show that

the integer r defined in (5.27) is bounded as[
a?

2(1− a?)

]
≤ r ≤

[
2 + γa?

2γ(1− a?)

]
. (5.31)

We notice that for fixed a? the parameter r can only take a finite amount of
integer values. By using the linear area spectrum approximation the param-
eter r simplifies and becomes simply the upper bound

r =

[
2 + γa?

2γ(1− a?)

]
, (5.32)

which does not depend neither on the number of punctures p nor on the spin
labels colouring the punctures d`.

The rest of this section is devoted to the explicit computation of the
entropy for five similar models based on the previous considerations. The
results are summarized in a table at the end (page 115). We start by con-
sidering a simple toy model where all punctures are kept fixed in its lower
possible value j` = 1/2 and the quantum group nature of the representa-
tion is ignored r = 0. Then, different assumptions are changed to test more
complex and realistic situations.

Case: Two Special Punctures, r = 0, and j` = 1
2

Let us compute the number of states for a black hole with p puntures j` = 1/2,
two large punctures j/2 and r = 0, then Dk(d) in (5.25) is reduced to
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I(2) =
2

π

∫ π

0

sin2((j + 1)θ)

(
sin(2θ)

sin(θ)

)p
(5.33)

= 2p
2

π

∫ π

0

[
1− cos2((j + 1)θ)

]
(cos(θ))p (5.34)

= 2p
2

π
(I1 − I2), (5.35)

where, in this case, we call Dk(d) → I(2) with the superscript to remind
us of the fact that there are two special punctures. As the puncture values
are fixed, the area is proportional to p and the area constraint is trivial.
Consequently, the Laplace method is not needed and the asymptotics can be
computed directly. The large black hole limit we are interested in is reached
for a� 1, or equivalently p� 1. The first term in (5.35) is

I1 =

∫ π

0

dθ(cos(θ))p =
(1 + (−1)p)2p

Γ(1− (1 + p)/2)2 Γ(p+ 1)

≈ (1 + (−1)p)

√
π

2
p−1/2 +O(p−3/2). (5.36)

For the second term, I2, we note that as far as p � 1 the integrand is

concentrated on θ ≈ 0 and θ ≈ π. A Gaussian approximation (cos θ)p ≈ e−p
θ2

2

around θ = 0 is accurate enough. As 2j+1 is an integer the very same integral
appears around θ = π, but, an alternating sign should be taken into account

I2 =

∫ π

0

cos2((2j + 1)θ) (cos(θ))p ≈ (1 + (−1)p)

∫ ∞
0

cos2((2j + 1)θ)e−p
θ2

2

= (1 + (−1)p)
1

2

√
π

2
p−1/2

(
1 + e−

2(2j+1)2

p

)
. (5.37)

In the regime p � 1 the exponential term is negligible as j ∼ p, then, the
asymptotic behaviour is

I(2) ≈ (1 + (−1)p)
1√
2π

2p p−1/2. (5.38)

It does not depend on j, and it is zero if p is odd. To compute the entropy we
will assume that p is even because this is the physically relevant contribution.5

In this case the degeneration does not depends on k, further, there is a linear
relation between the area and the number of punctures aH = 4

√
3πγ`2

p p.

5 One can also argue that the real asymptote for p � 1 is a local average on the p
values, by doing this one obtains the same result.
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Hence, the number of states as written in (5.20) correspond simply to I(2),
which expressed in terms of the dimensionless physical area, A = aH/`

2
p,

allows for a direct computation of the entropy S(A) ≡ logN(a) = log I(2).
The result

S ≈
(

log 2

4
√

3πγ

)
A− 1

2
logA. (5.39)

Notably, the entropy does no depend on the angular momentum for the
leading and sub-leading orders.

Now, let us consider a more realistic case by relaxing the assumption of
fixed small strength for the punctures.

Case: Two Special Punctures, r = 0, and j` free

First, we should replace Dk(d) with r = 0 from (5.25) in (5.20). In this case
we need to perform the Laplace transform of the number of microstates

Ñ(s) =
2

π

∞∑
p=0

k+1∑
d=2

∫ π

0

dθ

(
eiθ(1+γa?a) − e−iθ(1+γa?a)

2i

)2
(

p∏
l=1

sin dlθ

sin θ

)
e−sa,

=
1

2π

∫ π

0

dθ
(
2I0 − e2iθI+ − e−2iθI−

)
, (5.40)

in the first line the area is denoted by a for convenience, but, after the
Laplace transform it should be replaced by its spectrum expression (linear in
this case). The sine function of the special punctures (5.26) has been replaced
through the Euler identity by exponentials, this trick allows us to reduce the
complicated expression to a sum of three product series condensed in I0, I−,
and I+ computed below. Each of these terms is a geometric sum such that
the following identity can be used6

∞∑
p=0

k∑
d=1

p∏
`=1

f(d`) =
∞∑
p=0

(
k∑
d=1

f(d)

)p

=
1

1−
∑k

d=1 f(d)
. (5.41)

The result is

Iλ =

[
1−

k∑
d=1

sin((d+ 1)θ)

sin θ
e(− s

2
+λiθγa∗)d

]−1

, (5.42)

6 In this specific step we are using the simplifying assumption pmax → ∞ commented
before.
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where λ = 0,−1,+1. Here, it is apparent that for each one of these functions
there is a pole in s = sc such that

k∑
d=1

(d+ 1)e−
sc
2
d = 1, (5.43)

it appears exactly when θ = 0. The sum is easily performed but the equation
is algebraically involved and sc cannot be explicitly computed. However,
k � 1, and in the limit k → ∞ the equation becomes trivial. By solving it
we have a very good approximation for sc

sc ≈ log(6 + 4
√

2) ≈ 2.46 , (5.44)

which is the coefficient of the exponential in the asymptote, N(a) ∼ esca.

Let us now explore the sub-leading corrections. For that purpose, it
would be nice to simplify the expression of the generalized Laplace transform
Ñ2(s, t), (5.22), as we have just done for the Laplace transform. Unfortu-

nately, the direct calculation of Ñ2(s, t) is much more complicated due to
the presence of the multiple sum over d which does not reduce anymore to a
product of geometric series when a polynomial term is considered. In order
to circumvent this problem, we follow [50] and compute Ñ2(s, t) at s ≈ sc as
follows

Ñ2(sc,−t′) ≡
∫ ∞

0

da e−ascat
′
N(a) = ∂t

′

ε Ñ(sc − ε)
∣∣∣
ε=0

. (5.45)

The problem reduces to computing derivatives of the Laplace transform
Ñ(sc − ε) or equivalently of the functions Iλ defined above (5.42). Note
that in principle t′ is any real number, thus, we are implicitly using a gener-
alization of the differential operation “∂” known as fractional derivative [70].
We use t′ = −t for notation convenience. Due to the particular form of the
function (5.42), it is sufficient to approximate Iλ for small ε, before comput-
ing the derivatives and evaluating them at ε = 0. This makes the calculation
much easier. Further, we already know that one obtains the critical value tc
when one studies the behaviour of Iλ around θ = 0, as it has been already the
case for computing sc. In summary, we have to compute the t′-derivatives
with respect to ε of the integrand of (5.40) around s = sc − ε and θ ≈ 0.
Around the pole the functions Iλ are
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I± ≈ [g± − εh±]−1

=

[
1−

k∑
d=1

(d+ 1)e−
sc
2
d

(
1 +±iθγa∗d−

(
1

6
d(d+ 2) + (γa∗d)2

)
θ2

)
×
(

1 + ε
d

2

)]−1

I0 ≈ [g0 − εh0]−1

=

[
1−

k∑
d=1

(d+ 1)e−
sc
2
d

(
1− 1

6
d(d+ 2)θ2

)(
1 + ε

d

2

)]−1

, (5.46)

where the functions hλ and gλ are defined through the equalities. Now the
derivative with respect to ε allows us to study the divergences of the gener-
alized Laplace transform around the poles

∂t
′

ε I±

∣∣∣
ε=0

= t′!
ht
′
±

gt
′+1
±
∼ θ−t

′−1 (5.47)

∂t
′

ε I0

∣∣∣
ε=0

= t′!
ht
′

0

gt
′+1

0

∼ θ−2t′−2, (5.48)

the second term is the dominant one as it produces the higher critical expo-
nent when −2t′c−2 = −1, and the logarithmic correction is −t′c−1 = −1/2.7

The three terms behave similarly for θ ≈ 0, so it is important in the last
computation to check directly that the sum of them goes indeed as θ−2t′−2,
i.e., that there are not special cancellations of

f = ∂t
′

ε

(
2I0 − e2iθI+ − e−2iθI−

)∣∣∣
ε=0

. (5.49)

This is a straightforward calculation that can even be performed by using
θ ≈ 0 just at the end, the result is

f ≈ 2(g−g+)t
′+1 − (g0g−)t

′+1 − (g0g+)t
′+1

[g0g+g−]t
′+1

t′!c2t′+2 ∼ θ−2t′−2 (5.50)

where we use that limθ→0 h± = limθ→0 h0 =
∑k

d=1 d(d + 1)e−
sc
2 = constant,

i.e., it is the same constant (and they does not modify the θ-dependence for
θ ≈ 0). Therefore, we have shown that there are not special cancellations
between the terms in (5.49). Then, as stated before t′c = −1/2, and the

7 The first terms associated with I± would produce a logarithmic correction −1 which
grows slower for large a and can be neglected.
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logarithmic correction coefficient −1/2 is confirmed. The entropy is

S ≈ log(6 + 4
√

2)

8πγ
A− 1

2
logA. (5.51)

where again the have an interdependency of the angular momentum in the
result.

Let us consider a further generalization to the case with the quantum
group modification r 6= 0.

Case: Two Special Punctures, r 6= 0 and free j`

This case is a slight modification of the previous one, the starting point is

Ñ(s) =

2

π

∞∑
p=0

k+1∑
d=2

∫ π

0

dθ

(
r∑

q=−r

e−2iθqk

)(
eiθ(1+γa?a) − e−iθ(1+γa?a)

2i

)2
(

p∏
l=1

sin dlθ

sin θ

)
e−sa,

=
1

2π

∫ π

0

dθ
r∑

q=−r

(
2I ′0 − e2iθI ′+ − e−2iθI ′−

)
, (5.52)

where we have used the relation

sin((2r + 1)kθ)

sin(kθ)
=

r∑
q=−r

e−2iθqk, (5.53)

to express the r-dependency in terms of exponentials. Again, this trick allows
us to put all terms on the same footing and compute a geometric sum. We
put a prime in the I ′λ to remember they are q-dependent

I ′λ =

[
1−

k∑
d=1

sin((d+ 1)θ)

sin θ
e(− s

2
+iθγ∗λ)d

]−1

, (5.54)

with γ∗λ ≡ γ (q(1− a∗) + λa∗). Around the pole

I ′λ ≈ [g′λ − εh′λ]
−1

≈

[
1−

k∑
d=1

(d+ 1)e−
sc
2
d

(
1 + iθγ∗λd−

(
d

6
(d+ 2) + (γ∗λd)2

)
θ2

)(
1 + ε

d

2

)]−1

,



112 5. Entropy Computations

the pole is exactly at the same place θ = 0 and it has the same previous
value sc ≈ log(6+4

√
2). The sub-leading term can be computed by the same

method
r∑

q=−r

∂t
′

ε I
′
λ = t′!

r∑
q=−r

h′t
′

λ

gt
′+1
λ

, (5.55)

the term h′t
′

λ does not affect the θ-dependence as it approaches a constant for
θ → 0. The relevant term in the asymptotic expansion appears in the q-sum
of g0 when q = 0, because for this value γ∗0 vanishes, consequently the linear
term in the denominator of I ′0, and

∂t
′

ε I
′
0

∣∣∣
q=0
∼ θ−2t′−2 (5.56)

produces again the logarithmic correction −1/2. It means that the inclusion
of the quantum group which in fact modifies slightly the computation, does
not have any asymptotic consequences. This is an expected result because,
as far as k ∼ a, we are in the regime k � 1 and we know that in the exact
limit k →∞ the parameter r should vanish.

Comment: In the previous model we have assumed that both special
punctures carrying the angular momentum are completely independent one
of the other. In the model of Chapter 4 they have a very special spacetime
position given by the symmetry axis of the black hole. This can be interpreted
as a restriction between them. To grasp this situation we study a model with
only one special puncture where the underlying idea is that both of them
are completely dependent—or “aligned”—such that they can be modelled, in
fact, by just one special puncture. Again we start by the simplest model
r = 0 and j` = 1/2 for all the p punctures.

Case: One special puncture, r = 0, and j` = 1
2

Let us use the notation Dk(d) → I(1), as before this case is not dependent
on k and d` = 2j` + 1 = 2 for all `.

I(1) =
2

π

∫ π

0

dθ sin2(θ)

(
sin 2θ

sin θ

)p
×
(

sin dJθ

sin θ

)
= 2p

2

π

∫ π

0

dθ sin(θ) sin(dJθ)(cos θ)p (5.57)

=
2p

π
(I− − I+), (5.58)
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with

I± =

∫ π

0

dθ cos(θ(1± dJ))(cos θ)p

≈
(
1 + (−1)p+2j

) ∫ ∞
0

dθ cos(θ(1± dJ))e−p
θ2

2

≈
(
1 + (−1)p+2j

)√π

2
× p−1/2e−

(1±dJ )2

2p (5.59)

where we have used the approximation (cos θ)p ≈ e−p
θ2

2 for p� 1 and θ ≈ 0
(similarly for θ ≈ π with a sign change), and also that dJ = 2j + 1 where j
is either an integer or half-integer.

I(1) =
(
1 + (−1)p+2j

) 1√
2π
p−1/22p

(
e−

(1−dJ )2

2p − e−
(1+dJ )2

2p

)
=

(
1 + (−1)p+2j

) 1√
2π
p−1/2e(log 2−(a?γ)2/2)p

(
1− e−2a?γ− 2

p

)
.

where we have used that j = γa?a = γa?p/2 in the linear area spectrum
approximation. Note that as p is an integer and j an integer or half-integer,
the combination γa?/2 should be a particular rational number of order one.

The conclusions are that the number of states can be zero if p+2j is odd,
the leading order coefficient is modified by the presence of the new puncture
to log 2 − (a?γ)2/2, and the sub-leading order exponent is the same −1/2.
Now, let us assume p+2j is even and write the entropy for this case in terms
of the area A = aH/`

2
p and the angular momentum j = J/`2

p

S ≈
(

log 2

4
√

3πγ

)
A−

(
2π
√

3γ
) j2

A
− 1

2
logA. (5.60)

Notably, the leading coefficient gets modified by the presence of the angular
momentum.

Remark: By considering a step back in the derivation of the degeneration
(F.20), I(1) is equivalent to

I(1) =

j∑
M=−j

∑
{m1,··· ,mp}

(
δm1+···+mp+M − δm1+···+mp+M+1

)
(5.61)

=

j∑
M=−j

[(
p

p/2−M

)
−
(

p

p/2−M − 1

)]
. (5.62)
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It is clear that in this model the extra puncture we are adding—that carries
the angular momentum of the black hole—is quantum, in the sense that we
are summing over all its projections M ∈ [−j, j], in principle this special
puncture can have some effect on the asymptotic as far as j` = 1/2, but
if we sum over all possible j` and use the approximation that k � 1, the
“special” puncture is no longer special as it acquires values in a range of the
same order as all the other purely quantum punctures. However, observe
that the quantized model we proposed in the previous chapter uses classical
punctures to model the rotation. The classicality of the punctures can be
thought as a selection of only the states with M = j fixed. In standard
quantum theory, the angular momentum states with a projection restricted
to M = j are called coherent states and stand for those which quantum
spread is minimal (see the paragraph after Equation (4.82)). Thus, we can
implement classical punctures by a simple restriction on the previous sum.
Now, we briefly explore this possibility.

Sub-case: Keeping the Special Puncture classical

So, we are still in the case r = 0 and j` = 1/2, let us analyse the asymptotics
of the term with M = j in formula (5.62)

I(1)∗ ≡
(

p

p/2− j

)
−
(

p

p/2− j − 1

)
(5.63)

≈ 2p√
2πp[1− (2j/p)2]

(
1− (2j/p)2)− p2 (1− 2j/p

1 + 2j/p

)j
2j + 1

p/2 + j + 1
,

where we have used the Stirling approximation p! ≈
(
p
e

)p√
2πp. Note that

for the non-rotating case j = 0, the sub-leading exponent is −3/2, thus, the
introduction of rotation modifies the logarithmic correction for this model.
The entropy is

S ≈
log
[
2/
√

1− (γa?)2
]

4
√

3πγ
A+ log

[
1− γa?

1 + γa?

]
j − 1

2
logA, (5.64)

where we replaced 2j/p = γa? as it is an number of order one in our asymp-
totic analysis. Therefore, the logarithmic correction is again −1/2. The
coefficient of the leading term, that in the absence of the classical puncture
is simply a constant gets modified into a more complicated j and A dependent
expression.
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Conclusion

In the following table we summarize the results for the entropy computations:

Rotating Models Asymptotics
Simple cases: r = 0, j` = 1/2

2-special puncts. (p even) log 2

4
√

3πγ
A− 1

2
logA

1-special punct. (p+ 2j even) log 2

4
√

3πγ
A− 2π

√
3γ j

2

A
− 1

2
logA

1-special punct. “kept rigid”
log

[
2/
√

1−(γa?)2
]

4
√

3πγ
A+ log

[
1−γa?
1+γa?

]
j − 1

2
logA

Free spin cases: j` arbitrary

2-special puncts. r = 0 log(6+4
√

2)
8πγ

A− 1
2

logA

2-special puncts. r 6= 0 log(6+4
√

2)
8πγ

A− 1
2

logA

1-special puncts. “kept rigid” r = 0 future work

The clearest result is that all models share the logarithmic correction,
which seems to be a robust property of the classical punctures approach to
incorporate the angular momentum. The second observation is that when
considering two special punctures the leading order is simply proportional to
the area of the black hole, and the proportionality is indeed independent of
the angular momentum. On the other hand, in both one special puncture
cases, the leading order depends on the angular momentum. Interestingly
in the one special puncture where we sum over the projection, the resulting
angular momentum dependence is exactly the same as the one obtained in
the model proposed in [55] where the angular momentum is implemented
as a constraint on the projections of the quantum punctures (see Equation
(26) in [55]). However, the j-dependence is in tension with the semi-classical
Bekenstein-Hawking entropy.

The area law is found in all the two special punctures models. This
result is in the same lines of most of the previous Loop Quantum Gravity
computation, where the appearance of the Barbero-Immirzi parameter is
fixed to get a 1/4 as the Bekenstein-Hawking entropy suggest. However,
as observed before, in the particular cases of free j`—the physically relevant
ones—the recovered area law is not a result of the implementation of rotation
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as far as for these models the special punctures considered are in the same
footing as the quantum ones.

The last line in the table is a model that should naturally be computed in
this context. However, the method of Laplace transform fails as the integral
is highly osculating, therefore, we leave it for future work.

To finish the chapter on the entropy computation we present one further
microscopic computation of the partition function for the black holes which
follows completely different assumptions based in the lines of the quasilocal
perspective developed in Chapters 2 and 3 plus the remark made at the end
of section 5.1.

5.3 Holographic and Rotating Model

In the following we construct a canonical partition function out of the notion
of quasilocal energy Eloc = aH

8π`
, the holographic degeneration suggested at

the end of Section 5.1, eaH/(4`
2
p), plus the linear area spectrum also discussed

there aH = 8π`2
p

∑p
i=1 sp. We named this special degeneration holographic

as it depends on the geometric area of the black hole.
The partition function for the canonical ensemble is

Z(β) =
∑
n

e−βEn =
∑
E

g(E)e−βE. (5.65)

Our interest is to incorporate the angular momentum to the model. To do
so we will imagine the angular momentum as a quantity distributed over
all punctures. A way to implement this is to restrict the projection of all
the spins carried by the quantum punctures such that the sum of all the
projections is the macroscopic angular momentum

p∑
i=1

mi = j, (5.66)

this constraint should be considered in the counting. To do so, we re-express
the sums with the occupation number nsm, it counts the number of punctures
with spin s and projection m. The angular momentum and the area becomes

j =
∑
s,m

nsmm, aH = 8π`2
p

∑
s,m

nsms. (5.67)

The angular momentum constraint can be imposed by using a Kronecker
delta in its integral form

δm1+m2+···+mp−j =
1

2π

∫ 2π

0

dα eiα(
∑
s,m nsmm−j). (5.68)
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note that this is equivalent to the strategy used in (5.63) to keep the special
punctures classical.

The partition function, with the angular momentum constraint left im-
plicit, is

Z(β, j) =
∞∑
p=1

∑
{nsm}∗

∏
s,m

1

nsm!
exp ((2π`− β)s nsm/`)× (constraint) (5.69)

where the sum on {nsm}∗ is over all partition of p, i.e., ns1m1 +ns2m2 +· · · = p,
and the area spectrum have been distributed in the product. The combina-
torial factor nsm! means that we are using indistinguishable punctures. In
the standard Loop Quantum Gravity entropy computation—as the ones we
performed in the previous section—the opposite criterion has been used: Dis-
tinguishable punctures. However, the model of punctured horizon does not
provide a clear point of view on the issue and heuristic arguments can be
constructed to justify both—contradictory—assumptions, let us briefly re-
view them. For distinguishability it has been long argued that the way each
puncture is connected to the rest of the spin-network in the bulk Hilbert
space makes that the permutation between a pair of punctures essentially
two different states. On the other hand, for indistinguishability, it can be ar-
gued that actually when splitting the whole Hilbert space of Loop Quantum
Gravity into the horizon and the bulk part, as in (4.41), a sum should be per-
formed over all different graphs of the bulk spin-network. This sum would
erase the memory of the connection between any puncture and each par-
ticular spin-network making the former intrinsically indistinguishable. Here
we explore the possibility of having indistinguishable punctures which seems
more natural from a quantum fundamental frame.8

Let us define β̃ ≡ (β−2π`)/` and plug the angular momentum constraint
into the partition function

Z(β, j) =
1

2π

∫ 2π

0

dα e−iαj
∞∑
p=1

1

p!

∑
{nsm}∗

∏
s,m

p!

nsm!

(
e−β̃s+iαm

)nsm
=

1

2π

∫ 2π

0

dα e−iαj
∞∑
p=1

1

p!

(∑
s,m

e−β̃s+iαm

)p

(5.70)

=
1

2π

∫ 2π

0

dα e−iαj exp

(∑
s,m

e−β̃s+iαm

)
, (5.71)

8 At this point it would be also interesting to explore different quantum statistics for
the punctures: Bosonic or Fermionic? This model, as a first approximation, ignores the
issue and uses a classical statistics.
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where the multinomial theorem and the Taylor expression of the exponential
were used. The transformation j` → is` − 1/2 induces s` as a discrete label,
here will will assume it runs as the SU(2) labels, i.e., s` = 1/2, 1, 3/2, . . .
while the projection m` ∈ [−s`, s`]. Therefore

f(α, β̃) ≡
∑
s,m

e−β̃s+iαm =
∞∑

s=1/2

s∑
m=−s

e−β̃s+iαm (5.72)

=
1 + 2 cos(α/2)− e−β̃/2

2 cosh(β̃/2)− 2 cos(α/2)
, (5.73)

as f(α − π, β̃) = f(−(α − π), β̃) the imaginary part of Z(β, j) vanishes and
the real part is

Z(β, j) =
1

2π

∫ 2π

0

dα cos(αj) exp

(
1 + 2 cos(α/2)− e−β̃/2

2 cosh(β̃/2)− 2 cos(α/2)

)
. (5.74)

The integrand diverges when

cosh(β̃/2) = cos(α/2) (5.75)

but cosh(x) ≥ 1, then, the only solution is β̃ = 0. It means that the partition
function is strongly concentrated on β = 2π`, this corresponds to the Un-
ruh temperature which is the physical one from the near horizon stationary
observers. Therefore, we focus on the regime β̃ � 1.

The angular momentum is a macroscopic quantity j � 1, if we combine
this regime with β̃ � 1 the partition function is very oscillating (as j grows).
However, if j is held fixed we can always look at an short enough interval of
integration around zero such that cos(αj) ≈ 1 and still we can describe the
divergence that the integral has for β̃ = 0. Because de divergence appears
when α ≈ 0 the integral interval can be split to approximate the integrand
around zero [0, 2π] = [0, δ]∪ (δ, 2π], for δ � 1 but fixed in such a way that it
is not affected by β̃

Z(β, j) = Zδ + Z0. (5.76)

and

Z(β ≈ 2π`, j) ≈ Zδ. (5.77)

Note that f(α� 1, β̃ � 1) ≈ 8
α2+β̃2 , and the integrand simplifies

Zδ ≈
1

2π

∫ δ

0

dα exp

(
8

α2 + β̃2

)
. (5.78)
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this function is not analytic around β̃ = 0 then we cannot use Taylor expan-
sion before performing the integral. Instead, it is possible to estimate the
asymptotic behaviour by using two natural bounds for the integral. As the
asymptotic β̃-dependence is apparent, let us write

Zδ ≈
1

2π
exp

(
8

β̃2

)∫ δ

0

dα exp

(
− 8α2

α2 + β̃2

)
. (5.79)

Now, we show bounds for the integral

I0 ≡
∫ δ

0

dα exp

(
− 8α2

α2 + β̃2

)
. (5.80)

The inequalities α2

δ2+β̃2 ≤ α2

α2+β̃2 ≤ α2

β̃2 , allow us to conclude the following

4

∫ δ

0

exp

(
−8α2

β̃2

)
≤ 4I0 ≤ 4

∫ δ

0

dα exp

(
− 8α2

δ2 + β̃2

)
β̃

∫ 2
√

2δ
β̃

0

e−t
2

dt ≤ 4I0 ≤
√
β̃2 + δ2

∫ 2
√

2δ√
β̃2+δ2

0

e−t
2

dt (5.81)√
π

2
β̃ + o(β̃2) ≤ 4I0 ≤

√
π

2

(∫ 2
√

2

0

e−t
2

dt

)
δ + o(β̃2) (5.82)

in the last line we have used β̃ � 1. In Fig. 5.3 the functions in (5.81) are
plotted. From the upper bound we learn that the integral is finite for all β̃,
while the lower bound goes simply as β̃.

Therefore, the integral I0 does not affect the leading asymptotic behaviour
of Z(β ≈ 2π`, j) but in fact it can be shown that it contributes to the sub-
leading order with the same behaviour as the lower bound. The partition
function turns out to be simply

logZ(β ≈ 2π`, j) ≈ 8

β̃2
+ log β̃ =

8`2

(β − 2π`)2
+ log[(β − 2π`)/`], (5.83)

in particular, this form implies that j does not play any role in the main
thermodynamics behaviour.

In the canonical ensemble we can compute the average energy

Ē = −∂β logZ ≈ 16`2

(β − 2π`)3
− 1

β − 2π`
, (5.84)

which would diverge for the exact Unruh temperature. To estimate the depar-
ture from the Unruh temperature we can use the last equation but imposing
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Fig. 5.1: Plot of (5.81) for β̃ ∈ [0, 0.5] and δ = 0.1. The behaviour for β̃ ≈ 0 is the
one given in (5.82).

de quasilocal notion of energy, i.e., the energy at which the system reaches
the equilibrium Ē = Eloc = A

8π`

β = 2π`+ ε, (5.85)

this gives an entropy

S = βĒ + logZ (5.86)

≈ A

4
, (5.87)

which is the Bekenstein-Hawking entropy. The leading term can be traced
back to the simple relation βUEloc = A

4
, i.e., the Unruh temperature and the

quasilocal energy. Thus, this microscopic model can implement the known
results in a consistent way. However, in the way it has been developed it
cannot constitute a fundamental explanation of the Bekenstein-Hawking en-
tropy as far as what directly produces the entropy it relies on the ingredients
just stated. The missing piece in this approach is the computation of the
temperature from first principles. Here, we are using the semi-classical result
about the Unruh temperature for Rindler spacetime, which is the natural for
the quasilocal framework, but, a complete microscopic approach should pro-
vide a notion of the temperature. It is expected that such a temperature is
the Unruh one with a further correction ε which would allows us to compute
the next order in the entropy. For a recent attempts in this direction see [71].
This open question is beyond the scope of the present work.
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Appendix A

W(O) FOR CHARGED KERR BLACK HOLE AND
LOCAL SURFACE GRAVITY

Let us study the relation between the coordinates and the physical proper
distance ` to the horizon which defines the surface W(O). The charged Kerr
metric is

ds2 = −
(

∆− a2 sin2 θ

Σ

)
dt2 − 2a sin2 θ (r2 + a2 −∆)

Σ
dtdφ

+

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdφ2 +

Σ

∆
dr2 + Σdθ2, (A.1)

∆ = r2 + a2 + q2 − 2Mr = (r − r+)(r − r−), (A.2)

Σ = r2 + a2 cos2 θ. (A.3)

We define our preferred family of observers as

ua =
χa√
−χ · χ

, χa = ξa + ΩHψ
a, ΩH =

a

r2
+ + a2

, (A.4)

where ξa and ψa are the Killing vectors associated with staticity and axisym-
metry of the metric.
The surface where this observers lay can be defined by a constant norm√
−χ · χ =

√
n = constant, but we can also do it with an arbitrary function

of the norm
f(n) = constant, (A.5)

the gradient of this function produces a vector orthogonal to the surface

dfa =
df

dn

∂n

∂r
dra +

df

dn

∂n

∂θ
dθa, (A.6)

(∂λ)
a = grr

df

dn

∂n

∂r
(∂r)

a + gθθ
df

dn

∂n

∂θ
(∂θ)

a, (A.7)

with λ(r, θ) an arbitrary parameter. This arbitrary function is the standard
gauge symmetry of the observers world-line. Let us fix this gauge by using
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λ = r. This condition can be satisfied by fixing f such that ∂r
∂λ

= grr df
dn

∂n
∂r

= 1
and

(∂λ)
a = (∂r)

a +
gθθ

grr
∂n/∂θ

∂n/∂r
(∂θ)

a, (A.8)

the proper distance we are interested in is a coordinate independent quantity
defined by

` =

∫ λ2

λ1

√
g(∂λ, ∂λ)dλ (A.9)

=

∫ r2

r1

√
Σ

∆

√
1 +

∂n/∂θ

∂n/∂r
dr. (A.10)

Now let us choose r1 = r+ and r2 = r+ + ε, such that ` measures the proper
distance for an observer near the horizon `2 � A. In these coordinates small
` means ε� r+. We can estimate this integral by simply approximating the
integrand. An explicit calculation shows

∂n/∂θ

∂n/∂r

∣∣∣∣
r=r++ε

= o(ε), (A.11)

Furthermore, we have

∆ = ε(r+ + r− + ε) (A.12)

= ε(r+ + r−) + o(ε2), (A.13)

Then,

` =

√
Σ+

(r+ − r−)

∫ ε

0

1√
ε
(1 + o(ε))dε (A.14)

= 2
√
ε

√
Σ+

(r+ − r−)
+ o(ε3/2), (A.15)

Or equivalently

ε(θ) =
`2

4

(r+ − r−)

r2
+ + a2 cos2 θ

+ o(`4), (A.16)

thus, we learn that in this coordinates the r-separation from the horizon
where our observers lays is θ-dependent for rotating horizons.

By definition κ̄ = κ√
−χ·χ , to compute it for near horizon observers at a

proper distance ` we evaluate the norm at r+ + ε(θ), and we get a coordinate
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invariant expression to the order we are interested in,

√
−χ · χ =

√
−gtt − 2ΩHgtφ − Ω2

Hgφφ (A.17)

≈ κ`+ o(`3) (A.18)

then

κ̄ =
κ√
−χ · χ

=
1

`
+ o(`), (A.19)

just the first contribution is constant, and it is the only one relevant when
`2 � A.



126 Appendix A. W(O) for charged Kerr black hole and local surface gravity



Appendix B

EXTRINSIC CURVATURE TRACE FOR CHARGED
KERR BLACK HOLE

Given a hypersurface Σ with intrinsic metric hab and normal na, the extrinsic
curvature is defined by

Kab ≡
1

2
Lnhab, (B.1)

the trace of the extrinsic curvature, given by K ≡ habKab, tells us how
the surface is stretched with respect to the normal of the surface na. This
interpretation comes directly from the explicit expression satisfied by K

∂

∂n

∫
Σ

dΣ =

∫
Σ

KdΣ, (B.2)

where dΣ is the differential element on the hypersurface Σ.
Now, using (A.16), the hypersurface Σ can be defined by

r = r+ + ε(θ), du = dr − ε′dθ, ∂n ∼ ∂u = grr∂r − ε′gθθ∂θ (B.3)

where du is the natural differential 1-form that allows us to compute an
orthogonal vector ∂u which can be normalized as

∂n = − 1√
∂u · ∂u

∂u =
−grr∂r + ε′gθθ∂θ√

grr + ε′2gθθ
, (B.4)

the sign is there to make na ≡ (∂n)a spacelike. The three-dimensional surface
Σ can be parametrized as1

σ1 = t, σ2 = φ, σ3 = θ, (B.5)

such that

dΣ =
√
−gnaεabcd

∂xb

∂σ1

∂xc

∂σ2

∂xd

∂σ3
dσ1dσ2dσ3 (B.6)

=
√
−g(grr + ε′2gθθ)dtdθdφ, (B.7)

1 We choose the ordering to make dΣ > 0 given εtrθφ = +1.
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where the relation r = r+ + ε(θ) determines ∂r
∂θ

= ε′.
Because of time translation invariance we can replace

∫
dt → ∆t. If we

consider (B.2) for an infinitesimal strip of the three-dimensional surface in
the coordinate θ, we can also replace the integration

∫
θ → ∆θ, then

K =
1√

−g(grr + ε′2gθθ)
(grr∂r − ε′gθθ∂θ)

(√
−g(grr + ε′2gθθ)

)
. (B.8)

The next step is to evaluate K on the surface W(O) given by r = r+ + ε(θ).
Let us use ε(θ) from (A.16) and neglect o(`3) terms. The result is

K =
1

`
+ `f(θ) + o(`3), (B.9)

f(θ) =
1

8Σ3
+

(
4r4

+ + 2r+(r+ − r−)Σ+ − Σ2
+ − 4a4 cos2 θ

)
. (B.10)

For the Schwarzschild case it is reduced to

K|a=q=0 =
1

`
+

5`

32M2
+ o(`3), (B.11)

then, if we take K0 = 1
`
, on the surface just over the horizon, we have

1

8π

∫
(K −K0)dΣ =

`2

4

∫
dt

∫ π

0

dθ(r+ − r−) sin(θ)f(θ) + o(`4)

∼ `2∆t. (B.12)

For Schwarzschild it is simply

1

8π

∫
(K −K0)dΣ = `2 5

64M
∆t+ o(`4). (B.13)
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WICK ROTATION FOR KERR METRIC NEAR
THE HORIZON

Let us consider the Kerr metric in the new coordinates

(t, r, θ, φ)→ (t̃, `, θ, φ), (C.1)

such that

dt̃ =
1

2

(
dt+

1

ΩH

dφ

)
, ΩH =

a

r2
+ + a2

, (C.2)

dφ̃ = −ΩHdt+ dφ (C.3)

d` =

√
Σ+

(r − r+)(r+ − r−)
dr − 2a2

√
r − r+

(r+ − r−)Σ+

cos θ sin θdθ, (C.4)

where we use the proper distance (A.15) as a coordinate.
We write the Kerr metric in these new coordinates, then, we evaluate it at
r = r+ + ε(θ), and keep just o(`2) terms. The result is

ds2 = −`2κ2dt̃2 + d`2 + `2gt̃φ̃dτdφ̃+ gφ̃φ̃dφ̃
2 + `gθ`dθd`+ gθθdθ

2, (C.5)

with gt̃φ̃, gφ̃φ̃, gθ`, and gθθ regular functions in the limit `→ 0. Note that in
the previous expression the surface gravity κ has been introduced

κ =
r+ − r−

2(a2 + r2
+)

=

√
M2 − a2

2M(M +
√
M2 − a2)

. (C.6)

Then, we have explicitly
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gt̃φ̃ = κ
[
(a2 + r2

+)2(r+ − r−) + 4a2r+(a2 + r2
+) sin2 θ

−a4(r+ − r−) sin4 θ
]
×
[
4aΣ2

+

]−1

gφ̃φ̃ =
sin2 θ

4Σ+

(r2
+ + a2)2 − `2 r+ − r−

64a2Σ3
+

[
−(r+ − r−)(a2 + r2

+)Σ2
+

+2a2(a2 + r2
+)
(
(r− + 3r+)Σ+ − 4r+(r2

+ + a2)
)

sin2 θ

−a4(r+ − r−)Σ+ sin4 θ
]

gθ` =
a2

Σ+

sin(2θ)

gθθ = Σ +
a4`2

2Σ2
+

sin(2θ). (C.7)

Now, let us perform a Wick rotation in the proper time τ = it̃

ds2 = `2κ2dτ 2 + d`2 − i`2gt̃φ̃dτdφ̃+ gφ̃φ̃dφ̃
2 + `gθ`dθd`+ gθθdθ

2, (C.8)

to avoid a conical singularity in the origin we should identify

τ → τ +
2π

κ
, period β =

2π

κ
. (C.9)

Now we perform coordinate transformation

X = ` cos(κτ), T = ` sin(κτ), (C.10)

then

ds2 = dT 2+dX2− i
κ
gt̃φ̃(XdT−TdX)dφ̃+gφ̃φ̃dφ̃

2+gθ`(XdX+TdT )dθ+gθθdθ
2,

(C.11)
as the transformation (C.10) shows the new variables are proportional to `.
We can think about X and T as moving in a small circle of radius `. In
the near horizon regime we can neglect cross terms, and, remarkably, the
imaginary part of the metric

ds2|`2�A ≈ dT 2 + dX2 + gφ̃φ̃dφ̃
2 + gθθdθ

2. (C.12)

Therefore, we conclude that for the near horizon observers the metric that
describes the surrounding spacetime admits a complex analytic continuation
that keeps the metric real in the approximation used.
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SYMPLECTIC STRUCTURE IN PALATINI
VARIABLES

The action for General Relativity, in Hibert-Palatini formulation with tetrads
[74], reads

S[eI , ωIJ ] = − 1

2κ

∫
M

ΣIJ(e) ∧ FIJ(ω) +
1

2κ

∫
∂M

ΣIJ(e) ∧ ωIJ , (D.1)

where κ = 8πG with G the Newton constant (we set the speed of light c = 1).
The veilbein enters through the definition

ΣIJ = ?(eI ∧ eJ) =
1

2
εIJKLe

K ∧ eL, (D.2)

where ? is the Hodge dual. While the SO(3, 1) spin connection enters through
the curvature

F I
J = dωIJ + ωIK ∧ ωKJ . (D.3)

The boundary term should be added in order to have a well-defined varia-
tional principle. The arbitrary variation of the action reads

δS = − 1

2κ

∫
M

(
δΣIJFIJ + δωIJ dωΣIJ

)
+

1

2κ

∫
∂M

δΣIJ ∧ ωIJ , (D.4)

with dωΣIJ = dΣIJ + ωJLΣIL − ω I
L ΣLJ .

For a introduction on the use of the symplectic structure in the con-
text of General Relativity—and further introductory examples in Yang-Mills
theories—see [72]. Here we use that the symplectic potential density can be
directly read from the action variation [41], in consequence, we compute also
the symplectic density

Θ(δ) = − 1

2κ
δΣIJ ∧ ωIJ

J(δ1, δ2) ≡ δ1Θ(δ2)− δ2Θ(δ1)

J(δ1, δ2) =
1

κ
δ[1ΣIJ ∧ δ2]ωIJ . (D.5)
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Now, let us assume the tetrad is oriented in such a way that on each Cauchy
surface M of our foliation we have ←e

0 = 0, this is the time gauge choice.

Then, the pullback of the density is reduced to

←J(δ1, δ2) =
1

κ
δ[1←Σi ∧ δ2]←K

i, (D.6)

where Σi = εijke
j ∧ ek and Ki = ω0i.

Therefore, the gravity symplectic structure in these variables reads

Ω(δ1, δ2) =
1

κ

∫
M

δ[1Σi ∧ δ2]K
i, (D.7)

where we omit the pullback symbol as it should be understood from the
integration domain.

The linearized equations of motion imply dJ = 0. Now consider a slab of
spacetime bounded by two Cauchy surfaces M1, M2 and a timelike cylinder
at infinity τ∞. The Stokes’ theorem implies∫

M1

J −
∫
M2

J +

∫
τ∞

J = 0, (D.8)

if we assume asymptotic flatness on τ∞, last term is zero and the symplectic
structure defined above is independent of the Cauchy surface. Thus, for
General Relativity in terms of Palatini variables and with asymptotically flat
boundary conditions the symplectic structure 2-form—in the cotangent space
of the phase space—is given by

Ω(δ1, δ2) =
1

κ

∫
M

δ[1Σi ∧ δ2]K
i, (D.9)

is preserved. Note that no other boundary than τ∞ encloses the Cauchy
surfaces. In our application we deal with the Isolated Horizon as a second
boundary.



Appendix E

ASHTEKAR-BARBERO CURVATURE ON A
SCHWARZSCHILD HORIZON

To prove the equation

⇐F
i
ab(A) = −π(1− γ2)

aH ⇐Σ
i
ab, (E.1)

in the Schwarzschild spacetime we should solve the first Cartan equation,
then, we use a specific Lorentz transformation such that the chosen tetrad
becomes compatible with the Isolated Horizon null generator and so that the
surface gravity produced by this generator coincide with the Schwarzschild
surface gravity. At the end, we use Ashtekar-Barbero variables and compute
the pullback of its curvature to the horizon.

In the first order formalism for gravity, the fundamental variables are the
vielbein eIa and the spin connection ωIJa. Both are naturally written as
1-forms

eI = eIadx
a, ωIJ = ωIJadx

a, (E.2)

where dxa is a basis of the cotangent space (1-forms) inherited from an ar-
bitrary coordinate set. Here a, b, c, d stand for the spacetime indices while
I, J, K, L stand for the internal indices over which the SO(3, 1) internal
symmetry acts. In this notation the metric can be written as a tensor product

g = gabdx
a ⊗ dxb = eIae

J
bηIJdx

a ⊗ dxb = eI ⊗ eJηIJ , (E.3)

with ηIJ = diag(−1, 1, 1, 1). The curvature is naturally a 2-form defined by1

F I
J(ω) = dωIJ + ωIK ∧ ωKJ =

1

2
F I

Jabdx
a ∧ dxb, (E.4)

now, we define the 2-form

ΣIJ = eI ∧ eJ =
1

2
ΣIJ

abdx
a ∧ dxb, (E.5)

1 The convention for r-form components we use is ω = 1
r!ωa1···ardx

a1 · · · dxar where
complete antisymmetry is assumed in the lower indices [31].
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combining both, we have the curvature written in components as in [40]

F IJ
ab(ω) = −1

2
R cd
ab ΣIJ

cd (E.6)

where Ra
cbd are the components of the curvature Riemann tensor expressed

in coordinates components. There is a proposal, in [40], to prove (E.1) by
using directly the Isolated Horizon conditions, it takes as a starting point the
last equation and then strongly uses the Newman-Penrose tetrad formalism
which is specially adapted for this purposes, in particular for the computation
of the Weyl tensor through the Weyl scalars. Here, as we will deal just with
Schwarzschild spacetime it is possible to use directly the Schwarzschild metric
(see appendix A in [40]). It is preferable to use Kruskal coordinates which
are regular at the horizon

ds2 = Ω2(X,T )(−dT 2 + dX2) + r2(X,T )(dθ2 + sin2(θ)dφ2), (E.7)

Ω2 =
32M3e−

r
2M

r
, (E.8)

where r(X,T ) is defined implicitly by the equation

F =
( r

2M
− 1
)
e

r
2M = X2 − T 2. (E.9)

therefore, the horizon worldsheet surface ∆ is defined by the equation X =
±T . If we perform a variation of the previous equation it can be shown that

∂Xr|∆ = − ∂T r|∆ =
2X

F ′
. (E.10)

A possible tetrad 1-form that can be chosen is

e0 = Ω(X,T )dT, e1 = Ω(X,T )dX, e2 = rdθ, e3 = r sin(θ)dφ. (E.11)

The first Cartan, torsionless, equation reads

deI + ωIJ ∧ eJ = 0, (E.12)

given the tetrad eIa it can be solved in general [73]

ξIJK ≡ ∂[ae
I
b]e

a
J e

b
K ,

ωIJK = ξIJK + ξJKI − ξKIJ ,
ωIJa = ωLMKη

LIηMJeKa.
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The 1-form connection ωIJ = −ωJI , turns out to be

ω01 =
1

Ω
(∂TΩ dX + ∂XΩ dT ) , ω02 =

∂T r

Ω
dθ (E.13)

ω03 =
∂T r

Ω
sin(θ)dφ, ω12 = −∂Xr

Ω
dθ (E.14)

ω13 = −∂Xr
Ω

sin(θ)dφ, ω23 = − cos(θ)dφ. (E.15)

In the Isolated Horizon framework, the surface gravity is defined by

`a∇a`
b = κIH`

b. (E.16)

As explained in Chapter 2, it is no uniquely defined, as the null vector `a

can be rescaled arbitrarily. Here, we can use `a = 1√
2

(e1
a − e0

a) to express

one of the vectors in the class (we define also na = − 1√
2

(e1
a + e0

a)), then,
if we compute the surface gravity directly we realize that it does not match
the standard value for Schwarzschild κ = 1

4M
. The reason is because κ is

computed with a null normal at the horizon which is also a Killing vector
normalized at infinity. To make them coincide we perform a special Lorentz
transformation on the internal indices such that it rescales `a → eα`a at the
horizon, then, we fix α = α(X) with the condition κIH = κ. Such Lorentz
transformation is

ΛI
J =


cosh(α(X)) sinh(α(X)) 0 0
sinh(α(X)) cosh(α(X)) 0 0

0 0 1 0
0 0 0 1

 , (E.17)

by using the transformation rules

e′I = ΛI
Je

J , ω′IJ = ΛI
Kω

K
LΛ−1 L

J − dΛI
KΛ−1 K

J , (E.18)

we obtain

e′0 = Ω (cosh(α)dT + sinh(α)dX)

e′1 = Ω (sinh(α)dT + cosh(α)dX)

e′2 = e2 (E.19)

e′3 = e3, (E.20)

and
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ω′01 = −dα(X) + d log(Ω(X,T ))

ω′02 =
∂T r cosh(α)− ∂Xr sinh(α)

Ω
dθ

ω′03 =
∂T r cosh(α)− ∂Xr sinh(α)

Ω
sin(θ)dφ

ω′12 =
∂T r sinh(α)− ∂Xr cosh(α)

Ω
dθ

ω′13 =
∂T r sinh(α)− ∂Xr cosh(α)

Ω
sin(θ)dφ

ω′23 = − cos(θ)dφ. (E.21)

Now, we compute the surface gravity after performing the Lorentz transfor-
mation on `a by projecting (E.16) along na, we also should remember that
ωIJa = eIb∇ae

Jb and that everything should be evaluated on the horizon.
The result is

`anb∇a`
b = −κIH

`aω′01
a = κIH

−(e−α(X))′√
2

= κIH =
1

4M

eα(X) = −2
√

2M

X
, (E.22)

which is equivalent to (see equation A19 in [40])

− 1√
2

=
2X

F ′Ω
eα(X) =

∂Xr

Ω
eα(X). (E.23)

Before continuing, previous condition should be replaced, considering (E.10),
in (E.21). At this point we are ready to compute the curvature in Ashtekar-
Barbero variables defined by the connection

Ai = Γi + γKi = −1

2
εijkω

′ij + γω′0i, (E.24)

where the indexes i, j, k = 1, 2, 3. The curvature is

F i(A) = dAi +
1

2
εijkA

j ∧ Ak. (E.25)

The pullback to the horizon worldsheet 3-surface is

←dr = 0 −→ ←dT =←dX. (E.26)
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The pullback to the horizon 2-surfaces (with a fixed foliation) is

⇐dT =⇐dX = 0. (E.27)

Finally, the pullback to the horizon of the curvature of the Ashtekar-Barbero
variables is

⇐F
1(A) = −1

2
(1− γ2) sin(θ)dθ ∧ dφ (E.28)

⇐F
2(A) = 0 (E.29)

⇐F
3(A) = 0, (E.30)

we also have that ⇐e
0 =⇐e

1 = 0, then Σi = εijke
j ∧ ek becomes

⇐Σ
1 = r2dθ ∧ dφ (E.31)

⇐Σ
2 = 0 (E.32)

⇐Σ
3 = 0, (E.33)

and we conclude that

⇐F
i(A) = −π(1− γ2)

aH ⇐Σ
i, (E.34)

where we have introduced the area of the spherical horizon aH = 4πr2.
An important remark is that in this adapted framework to the spherically

symmetric horizon, we have

⇐K
i =

√
2π

aH ⇐
ei , (E.35)

from which is trivial to prove that

εijk⇐K
j ∧⇐K

k =
2π

aH⇐
Σi, (E.36)

this last equation implies that at the horizon there is the freedom to choose
Ashtekar-Barbero-like variables with a parameter γ̄ independent of the Im-
mirzi parameter of the bulk variables (the proof is in Chapter 4). In the
equivalent framework for the Kerr solution (rotating black hole) this equa-
tion is not valid any more. In particular, this prevent us from being able to
prove (E.36) for rotating Isolated Horizons.
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Appendix F

QUANTUM GROUP RECOUPLING THEORY: THE
INTERTWINER SPACE

Here we reproduce in a minimal way the computation of the dimension of the
Hilbert space H k

CS. We follow [50]. Specifically, we will compute explicitly
the dimension of the space given by the invariant tensor part of the tensor
product of p of the SU(2)q representations

Nk(j) = dim[Inv(j1 ⊗ · · · ⊗ jp)]. (F.1)

with j = (j1, · · · , jp).
The dimension of the Hilbert space is

Nk(j) =
∑

`1,··· ,`p

δ`1,0δ`p+1,0

p∏
i=1

Y (`i, ji, `i+1), (F.2)

where Y (j1, j2, j3) ∈ {0, 1} is one when (j1, j2, j3) satisfy the triangular rela-
tion or zero otherwise.

The q-numbers are defined by

[x] =
qx − q−x

q − q−1
=

sin
(

π
k+2

x
)

sin
(

π
k+2

) , (F.3)

where in the second equality we have used the specific value of q(k) =
exp

(
iπ
k+2

)
.

The Verlinde coefficients are defined by

Sj1j2 = [dj1dj2 ] =
sin
(
πdj1dj2
k+2

)
sin
(

π
k+2

) , (F.4)

with dji = 2ji + 1. The Verlinde coefficients satisfy two important properties
that we state without proof. The orthogonality relation∑

j3

Sj1j3Sj3j2 =
δj1j2
Z2

, with Z =

√
2

k + 2
sin

(
π

k + 2

)
, (F.5)
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and the recursive relation, given by

n−1∏
i=1

Sjijn = [dnj ]
n−2

∑
`1,··· ,`n

δ`1,0

n−1∏
i=1

Y (ji, `i, `i+1)S`ijn , (F.6)

using the two previous equations on the expression for N(d) (with d =
(d1, · · · , dp), and dji = 2ji + 1 is a simply change of notation), we have

Nk(d) =
2

k + 2
sin2

(
π

k + 2

)∑
`

[d`]
2−p

p∏
i=1

Sji`, (F.7)

by using the definitions of Sji` and [·] explicitly we have

Nk(d) =
2

k + 2

k+1∑
d=1

sin2−p
(

πd

k + 2

) p∏
i=1

sin

(
πddji
k + 2

)
. (F.8)

This is already a useful closed formula. Now, we go a step further to obtain
an integral expression useful for the asymptotic application we are interested
in.

Let us use a redefinition Dk(d) = Nk−2(j), such that

Dk(d) =
2

k

k−1∑
d=1

sin2

(
πd

k

) p∏
i=1

sin
(
πddji
k

)
sin
(
πd`
k

) . (F.9)

Let use the trigonometric identities sin2 θ = 1 − cos2 θ, cos θ = sin(2θ)

2 sin2 θ
; and

define the function

Bk(d) =
2

k

k−1∑
d=0

p∏
`=1

sin
(
πd
k
d`
)

sin
(
πd
k

) , (F.10)

then, we can rewrite

Dk(d) = Bk(d)− 1

4
Bk(d+), (F.11)

with d+ = (d1, · · · , dp, 2, 2). Note the identity

sin
(
πd
k
d`
)

sin
(
πd
k

) = ei
πd
k

(d`−1)

d`−1∑
n`=0

e−2iπd
k
n` , (F.12)

it allows us to write the function Bk(d) as

Bk(d) =
2

k

k−1∑
d=0

p∏
`=1

d`−1∑
n`=0

ei
πd
k

(d`−1−2n`) =
2

k

k−1∑
d=0

∑
{n1,··· ,np}

ei
πd
k

(∆p−2N), (F.13)
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with the definitions ∆p =
∑p

`=1(d` − 1) and N =
∑p

`=1 n`. The sums are
finite and the interchange of the sum ordering is allowed

Bk(d) =
2

k

∑
{n1,··· ,np}

1− eiπ(∆p−2N)

1− eiπk (∆p−2N)
=

2

k

∑
{n1,··· ,np}

1− eiπ∆p

1− eiπk (∆p−2N)
, (F.14)

from this formula a combinatorial form can be obtained, first note that if ∆p

is odd a further analysis shows that Dk(d) vanishes. If ∆p is even the sum
is not zero because the denominator can also vanishes, this is equivalent to

Bk(d) = 2
∑

{n1,··· ,np}

δ∆p−2N [2k], (F.15)

the quantity δn[k] is one if there exists an integer s such that n = sk or zero
otherwise.

Let us use the half integers given by mi = ni − di−1
2
∈ [1−di

2
, 1+di

2
], then

Bk(d) = 2
∑

{m1,··· ,mp}

δm1+···+mp[k], (F.16)

or, more explicitly, we use the floor function [·], to define

r ≡
[

∆p

2k

]
=

[∑
`(d` − 1)

2k

]
, (F.17)

and we get a simpler expression

Bk(d) = 2
∑

{m1,··· ,mp}

r∑
q=−r

δm1+···+mp−qk. (F.18)

Now, we replace this on the main formula for Dk(d)

Dk(d) =
∑

{m1,··· ,mp}

 r∑
q=−r

δm1+···+mp−qk −
1

4

∑
a,b∈{− 1

2
, 1
2
}

s∑
q=−s

δm1+···+mp+a+b−qk

 ,

(F.19)

with s =
[

∆p+2

2k

]
.

Here we make a simplifying assumption: We have that s ∈ {r, r + 1},
thus, we simply assume r = s because as in our application k is a big number
s = r + 1 will not happens. Therefore, we have

Dk(d) =
∑

{m1,··· ,mp}

r∑
q=−r

(
δm1+···+mp−qk −

1

2
δm1+···+mp−qk+1 −

1

2
δm1+···+mp−qk−1

)
.

(F.20)
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To get at the integral formula we use the integral version of the Kronecker
delta

δm1+···+mp+a =
1

2π

∫ 2π

0

dθ eiθ(m1+···+mp+a), (F.21)

and because mi ∈ [1−d`
2
, 1+d`

2
], we have

∑
{m1,··· ,mp}

δm1+···+mp+a =
1

2π

∫ 2π

0

dθ cos(aθ)

p∏
`=1

sin
(
d`

θ
2

)
sin θ

2

, (F.22)

and
r∑

q=−r

cos(θqk) =
sin
(
(r + 1

2
)kθ
)

sin kθ
2

, (F.23)

then we get the desired formula

Dk(d) =
1

π

∫ 2π

0

dθ sin2

(
θ

2

)
sin
(
(r + 1

2
)kθ
)

sin kθ
2

p∏
`=1

sin
(
d`

θ
2

)
sin θ

2

=
2

π

∫ π

0

dθ sin2(θ)
sin ((2r + 1)kθ)

sin(kθ)

p∏
`=1

sin (d`θ)

sin(θ)
, (F.24)

this is the starting point to study the dimension of the Hilbert space H k
CS. We

remember that this is the dimension of the space of the invariant tensors of
the tensor space obtained out of the coupling (tensor product) of p-punctures.
Were each puncture carries a ji quantum SU(2) irreducible representation.
The physically interesting consequences of this model should be obtained on
the regime where all this microscopic structure mimics a semiclassical black
hole.
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Symbols

Chapter 2

Γ : phase space

Ω(δ1, δ2) : Symplectic structure

Ht : Hamiltonian flow by δt

M : four dimensional manifold

M : Cauchy surface

∆ : Isolated Horizon

S∆ : topological 2-sphere on an Isolated Horizon

H : topological 2-sphere on a Killing Horizon

O : near horizon observers

W(O) : worldsheet for near horizon observers

S : black hole entropy

M : black hole mass

E : black hole energy defined by quasilocal observers

A : area of the black hole horizon

J : black hole angular momentum

a = J/M : dimensionless angular momentum

Q : black hole charge

TH : Hawking black hole temperature

ΩH : horizon angular velocity w.r.t a static observer at infinity

φH : electric potential at the horizon (w.r.t. a zero potential fixed at infinity)

` : proper length to the horizon

κ : surface gravity

κ̄ : local surface gravity

κIH : surface gravity for isolated horizons, depends on `a

θ : expansion

σab : shear

ωab : twist

[`] or [χ] : class of null vectors defined over ∆

ξa : time symmetry Killing field

φa : axial symmetry Killing field
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Chapter 3

φ : a generic field variable

S[φ] : action

SE[φ] : Wick rotated action

Ze : partition function (Euclidean)

Zs : partition function (statistical)

W(O) : worldsheet for near horizon observers

Eloc : quasilocal energy

Chapter 4

κ = 8πG : with G Newton constant

γ : Immirzi parameter

γ̄ : Immirzi-like parameter for variables at the horizon

ΩM(δ1, δ2) : symplectic structure

M : Cauchy surface

∆ : Isolated Horizon worldsheet, three dimensional surface

H = ∆ ∩M : horizon surface

eI : tetrad 1-form

ωIJ : SO(3, 1) connection 1-form

Σi = εijke
j ∧ ek : densitized triad 2-form

Ki = ω0i : extrinsic curvature 1-form

Γi = −1

2
εijkω

jk : SO(3) connection on M , 1-form

Ai = Γi + γKi : Ashtekar-Barbero connection

Āi = Γi + γ̄Ki : Ashtekar-Barbero-like connection at the horizon

aH : horizon area

← : pullback to the Cauchy three-surface M

⇐ : pullback to the horizon two-surface H

G : graph

Φ : scalar variable

J : 2-form representing angular momentum density

J : angular momentum

j = J/`2
p : dimensionless angular momentum
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Chapter 5

H k
CS : Hilbert space of the quantum Chern-Simons horizon model

aH : horizon area

A = aH/`
2
p : dimensionless horizon area

a = aH/(8πγ`
2
p) : normalized area
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Abstract
Black holes are studied from a theoretical point of view. The thermodynamics and quan-

tum properties are addressed from a new perspective. A range of logically connected

problems are explored: Starting from the laws of black hole mechanics, going through the

Euclidean partition function, to the microscopic quantum granular models.

The approach is supported by two guiding principles: What is physically relevant for black

hole thermodynamics lays close to the horizon and the quantum geometry of the spacetime

is coarse-grained.

The first law of black hole mechanics is reviewed from the new quasilocal perspective

based on near horizon observers. It turns out that the first law can be reformulated as

variations of the area of the horizon. On the same grounds, the semiclassical Euclidean

partition function is reviewed from the new quasilocal perspective. The framework repro-

duces the classic Bekenstein-Hawking entropy and the newly introduced quasilocal energy.

The quasilocal approach can also be addressed by using Isolated Horizons. The quantiza-

tion procedures are explored for the rotating Isolated Horizon starting from a symplectic

structure analysis, and using the Loop Quantum Gravity Hilbert space.

Finally, through a statistical analysis, the macroscopic consequences of the quantum gran-

ular model based on the Loop Quantum Gravity approach are studied. Special emphasis

is put on the rotating quantum black hole model, however the results are not conclusive as

several assumptions should be made on the way. Nevertheless, the perspective is promising

as some of the semiclassical results, for instance the entropy, can be reproduced.

Résumé
Les trous noirs sont étudiés d’un point de vue théorique. Les propriétés thermodynamiques

et quantiques des trous noirs sont abordées à travers des nouvelles perspectives. On

explore différents problèmes logiquement reliés: depuis les lois de la mécanique des trous

noirs, en passant par la function partition Euclidienne des trous noirs, jusqu’aux modèles

microscopiques quantiques et granulaires.

L’approche repose sur deux principes: la thermodynamique importante pour les trous

noirs se situe près de l’horizon et la géométrie quantique de l’espace-temps est granuleuse.

On examine la première loi de la mécanique des trous noirs avec une perspective quasilocal

basée sur des observateurs près de l’horizon. Il s’avère que la première loi peut être

simplement reformulée comme la variation de l’aire de l’horizon. Ensuite, on examine

la fonction de partition Euclidienne à partir de la nouvelle perspective quasilocal, et on

reproduit l’entropie de Bekenstein-Hawking ainsi que l’energie quasilocal nouvellement

introduite.

L’approche quasilocal peut être abordée par un point de vue basé sur les Horizons Isolés.

Dans ce cadre, on explore la quantification de l’Horizon Isolé rotatoire, en analysant la

structure symplectique, et en utilisant l’espace de Hilbert de la Gravitation Quantique

à Boucles. Finalement, on étudie les conséquences macroscopiques du modèle quantique

granulaire basé sur la Gravitation Quantique à Boucles. L’accent est mis sur le modèle de

trou noir en rotation, les résultats ne sont pas concluants du fait que plusieurs hypothèses

doivent être posées. Cependant, la perspective est prometteuse. Certains des résultats,

comme l’entropie, peuvent être reproduits.


