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Introduction

We begin this introduction with a brief survey on Einstein-Cartan Theory, the underlying framework

on which this thesis has been developed.

In Special Relativity Theory (SRT), the underlying Minkowski spacetime admits, as its group of

automorphisms, the full Poincaré group, consisting of translations and Lorentz transformations. It fol-

lows from the first Noether theorem that classical, special relativistic field equations, derived from a

variational principle, give rise to conservation laws of energy-momentum and angular momentum. Us-

ing Cartesian coordinates (xµ), abbreviating ϕ,ρ ≡ ∂ϕ
∂xρ and denoting by T µν and Sµνρ = −Sνµρ the

tensors of energy-momentum and of intrinsic angular momentum (spin), respectively, one can write the

conservation laws in the form

T µν,ν = 0 (1)

and

(xµT νρ − xνT µρ + Sµνρ),ρ = 0. (2)

In the presence of spin, the tensor T µν need not be symmetric,

T µν − T νµ = Sµνρ,ρ . (3)

Belinfante and Rosenfeld have shown that the tensor

Tµν = T µν +
1

2
(Sνµρ + Sνρµ + Sµρν),ρ (4)

is symmetric and its divergence vanishes.

In quantum theory, the irreducible, unitary representations of the Poincaré group correspond to

elementary systems such as stable particles; these representations are labeled by the mass and spin.

In Einstein’s General Relativity Theory (GRT), the spacetime M is curved; the Lorentz group - but

not the Poincaré group - appears as the structure group acting on orthonormal frames in the tangent

spaces of M . The energy-momentum tensor T appearing on the right side of the Einstein equation is

necessarily symmetric. In GRT there is no room for translations and the tensors T and S.
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INTRODUCTION

By introducing torsion and relating it to S, Cartan restored the role of the Poincaré group in

relativistic gravity: this group acts on the affine frames in the tangent spaces of M . Curvature and

torsion are the surface densities of Lorentz transformations and translations, respectively. In a space

with torsion, the Ricci tensor need not be symmetric so that an asymmetric energy-momentum tensor

can appear on the right side of the Einstein equation.

Sciama and Kibble showed that the equation of motion for such a theory is

R̃µν −
1

2
gµν R̃ = 8πT eff

µν . (5)

Here, R̃µν and R̃ are, respectively, the Ricci tensor and scalar formed from g. Neglecting indices one can

write symbolically

T eff = T + S2. (6)

The symmetric tensor T is

Tµν = T µν +
1

2
∇̃ρ(Sνµρ + Sνρµ + Sµρν). (7)

It is remarkable that the Belinfante-Rosenfeld symmetrization of the canonical energy-momentum tensor

appears as a natural consequence of Einstein-Cartan Theory (ECT). From the physical point of view,

the second term on the right side of (6), can be thought of as providing a spin-spin contact interaction,

reminiscent of the one appearing in the Fermi theory of weak interactions.

It is clear from (5), (6) and (7) that whenever terms quadratic in spin can be neglected - in particular

in the linear approximation - ECT is equivalent to GRT. To obtain essentially new effects, the density

of spin squared should be comparable to the density of mass. For example, to achieve this, a nucleon of

mass m should be squeezed so that its radius rCart be such that(
`2

r3
Cart

)2

≈ m

r3
Cart

, (8)

where `2 ≈ 10−33 cm is the Planck lenght (in general relativistic units so G = c = 1 and ~ = `2 so mass

and energy are measured in centimeters). Introducing the Compton wavelength rCompt = `2

m ≈ 10−13 cm,

one can write

rCart ≈ (`2rCompt)
1/3. (9)

The “Cartan radius” of the nucleon, rCart ≈ 10−26 cm, so small when compared to its physical radius

under normal conditions, is much larger than the Planck length. Curiously enough, the energy `2/rCart

is of the order of the energy at which, according to some estimates, the grand unification of interactions

is presumed to occur.

Having said this let us summarize the content of our work:
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INTRODUCTION

In Chapter I the chiral anomaly in the context of the Loop Quantum Gravity (LQG) canonical

formulation of gravity with fermions has been studied. In particular we have focused our attention

in the so called “non-minimal” coupling formulation for fermions, motivated mainly by recent

investigations about how to reconcile the nonvanishing torsion tensor generated by the presence

of fermionic degrees of freedom and the starting point of LQG, which is the Holst modification

of the Hilbert-Palatini action. A brief comment on the Atiyah-Singer index theorem as a way of

calculating the anomaly is made along with a naive ansatz for getting further“torsional topological

invariants” in arbitrary even spacetime dimensions.

In Chapter II we canonically analize gauge theories in the presence of spacetime torsion. In the

literature it is usually assumed that gauge bosons cannot couple to spacetime torsion because it

would spoil the gauge invariance of the action leading to a disaster at the quantum level. However,

some 30 years ago Hojman et al. found a way of reconciling the two usually assumed principles

of nature, namely, minimal coupling and gauge invariance. Here we arrive at the same conclusion

in the Maxwell case and discuss a bit why this fails in the case of Yang-Mills theory but also how

it can somehow be “cured”. We also show that the radiation equation of state is not modified in

the presence of spacetime torsion. Finally we make a little analysis on how the “tlaplon” field (a

dynamical source of torsion) could modify the current understanding of the behavior of LQG in

the presence of spacetime torsion.

In Chapter III we present our main proposal. It is known that fermions are not irreducible rep-

resentations of GL(4, R) but SO(3, 1). This implies that in curved spacetime it is mandatory to

use the vielbein formalism along with the equivalence principle in order to have a well defined

Dirac operator. Thus we are led to a local gauge theory of gravity for the group SO(3, 1) with

a corresponding “spin gauge connection”. As Cartan understood, it is arbitrary that the vielbein

(metric) will be the only independent field of the gravitational theory because the metric and affine

properties of space need not be related. The spin connection should be taken more seriously since

in analogy with electromagnetism, when a field couples to this connection it acquires a “charge”

in the Noether sense. We show that this charge is nothing but the torsion generated by this cou-

pling. The question then arises of why bosons could not do the same. All forms of matter generate

spacetime curvature through their energy-momentum content as Einstein taught us. So why the

generation of spacetime torsion should be an exclusive feature of fermions? We propose a new kind

of bosonic fields ((p − 1)-forms) in arbitrary dimensions that do generate torsion. Apart of being

an academic exercise, we try to realize what would be the implications of having such fields in

situations of physical interest. These “toy models” should not be taken so seriously as they are first

approximations of what this mathematical framework has to offer.

Finally we present several appendices in order to make the discussion self-contained and as a source

of future reference.
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Caṕıtulo 1

Chiral Anomaly in Loop Quantum

Gravity and spacetime torsion

1.1. Non-minimally coupled Dirac fermion and Holst action for

gravity

Let us consider four-dimensional “Holst action” [1], which at the Hamiltonian level reduces to the

Ashtekar-Barbero formalism for gravity [3][4][5]. Recall that in this setup for the gravitational interaction,

its connection belongs to a SU(2) algebra (universal covering of SO(3)). This connection is necessary in

order to preserve the local gauge freedom of the triad under rotations in the foliation leaves of spacetime.

Besides we add the contribution of a massless uncharged Dirac field which couples non-minimally to

curved spacetime and creates nonvanishing torsion [2]. The total action is

S[e, ω,Ψ] = SG[e, ω] + SF [e, ω,Ψ]

= 1
16πG

(∫
M

d4x|e|eµI e
ν
JR

IJ
µν(ω)− 1

γ

∫
M

d4x|e|eµI e
ν
J
∗RIJµν(ω)

)
+ i

2

∫
M

d4x|e|
[
Ψ̄γIeµI

(
1− i

αγ5

)
∇µΨ−∇µΨ

(
1− i

αγ5

)
γIeµIΨ

]
, (1.1)

where ωIJµ is the Lorentz connection and RIJµν(ω) = 2∂[µω
IJ
ν] + [ωµ, ων ]IJ its curvature. ∗RIJµν =

1
2ε
IJ
KLR

KL
µν is a Hodge dual and ∇µ ≡ ∂µ− i

2ω
IJ
µ σIJ is the Lorentz covariant derivative, where σIJ are

the Lorentz algebra generators. In the spinorial representation σIJ = i
4 [γI , γJ ], so ∇µ = ∂µ+ 1

4ω
IJ
µ γ[IγJ]

is the appropiate covariant derivative for fermions (with γI being the Dirac matrices in Minkowski space-

time) which is defined through [∇µ,∇ν ] = 1
4R

IJ
µνγ[IγJ]. γ ∈ < is the so-called Immirzi parameter [6][7]

of Loop Quantum Gravity (LQG)[8][9][10][11]. α ∈ < is a non-minimal coupling for fermions [2][12].

Minimal coupling is recovered taking α→∞. We define /∇ = γIeµI∇µ = γIeµI ∂µ + 1
4γ

IeµIω
JK
µ γ[JγK].

1



CAPÍTULO 1. CHIRAL ANOMALY IN LOOP QUANTUM GRAVITY AND
SPACETIME TORSION

1.2. Fujikawa method for the evaluation of the Anomaly

1.2.1. Minimal coupling

Let us follow the standard method due to Fujikawa for the evaluation of the Chiral Anomaly [15].

Gamma matrices in chiral representation are

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, (1.2)

so γ02
= 1 and γi

2
= −1. Besides γ0† = γ0 and γi

†
= −γi so γI

†
= γ0γIγ0, with I = 0, 1, 2, 3. We now

perform the following Wick rotation in the local Lorentz frame:

eµ0 → ieµ4 , e→ −ie, γ0 → −iγ4, γ5 = iγ0γ1γ2γ3 = γ4γ1γ2γ3. (1.3)

With such a change we get the “inner” metric GIJ = diag(−1,−1,−1,−1). /∇ operator is Hermitian,

/∇† = /∇, so we can consider a complete basis set ϕn(x) which satisfies

/∇ϕn(x) = λnϕn(x), (1.4)∫
d4x|e|ϕ†n(x)ϕm(x) = δn,m. (1.5)

Proof of Hermiticity is easy (see Appendix A).

Let us now consider local chiral transformations on the Dirac field

Ψ(x)→Ψ′(x) ≡ eiε(x)γ5Ψ(x), (1.6)

Ψ̄(x)→Ψ̄′(x) ≡ Ψ̄(x)eiε(x)γ5 .

We can expand these fields in the complete basis in the form

Ψ(x) ≡
∑
n

anϕn(x) =
∑
n

an〈x|n〉 (1.7)

Ψ̄(x) ≡
∑
n

ϕ†n(x)b̄n =
∑
n

〈n|x〉b̄n, (1.8)

where an and bn are Grassmannian coefficients. Then,

Ψ′(x) ≡
∑
n

a′nϕn(x) =
∑
n

ane
iε(x)γ5ϕn(x),

so

a′m =
∑
n

∫
d4x|e|ϕ†m(x)eiε(x)γ5ϕn(x)an

=
∑
n

Cm,nan. (1.9)

2



1.2. FUJIKAWA METHOD FOR THE EVALUATION OF THE ANOMALY

According with Grassmannian nature, DΨ′(x) =
∏
m da

′
m = [detCm,n ]−1

∏
n dan and [detCm,n ]−1 =

det[δm,n + i
∫
d4x|e|ε(x)ϕ†m(x)γ5ϕn(x)]−1. Using Jacobi’s formula, detX = exp(Tr(lnX)), we get that

[detCm,n ]−1 = exp

[
−i
∑
n

∫
d4x|e|ε(x)ϕ†n(x)γ5ϕn(x)

]

≡ exp

[
− i

2

∫
d4xε(x)A (x)

]
(1.10)

where the anomaly A (x) has been defined as

A (x) ≡ 2
∑
n

|e(x)|ϕ†n(x)γ5γn(x) = 2Trγ5 · δ(0), (1.11)

which is an ill-defined quantity. The Jacobian for DΨ̄ gives an identical factor so Dµ →
Dµexp[−i

∫
d4xε(x)A ] where Dµ is the total integration measure of the path integral. With the stan-

dard regularization A (x) is

A (x) = ĺım
β→0

2
∑
n

|e(x)|ϕ†n(x)γ5exp(βλ2
n)ϕn(x)

= ĺım
β→0

ĺım
x′→x

2Trγ5|e|eβ /∇
2 ∑

n

ϕn(x)ϕn(x′)†. (1.12)

The regulator β need not be taken to zero in order to regulate the trace. The reason is that for each

nonzero eigenvalue of /∇2
, there are two states of opposite chirality and therefore they cancel pairwise

in the trace. The only remaining contribution comes from the zero modes and on those states the

exponential of /∇2
is just the identity. Thus the anomaly equals the number of right-handed (ν+) minus

the number of left-handed (ν−) zero modes, or∫
A (x) = ν+ − ν−, (1.13)

so the anomaly is the index of the Dirac operator in the sense of the Atiyah-Singer theorem [16][17].

We recall that the commutator of two covariant derivatives for the group of diffeomorphisms of a

manifold in a coordinate basis is

[∇µ,∇ν ]V A = −Tλµν∇λV A +RABµνV
A, (1.14)

where V A represents any tensor (or spinor) under diffeomorpshims or under the group of tangent ro-

tations, and RAB is the curvature tensor in the corresponding representation [18]. Here curvature and

torsion play quite different roles: Tλµν is the “structure function” for the diffeomorphism group and

RABµν is a “central charge”. The square of the Dirac operator acting on a spinor is given by

/∇2
Ψ = γµ∇µ(γν∇νΨ)

= γIγJeµI e
ν
J∇µ∇νΨ

= (γ(IγJ) + γ[IγJ])eµI e
ν
J∇µ∇νΨ

= ∇µ∇µΨ + σIJeµI e
ν
J [∇µ,∇ν ]Ψ,

3



CAPÍTULO 1. CHIRAL ANOMALY IN LOOP QUANTUM GRAVITY AND
SPACETIME TORSION

so we have that [19][22]

/∇2
= ∇µ∇µ − eµI e

ν
Je
λ
Kσ

IJTKµν∇λ +
1

2
eµI e

ν
Jσ

IJσKLRKLµν . (1.15)

The anomaly is

A (x) = ĺım
y→x

ĺım
β→0

2Tr[γ5exp(β /∇2
)]δ(x, y) (1.16)

where δ(x, y) is the generalized Dirac delta in curved spacetime

δ(x, y) =

∫
d4k

(2π)4
eik

µ∇µΣ(x,y) (1.17)

and Σ(x, y) is the geodesic biscalar [23], a generalization of the quantity 1
2 (x− y)2 in flat spacetime.

Σ(x, y) has the following properties:

1. Σ(x, y) = 1
2g
µν(x)∇µΣ(x, y)∇νΣ(x, y)

2. Σ(x, x) = 0

3. ĺımy→x∇µ∇νΣ(x, y) = g ν
µ = δ ν

µ .

The integral over the “wave vector” kµ requires some careful handling. The spacetime manifold over

which the anomaly is evaluated was taken to be a compact Euclidean space (e.g.,S4) with a typical lenght

scale ` often called “the radius of the Universe” (this ensures that the tangent space symmetry SO(4)

can be embedded into SO(5)). Thus, k must be quantized in multiples of the inverse radius, kµ ∼ 2πnµ

`

with nµ ∈ Z. Now, since ` is supposed to be very large, the wave vectors kµ can be approximated

by a continuous variable. This means that the integrations over k yield inverse powers of `, which we

normalize as ∫
d4k

(2π)4
= `−4,

∫
d4k

(2π)4
kµkν = `−6gµν , etc. (1.18)

Applying the operator exp(β /∇2
) on the delta, taking the limit y → x and tracing over spinor indices,

one finds

Aβ =
1

8π2

[
− 2

(
β

`2

)
`−2e ·R · e+

(
β

`2

)2

Rab ∧Rab + 2

(
β

`2

)2

`−2T · T
]

+O

[(
β

`

)−2
]
. (1.19)

In the standard calculations, the lenght scales ` ∼ β1/2 are identified with M−1. This means that only

the second term would be finite, while the first and third diverge like M2 and the terms O

[(
β
`

)−2
]
∼

M−2 are neglected. In our case, we see that if one identifies β with `2 the expression for the anomaly is

finite to all orders and the first three terms are

1

8π2

[
Rab ∧Rab +

2

`2
(T a ∧ Ta −Rab ∧ ea ∧ eb)

]
, (1.20)

4



1.2. FUJIKAWA METHOD FOR THE EVALUATION OF THE ANOMALY

which is the Chern class for SO(5) (See Appendix B). The above result has been a source of controversy

[20][21] and it has been argued that it is not conceptually right. We think the line of thought is correct.

Moreover, other authors have obtained the same result using other methods [24][25][26][27].

We see that the relevant Dirac operator that entered in the regulator could be written as ēµaγ
a∇µ,

where ēaµ = `−1eaµ, which is the way the vielbein enters in the embedding (ω, e)→W. In agreement with

this, the anomaly is the second Chern class for SO(5), instead of being the second Chern class for SO(4).

In terms of the “physical” fields ω and ē, the regulator β = `2 drops out the trace before the limit

β → 0 is performed. In other words, the result should be correct to all orders in powers of β. This

is because the limit β → 0 is actually unnecessary: as we mentioned before, the trace erases all β-

dependence. Thus the result should be independent of β before the limit is performed. It should be

stressed that the choice β = `2 is the only one needed to yield a β-independent result, and there seems

to be no other similarly simple adjustment that would do the trick. For example, if one had chosen

β′ = ϑ`, with ϑ an arbitrary constant, the result would not be an exact form because this would change

the relative factor between the two terms in the Nieh-Yan form.

1.2.2. Non-minimal coupling

Let us now consider the non-minimal coupling. Before we had that γµ = −γµ† and that implied that

/∇† = /∇. Now, /∇′ = γIeµI
(
1− i

αγ5

)
∇µ will be Hermitian as long as γµ

(
1− i

αγ5

)
is too. (The proof

can be found in Appendix A). Using the fact that {γ5, γ
I} = 0 and γ5

2 = 1, we obtain that in this case

/∇′
2
Ψ =

(
1 +

1

α2

)
/∇2

Ψ ≡ χ/∇2
Ψ, (1.21)

where /∇2
stands for the minimal Dirac operator. So we have that exp(β /∇2

)→ exp(βχ /∇2
) ≡ exp(βχ /∇

2
)

and this leads us to

Aβχ(x) =
1

8π2

[
− 2χ

(
β

`2

)
`−2e ·R · e+ χ2

(
β

`2

)2

Rab ∧Rab + 2χ2

(
β

`2

)2

`−2T · T
]

+O

[
χ−2

(
β

`

)−2
]
. (1.22)

Now it all depends on the identification we will do.

β = `2

If we insist in taking β = `2, we get

Aβχ(x) =
1

8π2

[
χ2Rab ∧Rab + 2χ2`−2T · T − 2χ`−2e ·R · e

]
+O

[
χ−2`−2

]
. (1.23)

The anomaly has to be of a topological character because it is a quantum effect not present at the

classical level. In order to achieve the Nieh-Yan four-form, it is necessary that the second and third

5



CAPÍTULO 1. CHIRAL ANOMALY IN LOOP QUANTUM GRAVITY AND
SPACETIME TORSION

terms in the above expression be of the same order for the Nieh-Yan topological invariant is N =

d(ea ∧ T a) = T a ∧ Ta − ea ∧ eb ∧ Rab. In order to achieve this we take χ2 = χ, implying that χ = 0 or

χ = 1. The first solution would lead us to α = ±i but we need it to be real-valued (If not, /∇′ would not

be Hermitian and /∇′
2

= 0). The second solution implies that α = ∞, which leads us to the minimal

coupling scenario.

βχ = `2

We could“save”the situation if we make the identification βχ = `2 ≡ 1
|Λ| where Λ is the“cosmological

constant”. Then we would get the following anomaly

Aβχ(x) =
1

8π2

[
Rab ∧Rab +

2

βχ
(T a ∧ Ta −Rab ∧ ea ∧ eb)

]
=

1

8π2

[
Rab ∧Rab +

2

`2
(T a ∧ Ta −Rab ∧ ea ∧ eb)

]
. (1.24)

Now, if the regulator was M (as in the standard Fujikawa method), exp(− /∇2
/M2)→ exp(−χ/∇2

/M2) ≡
exp(− /∇2

/Mχ
2), where we have defined Mχ

2 = M2

χ . Then one gets

AMχ
(x) =

1

8π2

[
Rab ∧Rab + 2Mχ

2(T a ∧ Ta −Rab ∧ ea ∧ eb)
]

=
1

8π2

[
Rab ∧Rab +

2M2

χ
(T a ∧ Ta −Rab ∧ ea ∧ eb)

]
. (1.25)

If we perform the non-trivial transformation

ea → ẽa =
ea

Mχ`
=
χ1/2ea

M`
(1.26)

we arrive at a finite anomaly

A (x) =
1

8π2

[
Rab ∧Rab +

2

`2
(T a ∧ Ta −Rab ∧ ea ∧ eb)

]
=

1

8π2

[
Rab ∧Rab + 2|Λ|(T a ∧ Ta −Rab ∧ ea ∧ eb)

]
. (1.27)

Even if the transformation (1.26) is arbitrary we are performing the calculations on a given back-

ground spacetime without dynamics so it has no physical consequences and it is purely formal. In the

analysis e is an external classical background field. One could view the rescaling of the vielbein as an

invariance of the action, provided the Dirac field is suitably rescaled as well. However, in order for this

invariance of the action to be interpreted as a symmetry generated by charges acting on the fields, one

should include a scale-invariant Lagrangian for e. The vielbein has units of (mass)0 and is, therefore,

not of the same canonical dimension as the connection. If `−1e is to be regarded as part of a connection

of SO(5), the limit M → ∞ keeping ` fixed could be interpreted as a way to turn the SO(4)-invariant

action into that for a spinor minimally coupled to an SO(5) connection. In this case, the chiral anomaly

is then given by P4[SO(5)] as we have seen.
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1.2. FUJIKAWA METHOD FOR THE EVALUATION OF THE ANOMALY

It has been shown that when α = γ a classical effect of the Immirzi parameter through spacetime

torsion is avoided [2][12] since the usual “extra-term” of the Holst modification compared to Hilbert-

Einstein becomes the Nieh-Yan topological density multiplied by 1
2γ and hence cannot affect the classical

behaviour of the system [13]. Since there is not known way of giving quantum dynamics to the gravi-

tational field (the calculation of the anomaly is performed on a classical spacetime background) we did

not success in finding a link between α and γ. However if we stick with the first approximation we took

for the non-minimal coupling case, α =∞, we should accept that γ will have classical implications and

could in principle be measured through spacetime torsion [28][29].

Surprisingly during the final stage of this thesis another closely related calculation has been published

[30]. The authors of this reference perform the calculation of the chiral anomaly using Schwinger’s

proper-time formalism and the Seeley-DeWitt heat-kernel expansion [31][32][33]. Based in the primary,

old-fashioned idea of Sakharov’s induced gravity and gauge interactions [34] they found that

γ =
(N0 +N 1

2
− 4N1)

3NL
, (1.28)

where N0 is the number of minimal scalar degrees of freedom (dof), N 1
2

is the number of two-component

fermion fields, N1 is the number of gauge fields (half the number of gauge dof) and NL is the number of

chiral left handed modes. In the framework of the Standard Model, they take N0 = 4 (Higgs), N 1
2

= 45,

N1 = 12, NL = 3 (neutrinos), yielding γ = 1
9 ≈ 0,11 which is quite close to the (a bit obsolete)

Ashtekar-Baez-Corichi-Krasnov value [35][36] γABCK = ln 2
π
√

3
≈ 0,13 (see [37] for a better estimation).

Their starting point however was an action consisting in the Hilbert-Einstein plus Nieh-Yan terms.

We can adapt our calculation to these results. In the first approach we took, we should conclude

that dynamics for fermions must be of minimal coupling nature and the Immirzi parameter is a real

constant multiplying the Nieh-Yan topological term in the gravitational sector of the action so γ does

not appear in the classical equations of motion. This alternative is attractive since it resembles the so

called θQCD angle ambiguity of Quantum Chromodynamics [38][39] in the sense that a classical canonical

transformation would not be unitarilly implemented at the quantum level so the spectrum of geometric

operators depends explicitly on γ [40]. This suggests that the Ashtekar-Barbero canonical formulation of

gravity represents a non-trivial extension of the Einstein-Cartan theory. Specifically, the presence in the

action of the Nieh-Yan invariant, introduces into the theory also information about the global structure

of the local gauge group [41] and should not be regarded just as an ad-hoc way of getting rid of classical

effects of the Immirzi parameter in the presence of torsional matter. (See Appendix C)

If we stick with the second approach, we will be led to a “rescaled Immirzi parameter” γχ that reads

γχ =
(N0 +N 1

2
− 4N1)

3NL
χ, χ = 1 +

1

α2
. (1.29)

In this way, reconciling Hawking’s semiclassical black hole entropy formula along with the particle

content of the Standard Model would require that chiral left handed modes (such as neutrinos) couple

non-minimally to curved spacetime. Suppose we are dealing with an action describing a massive neutrino.
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CAPÍTULO 1. CHIRAL ANOMALY IN LOOP QUANTUM GRAVITY AND
SPACETIME TORSION

The equation of motion in a spacetime background would be

(i /∇′ −m)Ψ = 0. (1.30)

Multiplying by (i /∇′ +m) we get

( /∇′
2

+m2)Ψ = (χ/∇2
+m2)Ψ = 0. (1.31)

Now let us go to a local frame where gravity is neglected in virtue of the equivalence principle so we set

eaµ = δaµ and ωab = 0. Then, the equation of motion reads

(χ/∂
2

+m2)Ψ = 0, (1.32)

which is equivalent to the dispersion relation

E2 = p2 +m2
χ (1.33)

where mχ ≡ m
χ . So we see that the naive “classical relativistic rest mass” is redefined in the presence of

a non-minimal coupling parameter.

1.3. Calculation of the Anomaly via Index Theorem

For a fermionic theory with gravitational and Yang-Mills gauge fields we have to consider the following

Dirac operator:

/D = eµaγ
a(∂µ +Aµ + ωµ), (1.34)

with the Yang Mills one-form A = Aµdx
µ = AiµT

idxµ and spin connection ω = ωµdx
µ = 1

2ωabµσ
abdxµ.

The Atiyah-Singer index theorem tells us that

indexD+ =

∫
M2n

Ch(F )Â(M), (1.35)

where D+ is the Weyl operator D+ = i /DP+ and P+ = 1
2 (1 + γ5) as usual [43].

Here Ch(F ) stands for the Chern character defined as

Ch(F ) = tr exp

[
i

2π
F

]
= r +

i

2π
trF +

1

2!

(
i

2π

)2

trF 2 + . . . , (1.36)

where r is the dimension of the group and F is the curvature 2-form, F = dA+A ∧A.

Â(M) is the Dirac genus defined by

Â(M) =
∏
a

xa/2

sinhxa/2
. (1.37)
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1.3. CALCULATION OF THE ANOMALY VIA INDEX THEOREM

The quantities xa denote the skew eigenvalues of the curvature 2-form

Rab
2π

=



0 x1

−x1 0

. . .

0 xn

−xn 0


, (1.38)

which we consider as a matrix in the Lie algebra of SO(2n). Each xa expresses a 2-form. The Dirac

genus Â(M) can be expanded to arbitrary order in R so it represents a sum of invariant polynomials

in the curvature 2-form to a given finite order depending on the dimension of the manifold [42]. (See

Appendix D)

In our expression for the AS theorem Ch(F )Â(M) means the wedge product of the Chern character

with the Dirac genus in a given order corresponding to the dimension of the manifold. Mixed terms occur

only in dimensions higher than or equal to 6 so in particular in n = 4 there are not mixed anomaly

contributions. Explicitly, for n = 4 the index of the Weyl operator is

indexD+ =
1

(2π)2

∫
M4

[
−1

2
trF 2 +

r

48
trR2

]
. (1.39)

In the presence of torsion the relevant tangent group of rotations is SO(5) instead of SO(4) [19] (see

Appendix B) so we have to consider the Pontryagin density associated with the curvature 2-form

RAB ∧RAB = Rab ∧Rab +
2

`2
(Ta ∧ T a − ea ∧ eb ∧Rab). (1.40)

Taking account of this fact, the index we should seek for is

indexDT
+ =

1

(2π)2

∫
M4

[
−1

2
trF 2 +

r

48
trR2

]
=

1

(2π)2

∫
M4

[
−1

2
trF 2 +

r

48
tr

{
R2 +

2

`2
(T 2 − e2R)

}]
, (1.41)

where DT
+ stands for the Weyl operator in the presence of torsion.

A naive ansatz would be that in order to obtain possible torsional contributions to the chiral anomaly

in even n-dimensional spacetimes for a fermionic theory with Yang-Mills and gravitational gauge fields,

all we have to do is to replace the SO(n) curvature 2-form by a SO(n+1) curvature 2-form (as in (1.40))

in the expansion of the Dirac genus. This will be carefully analized and discussed elsewhere.
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Caṕıtulo 2

Gauge Theories in the presence of

spacetime torsion

2.1. Maxwell Field in the presence of spacetime torsion

Let us consider the action for Maxwell electrodynamics in curved spacetime

S[g,Γ, A] = −1

4

∫
d4x
√
−gFµν Fµν . (2.1)

If we take minimal coupling as a true principle of nature then

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ + Tλµν Aλ, (2.2)

recalling that Tλµν = Γλµν −Γλνµ. This of course spoils gauge invariance in its usual form. Since gauge

invariance is a key feature for the renormalizability of Quantum Electrodynamics, the usual approach is

to take Γ as the Levi-Civita connection and deny the possibility that “photons” can couple to spacetime

torsion. Let us take a stubborn attitude and stick with minimal coupling as a true principle of nature.

Canonical analysis will show us the way of reconciliation with gauge invariance.

We will perform the ADM Hamiltonian decomposition. Without loss of generality one takes the

metric to be

ds2 = gµνdx
µdxν = −N2dt2 + qij (dx

i +N idt)(dxj +N jdt). (2.3)

N and N i are called the Lapse Function and the Shift Vector, respectively [44][45]. They are Lagrange

multipliers associated with the Hamiltonian and Vector constraints of General Relativity. qij is the 3-

metric induced in the foliation of spacetime we are performing in order to achieve a Hamiltonian analysis.

Using the fact that in this setup
√
−g = N

√
q, we define the canonical momenta associated with the

11



CAPÍTULO 2. GAUGE THEORIES IN THE PRESENCE OF SPACETIME TORSION

spatial A field as

Πi =
δS

δÅi
= −N√qF 0i, (2.4)

and where we define Åi ≡ ∂0Ai + T j0iAj . (See Appendix E for a better understanding of this choice,

[43][46]).

With these facts we can write (2.1) in the following 3 + 1 form

S[q,Γ, A] =

∫
d3x

∫
dt

{
ΠiÅi −

1

2
ΠiF0i +A0DiΠ

i −
N
√
q

4
Fij F

ij

}
, (2.5)

where DiΠ
i ≡ ∂iΠ

i + T 0
0iΠ

i is a covariant derivative. This deviation of the standard result is natural

when we realize that, as always, A0 has no dynamics so it enters in the action as a Lagrange multiplier

of the first class constraint of the U(1) gauge theory for electromagnetism, Gauss constraint. One can

prove that

F0i =
N
√
q
qijΠ

j +N jFji . (2.6)

We then get the final form

S[q,Γ, A] =

∫
d3x

∫
dt

{
ΠiÅi +A0DiΠ

i − 1

2
N jΠiFji −N

(
1

2
√
q

ΠiΠjqij +

√
q

4
Fij F

ij

)}
. (2.7)

Given a function f on phase space, we may associate with it a vector field V on phase space by the

requirement that for any function g on phase space, we have V (g) = {f, g}PB, where the Poisson bracket

{f, g}PB is defined by

{f, g}PB =

∫
Σt

(
∂f

∂q

∂g

∂π
− ∂g

∂q

∂f

∂π

)
. (2.8)

One may verify that the vector field V associated in this manner with the “constraint function” f =∫
Σt
χiφi (where χ is an arbitrary function on Σt, there is no summation on i and φi ≈ 0 is a first class

constraint) is just the infinitesimal generator of the one-parameter family of transformations on phase

space associated with the gauge transformations of the theory. The constraint “generates” the gauge

transformations. By restricting to the “constraint submanifold”φi = 0 and to the space of orbits of V on

this submanifold, we obtain a consistent, constraint-free Hamiltonian formulation on a “reduced phase

space” [47][48]. So considering the Gauss first class constraint

DiΠ
i ≈ 0, (2.9)

we get that

δAµ = Dµχ = ∂µχ+ T 0
0µ χ. (2.10)
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2.1. MAXWELL FIELD IN THE PRESENCE OF SPACETIME TORSION

We note that in particular δA0 = ∂0χ under a gauge transformation. Given this transformation we must

impose that the strength field be gauge invariant. So we require that

δFµν = ∂µT
0
0ν χ+ T 0

0ν ∂µχ− ∂νT 0
0µ χ− T 0

0µ ∂νχ+ T ρµν ∂ρχ+ T ρµν T
0
0ρ χ = 0. (2.11)

This is equivalent to the system

∂µT
0
0ν − ∂νT 0

0µ + T ρµν T
0
0ρ = 0, (2.12)

T 0
0ν δ

ρ
µ − T 0

0µ δ
ρ
ν + T ρµν = 0. (2.13)

The second equation implies that T ρµν T
0
0ρ = 0, so the first one is satisfied if

T 0
0µ = ∂µϕ, (2.14)

with ϕ(x) some scalar field. Finally,

T ρµν = δρν∂µϕ− δρµ∂νϕ, (2.15)

where ϕ(x) is the “tlaplon” field of Hojman et al. (HRRS theory, [49][50]), which in the literature has

been identified with the dilaton. In our case we have that

δAµ = Dµχ = ∂µχ+ χ∂µϕ, Åi = Ȧi + ϕ̇Ai. (2.16)

HRRS theory arrives to the same form of torsion when taking δAµ = eϕ∂µΛ. In any case it is clear that

when ϕ(x) vanishes we get the usual theory. So as it was stressed before for the Maxwell field, minimal

coupling and gauge invariance are consistent with nonvanishing torsion of a particular type. Dynamics

for the ϕ(x) field is incorporated into the Hilbert-Einstein action if we consider the Ricci scalar R(Γ) as

a function of the full connection Γρµν which includes torsion. The Hamiltonian for the Maxwell theory

is

HM =

∫
d3x

{
−A0DiΠ

i +
1

2
N jΠiFji +N

(
1

2
√
q

ΠiΠjqij +

√
q

4
Fij F

ij

)}
, (2.17)

a linear combination of first class constraints. Energy density is defined in this context as

ρ =
1
√
q

δHM

δN
=

1

2q
ΠiΠjqij +

1

4
Fij F

ij . (2.18)

On the other hand, pressure is defined as (see Appendix F)

P = − 2

3N
√
q
qab

δHM

δqab
=

1

3

(
1

2q
ΠiΠjqij +

1

4
Fij F

ij

)
, (2.19)

so, as always,

P =
1

3
ρ, (2.20)

and the presence of spacetime torsion does not affect the radiation equation of state [46].
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CAPÍTULO 2. GAUGE THEORIES IN THE PRESENCE OF SPACETIME TORSION

2.2. Yang-Mills Fields in the presence of spacetime torsion

It is natural to generalize the above results for the case of Yang-Mills fields. In this case the field

strenght will be

F aµν = ∂µA
a
ν − ∂νAaµ + gYMf

a
bcA

b
µA

c
ν + Tλµν A

a
λ, (2.21)

where fabc are the structure constants of the Lie algebra where the connection belongs which we will

assume is SU(N). a, b, c = 1, . . . , N2 − 1, are internal group indices and gYM stands for a coupling

constant. The Yang-Mills action is

S[g,Γ, Aa] = −1

4

∫
d4x
√
−gF aµνF aµν . (2.22)

Going through the same ADM decomposition we get to the following form of the 3 + 1 action

S[q,Γ, Aa] =

∫
d3x

∫
dt

{
Πi
aÅ

a
i +Aa0DiΠ

i
a −

1

2
N jΠi

aF
a
ji −N

(
1

2
√
q

Πi
aΠj

aqij +

√
q

4
F aijF

aij

)}
, (2.23)

where again Åai = ∂0A
a
i + T j0iA

a
j and the Gauss constraint reads

DiΠ
i
a ≡ ∂iΠi

a + T 0
0iΠ

i
a − gYMf

c
baA

b
iΠ

i
c ≈ 0. (2.24)

The infinitesimal gauge transformation of the connection will be

δAaµ = Dµχ
a ≡ 1

gYM
∂µχ

a +
1

gYM
T 0

0µ χ
a + fabcA

b
µχ

c. (2.25)

We now demand that under such transformation the Yang Mills field strenght transforms homogeneously.

By this we mean that at the infinitesimal level,

δF aµν = χcfabcF
b
µν . (2.26)

Applying (2.25) to (2.21) and demanding (2.26) we must impose the system

∂µT
0
0ν δ

a
b − ∂νT 0

0µ δ
a
b + gYMf

a
bcT

0
0µA

c
ν − gYMf

a
bcT

0
0ν A

c
µ + Tλµν T

0
0λ δ

a
b = 0, (2.27)

T 0
0ν δ

ρ
µ − T 0

0µ δ
ρ
ν + T ρµν = 0. (2.28)

Multiplying the second equation by T 0
0ρ we get that, as before, T ρµν T

0
0ρ = 0, so we are left with

∂µT
0
0ν δ

a
b − ∂νT 0

0µ δ
a
b + gYMf

a
bcT

0
0µA

c
ν − gYMf

a
bcT

0
0ν A

c
µ = 0. (2.29)

Now multiplying (2.28) by Acρ we can write (2.27) as

∂µT
0
0ν δ

a
b − ∂νT 0

0µ δ
a
b + gYMf

a
bcT

ρ
µν A

c
ρ = 0. (2.30)

Let us recall that for compact semisimple Lie groups we can always define a rank two symmetric tensor

as

gab = fdac f
c
bd , (2.31)
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2.3. TLAPLON FIELD IN LOOP QUANTUM GRAVITY

which serves as a metric and defines an inner product in the group. We can always diagonalize this

metric so it is proportional to the identity tensor. If we define fdbc ≡ gdafabc , using the Jacobi identity

fabc f
d
ae + face f

d
ab + faeb f

d
ac = 0, (2.32)

one can prove that the structure constants fabc are completely antisymmetric [51][52]. Such is the case

of SU(N). So taking a 6= b 6= c in (2.30) one is led to

gYMg
adfdbcT

ρ
µν A

c
ρ = 0. (2.33)

So we see that in order to keep gauge invariance of the action equation (2.33) demands us to set the

torsion tensor T ρµν = 0.

For completeness we must stress that Mukku et al. found that a modification of the covariant deriva-

tive and the Yang-Mills field strength [53], namely

Dµ = ∂µ − igYMe
−ϕAµ ·Θ, (2.34)

F aµν = ∂µA
a
ν − ∂νAaµ + gYMe

−ϕfabcA
b
µA

c
ν −AaσTσµν , (2.35)

where ϕ(x) is the tlaplon field and the torsion tensor takes the same form as in the case of the abelian

theory. The net effect of torsion on the gauge field interactions is essentially to define an effective coupling

constant which is a function of the space-time point at which the interaction takes place.

Finally, it has been argued [54] that if we take the approach that the gauge coupling is a spacetime

function then Dµ ∼ ∂µ−ig(x)Aµ, recalling that Fµν ∼ [Dµ, Dν ] one can find that the torsion tensor is in

fact the one proposed by Hojman et al. and g(x) ∼ gYMe
−ϕ. Moreover, if for example we take a product

group like SU(2)L×U(1)Y where the covariant derivative is Dµ = ∂µ− igT aAaµ− i
g′

2 Bµ it can be shown

that since the tlaplon field is the only “torsional degree of freedom” of the theory then in this setup

the coupling constants must converge. This is quite interesting since torsional effects of spacetime are

expected to become important just around the Grand Unification Theory (GUT) scale. The nontrivial

assumption that the coupling could be a a spacetime function could be somehow justified in the light of

the so called “String Landscape” of Susskind and others [55]. Of course the stringent bounds on these

couplings remember us the fact that the universe we observe right now is Riemannian and torsion could

only have played a role in the distant past. The relation between a transition from Riemann-Cartan

to Riemann spacetime and a GUT (like SU(5) or SO(10), [56][57]) to the Standard Model of particle

physics could set an unknown bridge between Quantum Field Theory and Gravitation.

2.3. Tlaplon field in Loop Quantum Gravity

Nowadays, the covariant starting point of Loop Quantum Gravity is Dirac canonical quantization

program applied to the four-dimensional Lorentzian action known as the Holst modification of the
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Hilbert-Palatini action for the gravitational field,

S[e, ω] = −1

2

∫
M4

d4x e eµae
ν
b

(
Rabµν −

β

2
εabcdR

cd
µν

)
. (2.36)

Here Rabµν = 2∂[µω
ab
ν] +2ωac[µω

cb
ν] and β is the Immirzi parameter of LQG which could be promoted to

a pseudoscalar field. We will split the Lorentz spin connection in a torsionless part ω̃ab (Ricci connection,

which obeys the homogeneous structure equation) plus the contorsion one-form Cab so ωabµ = ω̃abµ +

Cabµ , where the contorsion tensor is Cabµ = eaνe
b
ρC

νρ
µ , Cνρµ = −Cρνµ , is related to the torsion tensor

T νρµ = −T νµρ by Cνρµ = 1
2 (T νρµ − T ν

ρ µ − T ν
µ ρ ). We are considering a torsion tensor of the form

T ρµν = δρν∂µϕ− δρµ∂νϕ, so the “trace” vector is Tαµα ≡ Tµ = 3∂µϕ and we get that

S = −1

2

∫
d4x e

{
eµae

ν
b R̃

ab
µν − 2

3
TµT

µ

}
,

= −1

2

∫
d4x e

{
eµae

ν
b R̃

ab
µν − 6∂µϕ∂

µϕ

}
. (2.37)

So we see that if the torsion tensor is of “tlaplonic” form the Immirzi parameter has not classical

implications. However if we consider charged fermions coupled to curved spacetime where the fermionic

part of the action reads

Sf [e, ω, ψ, ψ̄] =
i

2

∫
d4x e eµa

(
ψ̄γa∇µψ −∇µψγaψ

)
, (2.38)

it has been shown that torsional trace and axial vectors arise [12][13][14], namely

T ρ ∼ β

1 + β2
Jρ(A), Sσ ∼ 1

1 + β2
Jσ(A), (2.39)

where Jρ(A) = ψ̄γργ5ψ is the axial fermionic current.

Taking the Holst modification with a tlaplonic torsion tensor along with a Dirac charged particle

and the Maxwell action in the HRRS form will give us interaction terms between the fermionic axial

current and the tlaplon mediated by the Immirzi parameter (so it does not violate parity) besides

the usual interactions of the Einstein-Cartan-HRRS theory. This new term would be of the form ∼
β

1+β2 ψ̄γ
αγ5ψ∂αϕ, and we see that the parity odd nature of the Immirzi parameter gives us the theoretical

chance of coupling trace and axial torsional vectors so a Dirac field could not only feel axial torsion but

also of tlaplonic nature.
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Caṕıtulo 3

(p− 1)-forms as bosonic spacetime

torsion sources

3.1. The Action

Let us consider the following action:

S[e, ω, φ, p, q] = −λ
2

∫
?(∇φa1...aq ) ∧∇φ

a1...aq , (3.1)

where φa1...aq is a Lorentz valued (p − 1)-form and {a1, . . . , aq} is a completely antisymmetric set of

indices. As an abstract operator, ∇ = d+ [ω, ] where d is the exterior derivative and ω is the spin gauge

connection one-form of gravity. It is evident that 1 ≤ p ≤ n and 0 ≤ q ≤ n in a n-dimensional spacetime

which for simplicity will be taken as Euclidean and compact. In doing so the inner space group becomes

SO(n) instead of SO(n − 1, 1). λ could be an n-dependent constant. If we define the “field strenght”

p-form as Fa1...aq = ∇φa1...aq , our action reads

S[e, ω, φ, p, q] = −λ
2

∫
?Fa1...aq ∧ F

a1...aq

= − λ

2p!p!

∫
Fa1...aqb1...bp F

a1...aq
c1...cp ? (eb1 ∧ · · · ∧ ebp) ∧ ec1 ∧ · · · ∧ ecp

= − λ

2p!p!(n− p)!

∫
Fa1...aqb1...bp F

a1...aq
c1...cp ε

b1...bp
bp+1...bn

ebp+1 ∧ · · · ∧ ebn ∧ ec1 ∧ · · · ∧ ecp .

(3.2)
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CAPÍTULO 3. (P − 1)-FORMS AS BOSONIC SPACETIME TORSION SOURCES

3.2. The Currents

3.2.1. Energy-momentum current

The definition of the energy-momentum (n − 1)-form ?U goes as follows [58]: Given a matter La-

grangian LM [e] we replace e by e+ f and calculate the term linear in f in the variation

δeLM [e] ≡ LM [e+ f ]−LM [e] = ?Ua ∧ fa +O(f2). (3.3)

Here, ?Ua is a vector-valued (n − 1)-form, the “energy-momentum current of matter”. Integrated over

a (n− 1)-dimensional spacelike hypervolume it yields the energy-momentum of matter included in this

hypervolume. Our Lagrangian depends on the orthonormal frame only via the Hodge star. This we will

make it explicit writting ?|e for the Hodge star associated with the metric described by the orthonormal

frame e. Its dependence on e is implicit and the variation not straightforward. We will derive the

“Maxwell case” in 4-D, i.e., F shall be a 2-form with no inner space indices. The general case is a mere

generalization. Let us begin from the following identity

?|eF ∧ ea ∧ eb =
1

2
εabcdF ∧ ec ∧ ed, (3.4)

Now making the replacement e→ e+ f , considering the variation and neglecting terms quadratic in f

we get

?|eF ∧ fa ∧ eb + ?|eF ∧ ea ∧ f b + (?|e+fF − ?|eF ) ∧ ea ∧ eb = εabcdF ∧ f c ∧ ed. (3.5)

We now multiply by −λ4Fab and contract. The result of doing so is

LM [e+ f ]−LM [e] =

{
− λ

2
Fab ? F ∧ eb +

λ

4
Fcb ε

cb
adF ∧ ed

}
∧ fa, (3.6)

and we recognize the energy-momentum 3-form. The generalization is straightforward. Being Fa1...aq a

p-form with q indices in the Lorentz algebra its associated energy-momentum (n− 1)-form is

?Ui[e, ω, φ, p, q] =
λ

2(p− 1)!
Fa1...aqb1...bp−1i ? F

a1...aq ∧ eb1 ∧ · · · ∧ ebp−1

− (−1)p(n−p)λ

2p!(n− p− 1)!
Fa1...aqb1...bp ε

b1...bp
bp+1...bn−1i

F a1...aq ∧ ebp+1 ∧ · · · ∧ ebn−1 . (3.7)

We can write this expression in a more compact way by means of the contraction operator [17]. Recalling

that Ieie
j = δji , we get that

?Ui[e, ω, φ, p, q] =

(
(−1)p−1λ

2

)
? F a1...aq ∧ IeiFa1...aq +

(
(−1)n−pλ

2p!

)
F a1...aq ∧ Iei ? Fa1...aq . (3.8)

What we usually call the energy-momentum tensor is defined as T ik = ?(ei ∧ ?Uk).
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3.3. CURVATURE AS AN ABSTRACT OPERATOR

3.2.2. Spin current

Now if we vary the action with respect to the spin connection one-form we can define the spin-torsion

(n− 1)-form ?Jab . This is not as involved as the vielbein case. Explicitly,

δωS[e, ω, φ, p, q] = −λ
∫

?Fa1...aq ∧ δωF
a1...aq . (3.9)

We have that δωF
a1...aq = δω∇φa1...aq . Now let us recall that for a p-form V ab the covariant derivative

is defined in such a way that ∇V ab = d V ab + ωac ∧ V cb − (−1)pV ac ∧ ωcb [59]. Therefore, we have that

∇φa1...aq = dφa1...aq + ωa1c ∧ φca2...aq + · · ·+ ωaqc ∧ φa1...aq−1c. (3.10)

This implies that

δω∇φa1...aq = (−1)p−1φca2...aq ∧ δωa1c + · · ·+ (−1)p−1φa1...aq−1cδωaqc . (3.11)

Finally,

δωS[e, ω, φ, p, q] = (−1)pλq

∫
?Fa1...aq ∧ φ

a1...aq−1
c ∧ δωaqc, (3.12)

so

?Jmn [e, ω, φ, p, q] = (−1)pλq ? Fa1...aq−1m ∧ φ
a1...aq−1

n. (3.13)

The better known spin tensor is defined as Sijk = ?(ei ∧ ?Jjk ).

3.3. Curvature as an abstract operator

From the definition Fa1...aq = ∇φa1...aq , taking the exterior derivative and recalling that Rab =

dωab + ωac ∧ ωcb we get a “kind of Bianchi identity”, namely

R c
a1 ∧ φc...aq + · · ·+R c

aq ∧ φa1...aq−1c = ∇Fa1...aq . (3.14)

We could shorten these expressions abstractly as

F = ∇Φ,

[R,Φ] = ∇F = ∇2Φ, (3.15)

so we are lead to a definition of ∇2 as an abstract operator,

∇2 = [R, ]. (3.16)
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CAPÍTULO 3. (P − 1)-FORMS AS BOSONIC SPACETIME TORSION SOURCES

3.4. The Symmetries

Let us now consider (3.1) in a curved Riemann-Cartan background. Its variation induced by arbitrary

variations δea, δωab and δφa1...aq is

δS[e, ω, φ, p, q] =

∫ {
? Ua ∧ δea + ?Jab ∧ δωab

}
. (3.17)

The coefficient of δφa1...aq is zero because of the equations of motion [60].

3.4.1. Lorentz symmetry

We know the fact that this action is Lorentz invariant, δLS = 0. For the gravitational fields these

transformations are

δL ea = δε b
a eb,

δL ω
ab = −∇δεab, (3.18)

where εab is an arbitrary antisymmetric 0-form. Using this in (3.17) we get the conservation law

∇ ? Jab + (−1)n−1 ? U[a ∧ eb] = 0. (3.19)

In Einstein-Cartan theory local Lorentz symmetry does not imply a vanishing antisymmetric piece of

the energy-momentum tensor T[µν] . Instead it is proportional to the divergence of the spin tensor,

∇λSλµν ∝ T[µν] .

3.4.2. Diffeomorphism symmetry

It is well known that if we consider a diffeomorphism xµ → x′
µ

= xµ + ξµ (a general coordinate

transformation) in Riemannian geometry and impose δdiffS = 0 we get Bianchi identity as the local

conservation of the energy-momentum tensor T αβ;β = 0. Let us derive the analog in our case. Under

a diffeomorphism a p-form transforms with the Lie derivative as an operator through Cartan’s magic

formula £ξ = dIξ + Iξd, where d in the exterior derivative and Iξ is the contraction operator . Hence,

δdiff e
a = −£ξe

a,

δdiff ω
ab = −£ξω

ab. (3.20)

It is not hard to show that the following identities hold

£ξe
a = ∇ξa + IξT

a − Iξ(ωab)eb, (3.21)

£ξω
ab = ∇(Iξω

ab) + IξR
ab. (3.22)
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3.5. THE EQUATIONS OF MOTION

The conservation law associated with this symmetry is, using (3.19),

∇(?Ua)ξa + (−1)n ? Ua ∧ IξT a + (−1)n ? Jab ∧ IξRab = 0. (3.23)

In the last expression we cannot isolate immediately the arbitrary vector field ξχ. However it can be

shown that it reduces to

T τχ;τ + (−1)n+1T αβ T βχα + (−1)n+1SλαβR
αβ
χλ = 0. (3.24)

Here ; stands for the total covariant derivative which includes torsion. Of course when torsion and

spin tensors are set to zero we recover the usual Riemannian covariant energy-momentum tensor

conservation law.

3.4.3. Conformal Weyl symmetry

Finally there is a conformal symmetry in this action, namely, if we consider the following transfor-

mation

δΛe
a = −δΛ(x)ea,

δΛω
ab = 0, (3.25)

our action is left invariant as long as

?Ua ∧ ea = 0. (3.26)

This is nothing but the known fact that conformal symmetry implies a vanishing trace of the energy-

momentum tensor, T µµ = 0.

3.5. The equations of motion

The equations of motion, δφS = 0, are “simply”

∇(?Fa1...aq ) = ∇(?∇φa1...aq ) = 0. (3.27)
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CAPÍTULO 3. (P − 1)-FORMS AS BOSONIC SPACETIME TORSION SOURCES

3.6. Torsion as a Noether current

3.6.1. (p− 1)-forms

Let us apply Noether theorem to this family of actions [61]. An arbitrary variation is

δφS[e, ω, φ, p, q] = −λ
∫

?(∇φa1...aq ) ∧∇δφ
a1...aq

= (−1)n−pλ

∫
∇(?(∇φa1...aq )) ∧ δφ

a1...aq

+ (−1)n−p+1λ

∫
d(?(∇φa1...aq ) ∧ δφ

a1...aq ). (3.28)

The first term vanishes on-shell. The second term is the boundary
∫
dΘ (see Appendix G). It is somehow

clear that the conserved current will be ?Jab defined in (3.13). The associated symmetry is that of

rotations in Lorentz inner space. As always, the conserved charge is the generator of the symmetry.

So we see that in analogy to electromagnetism and Yang-Mills theories, when matter couples to the

connection it acquires a kind of “gravitational charge”, in this case related to the spacetime torsion that

it creates. Let us see this in detail.

The rotation in Lorentz inner space is

φ′
a1...aq = Λa1b1Λa2b2 . . .Λ

aq−1

bq−1
Λ
aq
bq
φb1b2...bq−1bq

= (1l + εθ)a1b1(1l + εθ)a2b2 . . . (1l + εθ)
aq−1

bq−1
(1l + εθ)

aq
bq
φb1b2...bq−1bq , (3.29)

where ε is an infinitesimal parameter and θab are the generators of Lorentz algebra, which is

[θab, θcd] = ηcbθad − ηcaθbd + ηdbθca − ηdaθcb. (3.30)

So we see that neglecting higher powers of ε� 1, the symmetry transformation is

δsymφ
a1...aq = εθa1b1φ

b1...aq + · · ·+ εθ
aq
bq
φa1...aq−1bq . (3.31)

Analogously,

δsymφa1...aq = −εθ b1
a1 φb1...aq − · · · − εθ

bq
aq φa1...aq−1bq . (3.32)

Now let us calculate the
∫
dΩ boundary term (see Appendix G). We have to take the difference S′[φ′]−

S[φ]. Explicitly

S′[φ′]− S[φ] =

− λ

2

∫
?∇(φa1...aq − εθ

b1
a1 φb1...aq − · · · − εθ

bq
aq φa1...aq−1bq ) ∧∇(φa1...aq + εθa1b1φ

b1...aq + · · ·+ εθ
aq
bq
φa1...aq−1bq )

+
λ

2

∫
?(∇φa1...aq ) ∧∇φ

a1...aq = 0, (3.33)

22



3.6. TORSION AS A NOETHER CURRENT

where we have neglected powers of ε greater than unity. So we find that in this case Ω = 0.

The Noether current is just ?J = −Θ. Thus we are led to

?J = (−1)n−pλ ? (∇φa1...aq ) ∧ δsymφ
a1...aq

= (−1)n−pλ ? (Fa1...aq ) ∧ (εθa1b1φ
b1...aq + · · ·+ εθ

aq
bq
φa1...aq−1bq )

= (−1)n−pελq ? (Fa1...aq ) ∧ φa1...aq−1

bq
θaqbq

= (−1)nε ? Jab θ
ab. (3.34)

As it is well known, assuming that the spacetime manifold has a topology R × Σ, being Σ the spatial

section, there is a conserved charge Q =
∫

Σ
?J which is the generator of the symmetry in the sense of

Poisson brackets, δsym(·) = {·, Q}PB.

3.6.2. Fermions

For completeness we show that this conclusion is general. The fermionic action for a Dirac field is

Sf [e, ω, ψ̄, ψ] =
i

2

∫
?ea ∧ (ψ̄γa∇ψ −∇ψγaψ). (3.35)

Here, ∇ψ = dψ − i
4ω

abσabψ, ∇ψ = dψ̄ + i
4 ψ̄σabω

ab with σab = i
2 [γa, γb]. Varying with respect to the

spin connection and remembering that {γa, σbc} = 2εabcdγ5γ
d, the definition

δωSf [e, ω, ψ̄, ψ] =

∫
?Jab ∧ δωab, (3.36)

gives us

?Jab [e, ψ̄, ψ] =
1

4
εabcd ? e

cjdA, jdA = ψ̄γ5γ
dψ, (3.37)

where jdA is the axial fermionic current. Varying Sf [e, ω, ψ̄, ψ] with respect to ψ̄ we get Dirac equation

and a surface term. Explicitly,

δψ̄Sf [e, ω, ψ̄, ψ] =
i

2

∫
δψ̄ ? ea ∧ γa∇ψ −

i

2

∫
δψ̄∇(?eaγ

aψ)

+
i

2

∫
∇(δψ̄ ? eaγ

aψ). (3.38)

From this we get Dirac equation as

i ? ea ∧ γa∇ψ −
i

2
∇(?ea)γaψ = 0. (3.39)

This, in the usual form, is

iγµ∇̊µψ = 0, (3.40)

where ∇̊µ = ∇µ − 1
2T

ν
νµ .
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CAPÍTULO 3. (P − 1)-FORMS AS BOSONIC SPACETIME TORSION SOURCES

Let us analyze the surface term. Under Lorentz transformations, the spinor transforms as ψ(x) →
exp

(
− i

4ε
ab(x)σab

)
ψ(x). This implies that δψ(x) = − i

4δε
abσabψ(x) so δψ̄(x) = i

4 ψ̄(x)σabδε
ab. The

surface B is then

B = −1

8

∫
∇
(
ψ̄σbcδε

bc ? eaγ
aψ
)
. (3.41)

Varying with respect to ψ, we get the adjoint Dirac equation and another surface term B. Explicitly

B = −1

8

∫
∇
(
?eaψ̄γ

aδεbcσbcψ
)
. (3.42)

The total surface is then

B + B = −1

8

∫
∇
(
ψ̄σbcδε

bc ? eaγ
aψ
)
− 1

8

∫
∇
(
?eaψ̄γ

aδεbcσbcψ
)

= −
∫
d (δεbc ? Jbc ). (3.43)

3.7. Explicit separation of Riemannian and torsional contribu-

tions

It is easy to split the action into Riemannian and torsional parts. The result of doing so is

S[e, ω, φ, p, q] = −λ
2

∫
?F̃a1...aq ∧ F̃

a1...aq +

∫
?Jab ∧ Cab

+ λq

(
q − 1

2

)∫
?(C f

aq ∧ φa1...aq−1f ) ∧ Caqd ∧ φ
a1...aq−1d − λq(q − 1)

2

∫
?(C f

aq ∧ φa1...aq−1f ) ∧ Caq−1

d ∧ φ
a1...daq ,

(3.44)

where the quantities with˜ stand for Riemannian ones (i.e., dependent on the torsion-free Levi-Civita

spin connection) and Cab is the contorsion one-form such that T a = Cab ∧ eb.
Let us just quote that the analogue separation in the fermionic case gives

Sf [e, ω, ψ̄, ψ] =
i

2

∫
?ea ∧ (ψ̄γa∇ψ −∇ψγaψ)

=
i

2

∫
?ea ∧ (ψ̄γa∇̃ψ − ∇̃ψγaψ) +

∫
?Jab ∧ Cab. (3.45)

3.8. Gravitational field

3.8.1. Holst gravity for n = 4.

Let us consider the following action for a theory of gravity in four dimensions coupled with arbitrary

forms of matter Ψ(x):

SHolst[e, ω,Ψ, β] = − 1

2κ

∫
?(ea ∧ eb) ∧Rab −

1

2κ

∫
β(x) ea ∧ eb ∧Rab + Smatter[e, ω,Ψ]. (3.46)
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3.8. GRAVITATIONAL FIELD

Here, κ = 8πG and β = β(x) is the Barbero-Immirzi (BI) pseudoscalar field. If it instead were a

parameter (fixed value) we are led to the action that in the absence of matter, at the Hamiltonian

level, corresponds to the canonical approach to gravity of Ashtekar and others known as Loop Quantum

Gravity (LQG) [8][9].

Let us define the tensor field P cd
ab (x) = 1

2ε
cd

ab + β(x)δ
[cd]
ab so our action reads

SHolst[e, ω,Ψ, β] = − 1

2κ

∫
P cd
ab ec ∧ ed ∧Rab + Smatter[e, ω,Ψ]. (3.47)

If we vary this action with respect to the vielbein, δeSHolst = 0, we find the analogous of Einstein’s

equations,

P ab
cd Rcd ∧ eb = −κ ? Ua, (3.48)

where ?Ua is the energy-momentum 3-form of the matter fields.

If we vary with respect to the spin connection ωab, δωSHolst = 0, we find using Palatini’s identity

δωR
ab = ∇δωab and integrating by parts that

∇(P cd
ab ec ∧ ed) = −2κ ? Jab . (3.49)

Let us recall Cartan’s structure equations:

T a = dea + ωab ∧ eb ≡ ∇ea, (3.50)

Rab = dωab + ωac ∧ ωcb, (3.51)

and their respective consistency conditions, the Bianchi identities,

Rab ∧ eb = ∇T a, (3.52)

∇Rab = 0. (3.53)

Since the equation defining the torsion 2-form is a first order differential equation for the vielbein, we

can always find an algebraic solution ωab[e,Ψ] = ω̃ab[e] +Cab[e,Ψ] so ω̃ab is the Riemannian Levi-Civita

connection, solution of the homogeneous equation dea + ω̃ab ∧ eb = 0 and T a = Cab ∧ eb. Using this in

(3.49) we get that

P cd
ab C f

c ∧ ef ∧ ed = −1

2
dβ ∧ ea ∧ eb − κ ? Jab . (3.54)

3.8.2. Nieh-Yan gravity for n = 4

Using Cartan’s first structure equation and its consistency condition it is easy to prove that

d(ea ∧ T a) = Ta ∧ T a − ea ∧ eb ∧Rab. (3.55)
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The integral of this 4-form over a compact space is known as the Nieh-Yan topological invariant. Let us

then consider the following alternative to Holst action:

SNY[e, ω,Ψ, β] =− 1

2κ

∫
?(ea ∧ eb) ∧Rab −

1

2κ

∫
β(x) ea ∧ eb ∧Rab +

1

2κ

∫
β(x)T a ∧ Ta

+ Smatter[e, ω,Ψ],

=− 1

2κ

∫
?(ea ∧ eb) ∧Rab +

1

2κ

∫
β(x) d(ea ∧ T a) + Smatter[e, ω,Ψ],

=− 1

2κ

∫
?(ea ∧ eb) ∧Rab −

1

2κ

∫
dβ ∧ ea ∧ T a + Smatter[e, ω,Ψ] (3.56)

Varying with respect to the vielbein, δeSNY = 0, gives

?Rab ∧ eb = dβ ∧ Ta − κ ? Ua. (3.57)

Varying with respect to the spin connection, δωSNY = 0, gives

ε cd
ab C f

c ∧ ef ∧ ed = −dβ ∧ ea ∧ eb − 2κ ? Jab . (3.58)

3.9. Substituting solutions for algebraic equations of motion

within the action

First order gravity à la Palatini was developed in first place as a computational tool only. It is a trick

to vary in a quick and easy way the Hilbert-Einstein action to get Einstein’s field equations. Einstein-

Cartan theory is however, inequivalent to Einstein’s theory in the presence of fermionic matter as it is

a torsion source because it couples with the spin connection. It is a well known fact that the vielbein

and the spin connection are independent fields from a geometrical point of view. The vielbein defines

a notion of metricity and the connection that of affinity of space. These properties are not necessarily

linked as Cartan understood. However, in the theories of gravity we are considering, the equation of

motion for the spin connection is algebraic so it can be solved and then we are allowed to put this back

into the original action leaving us an equivalent action at least at the classical level.

For instance we can split the curvature 2-form as

Rab = R̃ab + R̄ab, (3.59)

R̃ab = dω̃ab + ω̃ac ∧ ω̃cb, (3.60)

R̄ab = ∇Cab − Cac ∧ Ccb, (3.61)

where as before, ω̃ab is the Levi-Civita spin connection and Cab is the contorsion 1-form such that

T a = Cab ∧ eb, T a being the torsion 2-form. Here R̃ab is the Riemannian part of the curvature 2-form

such that R̃ab ∧ eb = 0. With these expressions we will be able to easily separate the Riemannian and

torsional contributions in the gravitational sector.
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3.10. TOY MODELS

For completeness let us recall the theorem behind the fact that algebraic equations of motion can be

pulled back into the action giving a completely equivalent theory [62][48]:

Let S(qi, Qj) be an action depending on two sets of dynamical variables, qi and Qj. The solutions of

the dynamical equations are extrema of the action with respect to both sets of variables. If the dynamical

equations ∂S
∂qi

= 0 have a unique solution, q
(0)
i (Qj) for each choice of Qj, then the pull-back S(qi(Qj), Qj)

of the action to the set of solutions has the property that its extrema are precisely the extrema of the

total action S(qi, Qj).

3.10. Toy models

In this section we review some “toy models” which can serve as an insight about the behavior of the

objects we have just defined. They are not to be taken so seriously and in some cases they are just mere

statements for future work. The actual calculations that will survive severe judgement and criticism will

be further discussed elsewhere [73].

3.10.1. Particular case: n = 4, p = 1, q = 1

Let us consider a Lorentz valued 0-form, φa. Now let us perform a Wick rotation so our spacetime

becomes Euclid and compact and our forms are now SO(n) valued. We can always come back to the

Lorentzian case by reverting the Wick rotation. The action for this object is (λ = 1),

S[e, ω, φ, 1, 1] = −1

2

∫
?(∇φa) ∧∇φa, (3.62)

its associated energy-momentum 3-form is

?Ui[e, ω, φ, 1, 1] =
1

2
Fai ? F

a +
1

4
Fab ε

b
fgiF

a ∧ ef ∧ eg, (3.63)

and its associated spin-torsion 3-form is

?Jab [e, ω, φ, 1, 1] = − ? F[aφb]

= −1

2
{?(∇φa)φb − ?(∇φb)φa}. (3.64)

β = 0 case

Let us see what this implies in the Einstein-Cartan theory. The equation we must solve is (3.54)

making β = 0. So we have

1

2
ε cd
ab C f

c ∧ ef ∧ ed = −κ ? Jab

= −κ ? J̃ab +
κ

2
{?(C f

a φf )φb − ?(C f
b φf )φa}, (3.65)
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where we define

?J̃ab = −1

2
{?(∇̃φa)φb − ?(∇̃φb)φa}. (3.66)

Taking the Hodge dual, remembering that for a p-form ωp in euclidean space, ? ? ωp = (−1)p(n−p)ωp so

in particular ? ? ei = −ei, defining (? ? J̃ab )ie
i ≡ Jabi ei and using the fact that ηab = δab , (3.65) can be

written in the following way:

1

2
εabcdCclj εijld −

κ

2
{Caliφbφl − Cbliφaφl} − κJabi = 0, (3.67)

remembering the fact that Cabi = −Cbai and Jabi = −Jbai .
Now we introduce the following notation: Let Aijk...rst be a generic tensor field. From now on we will

call it Aijk...rst ≡ A(i, j, k, . . . , r, s, t). In this manner we will shorten the notation for objects like

Aijk...rstϕi ≡ A(ϕ, j, k, . . . , r, s, t) where ϕi ≡ ϕ(i) is a generic vector field.

Our equation becomes

1

2
C(φ, a, i)φ(b)κ− 1

2
C(φ, b, i)φ(a)κ+

1

2
C(a, i, b)− 1

2
C(a, l, l)d(b, i)

− 1

2
C(b, i, a) +

1

2
C(b, l, l)d(a, i)− J(a, b, i)κ = 0, (3.68)

where we also denote d(a, b) ≡ δab .
In 4 dimensions Cabi has 24 independent components. According to SO(4) it can always be decomposed

as 24 = 4 + 4 + 16 in the following way:

Cijk =
1

3
{Tjδik − Tiδjk}+

1

6
εijklSl + qijk , (3.69)

where Tj ≡ Ciji is a trace vector, Sl = εijklCijk is a pseudovector dual to the completely antisymmetric

part of Cijk and qijk = −qjik is a tensor whose trace and completely antisymmetric part are zero, i.e.,

qiji = εijklqijk = 0.

Aplying this splitting we get

1

6
T (a)φ(b)φ(i)κ− 1

6
T (b)φ(a)φ(i)κ− 1

3
d(a, i)T (b)− 1

6
d(a, i)φ(b)T · φκ+

1

3
d(b, i)T (a)

+
1

6
d(b, i)φ(a)T · φκ− 1

12
ε(S, φ, a, i)φ(b)κ+

1

12
ε(S, φ, b, i)φ(a)κ+

1

6
ε(S, a, b, i)

− J(a, b, i)κ+
1

2
q(φ, a, i)φ(b)κ− 1

2
q(φ, b, i)φ(a)κ+

1

2
q(a, i, b)− 1

2
q(b, i, a) ≡ E(a, b, i) = 0, (3.70)

where E(a, b, i) = −E(b, a, i) has been defined and X · Y ≡ XiYi. Now let us take the product

d(a, i)E(a, b, i) = 0. This gives us

−T (b)− 1

6
T (b)φ2κ− 1

3
φ(b)T · φκ+ J(b, l, l)κ− 1

2
q(φ, b, φ)κ = 0, (3.71)

where φ2 ≡ φ · φ.

Let us now consider φ(b)d(a, i)E(a, b, i) = 0. This is

−1

2
T · φφ2κ− T · φ+ J(φ, l, l)κ = 0, (3.72)
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so we find that

T · φ =
2κ

[2 + κφ2]
J(φ, l, l). (3.73)

Now let us consider φ(a)φ(i)E(a, b, i) = 0. This is

− 1

3
T (b)φ2 − 1

6
T (b)φ4κ+

1

6
φ(b)T · φφ2κ+

1

3
φ(b)T · φ− J(φ, b, φ)κ

+
1

2
q(φ, b, φ)− 1

2
q(φ, b, φ)φ2κ = 0. (3.74)

From this we have that

q(φ, b, φ) =
1

3

[2 + κφ2]

[1− κφ2]
{T (b)φ2 − φ(b)T · φ}+

2κ

[1− κφ2]
J(φ, b, φ)

=
1

3

φ2[2 + κφ2]

[1− κφ2]
T (b)− 2κ

3[1− κφ2]
φ(b)J(φ, l, l) +

2κ

[1− κφ2]
J(φ, b, φ). (3.75)

Using these relations we finally obtain that

T (b) =
2κ[1− κφ2]

[2− κφ2]
J(b, l, l) +

2κ3φ2

[2− κφ2][2 + κφ2]
φ(b)J(φ, l, l)− 2κ2

[2− κφ2]
J(φ, b, φ), (3.76)

and for completeness we give q(φ, b, φ) as a function of φ only:

q(φ, b, φ) =
2κφ2[2 + κφ2]

3[2− κφ2]
J(b, l, l) +

2κ[6− 5κφ2 − κ2φ4]

3[1− κφ2][2− κφ2]
J(φ, b, φ)− 2κ[2 + κφ2]

3[2− κφ2]
φ(b)J(φ, l, l). (3.77)

Now we consider the following product ε(a, b, i,m)E(a, b, i) = 0, which is

−S(m)− 1

3
S(m)φ2κ+

1

3
φ(m)S · φκ+ J(f, g, h)ε(m, f, g, h)κ− q(φ, f, g)ε(φ,m, f, g)κ = 0. (3.78)

It is clear that taking φ(m)ε(a, b, i,m)E(a, b, i) = 0 should tell us what S · φ is. In doing so we get

S · φ = κε(φ, f, g, h)J(f, g, h). (3.79)

Now we consider the combination E(a, b, i)+E(a, i, b)−E(b, i, a) ≡ H(a, b, i) = 0. If we take the product

φ(a)ε(φ,m, b, i)H(a, b, i) = 0, we get

1

3
S(m)φ2 − 1

3
φ(m)S · φ+ J(f, g, φ)ε(φ,m, f, g)κ+ q(φ, f, g)ε(φ,m, f, g) = 0. (3.80)

Using these equations we find that

S(m) = κε(m, f, g, h)J(f, g, h) + κ2ε(φ,m, f, g)J(f, g, φ). (3.81)

29
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Let us now focus on φ(a)H(a, b, i) = 0 because this will allow us to see what q(φ, b, i) is. This is because

the explicit expression is

− 2

3
T (b)φ(i)− 1

3
T (b)φ(i)φ2κ+

1

3
d(b, i)T · φφ2κ+

2

3
d(b, i)T · φ− 1

6
ε(S, φ, b, i)

− J(φ, b, i)κ− J(φ, i, b)κ+ J(b, i, φ)κ− 1

2
q(φ, b, φ)φ(i)κ+ q(φ, b, i)

− 1

2
q(φ, b, i)φ2κ+

1

2
q(φ, i, φ)φ(b)κ− 1

2
q(φ, i, b)φ2κ ≡ D(b, i) = 0. (3.82)

If we now consider D(i, b) = 0 we can isolate q(φ, i, b) as

q(φ, i, b) =
2

3

[2 + κφ2]

[2− κφ2]
{T (i)φ(b)− d(b, i)T · φ} − 1

3[2− κφ2]
ε(S, φ, b, i) +

2κ

[2− κφ2]
J(φ, b, i)

+
2κ

[2− κφ2]
J(φ, i, b) +

2κ

[2− κφ2]
J(b, i, φ)− κ

[2− κφ2]
q(φ, b, φ)φ(i)

+
κφ2

[2− κφ2]
q(φ, b, i) +

κ

[2− κφ2]
q(φ, i, φ)φ(b). (3.83)

If we substitute the value of q(φ, b, φ) we get that

q(φ, b, i) =
[2 + κφ2]

3[1− κφ2]
{T (b)φ(i)− d(b, i)T · φ}+

1

6
ε(S, φ, b, i)

+
κ

[1− κφ2]
J(φ, b, i) +

κ

[1− κφ2]
J(φ, i, b)− κJ(b, i, φ)

+
κ2

[1− κφ2]
φ(i)J(φ, b, φ)− κ2

[1− κφ2]
φ(b)J(φ, i, φ). (3.84)

Explicitly in terms of φ this is

q(φ, b, i) =
2κ

3

[2 + κφ2]

[2− κφ2]
φ(i)J(b, l, l)− 2κ

3[1− κφ2]
J(φ, l, l)d(b, i) +

κ

3

[4− κφ2]

[1− κφ2]
J(φ, b, i)

+
κ

3

[2 + κφ2]

[1− κφ2]
J(φ, i, b)− κ[2 + κφ2]

3
J(b, i, φ) +

2

3

κ3φ2

[1− κφ2][2− κφ2]
φ(b)φ(i)J(φ, l, l)

− 1

3

κ3φ2[2 + κφ2]

[1− κφ2][2− κφ2]
φ(i)J(φ, b, φ)− 1

3

κ2[2 + κφ2]

[1− κφ2]
φ(b)J(φ, i, φ). (3.85)

The reason we have considered H(a, b, i) = 0 is that in doing so we can isolate the term q(a, b, i).

Explicitly H(a, b, i) is

1

3
T (a)φ(b)φ(i)κ− 1

3
T (b)φ(a)φ(i)κ− 2

3
d(a, i)T (b)− 1

3
d(a, i)φ(b)T · φκ+

2

3
d(b, i)T (a)

+
1

3
d(b, i)φ(a)T · φκ− 1

6
ε(S, φ, a, b)φ(i)κ− 1

6
ε(S, a, b, i)− J(a, b, i)κ− J(a, i, b)κ+ J(b, i, a)κ

+
1

2
q(φ, a, b)φ(i)κ+

1

2
q(φ, a, i)φ(b)κ− 1

2
q(φ, b, a)φ(i)κ− 1

2
q(φ, b, i)φ(a)κ+

1

2
q(φ, i, a)φ(b)κ

− 1

2
q(φ, i, b)φ(a)κ+ q(a, b, i) = 0. (3.86)
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We see that we already have all the ingredients to express unequivocally q(a, b, i) as a function of φ. So,

q(a, b, i) =
1

3
T (b){κφ(a)φ(i) + 2d(a, i)} − 1

3
T (a){κφ(b)φ(i) + 2d(b, i)}

+
κ

3
T · φ{φ(b)d(a, i)− φ(a)d(b, i)}+

κ

6
ε(S, φ, a, b)φ(i) +

1

6
ε(S, a, b, i) + κJ(a, b, i)

+ κJ(a, i, b)− κJ(b, i, a)− κ

2
φ(i){q(φ, a, b)− q(φ, b, a)} − κ

2
φ(b){q(φ, a, i) + q(φ, i, a)}

+
κ

2
φ(a){q(φ, b, i) + q(φ, i, b)}. (3.87)

Explicitly as a function of φ this is

q(a, b, i) =
2κ

3
{2J(a, b, i) + J(a, i, b)− J(b, i, a)}+

κ2

3
{2φ(i)J(a, b, φ) + φ(b)J(a, i, φ)− φ(a)J(b, i, φ)}

− κ2

[1− κφ2]
{φ(b)J(φ, a, i) + φ(b)J(φ, i, a)− φ(a)J(φ, b, i)− φ(a)J(φ, i, b)}

− 2κ2

[2− κφ2]
{φ(b)φ(i)J(a, l, l)− φ(a)φ(i)J(b, l, l)}+

4κ2

3[2− κφ2]
{J(φ, a, φ)d(b, i)− J(φ, b, φ)d(a, i)}

−
4κ[ 2

3 − κφ
2 + κ3

3 φ
6]

[1− κ2][2 + κ2][2− κ2]
{J(a, l, l)d(b, i)− J(b, l, l)d(a, i)}

+
2κ2[2− κ

3φ
2 − 2κ2

3 φ4]

[1− κφ2][2− κφ2][2 + κφ2]
J(φ, l, l){d(a, i)φ(b)− d(b, i)φ(a)}

+
κ4φ2

[1− κφ2][2− κφ2]
φ(i){φ(b)J(φ, a, φ)− φ(a)J(φ, b, φ)}. (3.88)

Finally we find our contorsion tensor, solution of the equation of motion:

C(a, b, i) = κJ(a, b, i) + κJ(a, i, b)− κJ(b, i, a) + κ2φ(i)J(a, b, φ)

+
κ2

[1− κφ2]

{
φ(a)J(φ, b, i) + φ(a)J(φ, i, b)− φ(b)J(φ, a, i)− φ(b)J(φ, i, a)

}
+

2κ

[2− κφ2]
d(b, i)

{
κJ(φ, a, φ)− κ[2− κ2φ4]

[1− κφ2][2 + κφ2]
φ(a)J(φ, l, l)− [1− κφ2]J(a, l, l)

}
− 2κ

[2− κφ2]
d(a, i)

{
κJ(φ, b, φ)− κ[2− κ2φ4]

[1− κφ2][2 + κφ2]
φ(b)J(φ, l, l)− [1− κφ2]J(b, l, l)

}
+

κ2

[2− κφ2]
φ(b)φ(i)

{
κ2φ2

[1− κφ2]
J(φ, a, φ)− 2J(a, l, l)

}
− κ2

[2− κφ2]
φ(a)φ(i)

{
κ2φ2

[1− κφ2]
J(φ, b, φ)− 2J(b, l, l)

}
. (3.89)

The total action is

Stotal[e, ω, φ] = − 1

2κ

∫
?(ea ∧ eb) ∧ R̃ab −

1

2

∫
?F̃a ∧ F̃ a −

1

2κ

∫
?(ea ∧ eb) ∧ Cad ∧ Cdb

+
1

2

∫
?C f

a ∧ Cad φfφd. (3.90)

The first two terms are the usual Riemannian ones. The other two are torsional contributions which

depend upon the contorsion one-form. We see that we get a nontrivial interaction potential for the field
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φa. The appearance of denominators which depend upon κφ2 is a charasteristic feature of the problem.

So for certain configurations of the field φa the interaction terms can grow enormously within the action

or the dynamics, recalling that the equation of motion ∇(?∇φa) = 0 contains torsional terms in the

covariant derivative. However, it is almost an impossible task to solve at least analytically the equation

of motion for our field and we do not have extra parameters to play with so we will not be able to control

the dynamics for our own convenience if for example, we would like to use this toy model as a viable

alternative for current Inflation Theory. The good thing about our toy model is that the “potential” is

univoquely defined through the algebraic equation of motion for the spin connection and so would be

a falsifiable self-contained proposal instead of an ad-hoc ansatz for the “inflaton” potential. It could be

argued that a proper Wick rotation will give us back a faithful Lorentzian expression but in order to

be sure we must repeat this calculation with a Lorentzian η from the beginning. The vacuum will be

carefully analized elsewhere [73].

β 6= 0 case

Let us now consider the case when β 6= 0, but a finite constant. The equation of motion we have to

solve is

1

2
C(φ, a, i)φ(b)κ− 1

2
C(φ, b, i)φ(a)κ+

1

2
C(a, i, b)− 1

2
C(a, l, l)d(b, i) +

1

2
C(a, f, g)ε(b, i, f, g)β

− 1

2
C(b, i, a) +

1

2
C(b, l, l)d(a, i)− 1

2
C(b, f, g)ε(a, i, f, g)β − J(a, b, i)κ = 0. (3.91)

We will not split the C tensor in terms of irreducible parts as before, mainly because doing so does not

give us any new insights but makes the analysis more obscure. This is because β behaves as a pseudo-

number (like a Vacuum Expectation Value (VEV) of a pseudo-scalar field) and mixes up the nature of

them. We will just quote the result here because the difficulty grows exponentially when we consider a

non-vanishing β term. After a pretty long and tedious calculation we get that

C(a, b, i) =
2β4

[1 + β2 − 2β4]

{
C(b, l, l)d(a, i)− C(a, l, l)d(b, i)

}
+

[1 + β2]

[1 + β2 − 2β4]

{
A(a, b, i) + βA(i, f, g)ε(a, b, f, g)

}
+

κβ2

[1 + β2 − 2β4]

{
φ(a)C(φ, b, i)− φ(b)C(φ, a, i)

}
+

2κβ2

[1 + β2 − 2β4]
J(a, b, i) +

β3

[1 + β2 − 2β4]

{
A(b, f, g)ε(a, i, f, g)−A(a, f, g)ε(b, i, f, g)

}
. (3.92)

In equation (3.92) all the terms in the right hand side are given by well established expressions which

finally reduce to nonlinear functions of φa and β (See Appendix H). We see that β acquires classical

“measurable” effects when matter that couples with the spin connection of gravity is taken into account.

This we knew for Dirac fermions but if bosons could “feel” the gauge connection of gravity, they could

also tell us something about the rather ambigous β parameter of LQG. We observe that β enters in the

denominators of our expressions so certain configurations of the φa field for a given β could dominate

the dynamics during the Inflation scenario.
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The value for the Immirzi parameter is somehow fixed by the semiclassical value of black hole entropy

S = 1
4A (in Planck units), where A stands for the area of the event horizon of the black hole. In LQG

one gets that S = γ0
4γA, recalling that β = − 1

γ . So we should set β = − 1
γ0

if we want to recover the

famous Hawking’s formula. Between several estimates of γ0 one can find ln(2)√
3π

, ln(3)√
8π

, ln(3)√
2π

. Unfortunately

since |γ| < 1, |β| > 1 so a “perturbative” approach does not apply and we must retain all powers of β in

our expressions.

It has been argued that β should be thought of as a pseudoscalar field (like the axion) and what we

call the Immirzi parameter is a vacuum expectation value 〈β〉0. If this is the case the difficulty increases

but also the richness of the solution.

Finally it must be stressed that in order to apply these ideas to a realistic scenario we should recover

Lorentzian expressions. The Euclidean option is easier in dealing with FORM [63][64] but lacks of

realism.

3.10.2. Equation of state for the Lorentz-valued scalar

Let us consider

S = −1

2

∫
d4x
√
−g∇µφν∇µφν = −1

2

∫
d4x
√
−gFµν Fµν , (3.93)

where ∇µφν = ∂µφν − Γρνµφρ. We define

Πν =
δS

δφ̊ν
= −N√qF 0ν , (3.94)

so

S =

∫
d3x

∫
dt

{
Πν φ̊ν −

1

2
ΠνF0ν −

N
√
q

2
Fiν F

iν

}
, (3.95)

where φ̊ν = ∂0φν − Γρν0φρ, or using the fact that

F0λ =
N
√
q
gνλΠν +N iFiλ , (3.96)

we get that

S =

∫
d3x

∫
dt

{
Πν φ̊ν −

1

2
N iΠνFiν −N

(
1

2
√
q

ΠµΠνgµν +

√
q

2
Fiν F

iν

)}
. (3.97)

Now recalling that ρ = 1√
q
δH
δN and P = − 2

3N
√
q qab

δH
δqab

(See Appendix E), we get that

ρ =
1

2q
ΠµΠνgµν +

1

2
Fiν F

iν . (3.98)

A long but straightforward calculation gives

P =
1

3
ρ+B, (3.99)
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with

B =
1

3

{
1

q
ΠµΠνgµν −

1

q
ΠaΠbqab − 2Fiν F

iν + qabg
iaFiν F

bν + qabg
νaFiν F

ib

}
, (3.100)

so a gas of massless matter described by this dynamical theory would not respect the traditional

radiation-like equation of state at the classical level as in the case of fermions [65].

3.10.3. Lorentz-valued scalar as the inflaton

Let us consider the action

S[g,Γ, φ] =
m2
Pl

16π

∫
d4x
√
−gR(Γ) +

1

2

∫
d4x
√
−g∇µφν∇µφν , (3.101)

which after varying with respect to Γ, solving the algebraic equation of motion, and putting the solution

back takes the form

S[g, φ] =
m2
Pl

16π

∫
d4x
√
−gR̃(Γ̃) +

∫
d4x
√
−g
{

1

2
∇̃µφν∇̃µφν − V (φ)

}
. (3.102)

The energy-momentum tensor Tαβ ≡ −2√
−g

δ(
√
−gLM )
δgαβ

is

Tαβ = ∇αφµ∇βφµ +∇µφα∇µφβ − gαβLM . (3.103)

We know that the connection Γ can always be decomposed as Γαβγ = Γ̃αβγ + Kα
βγ , where Γ̃ stands

for the Levi-Civita connection (Christoffel symbol) and K is the contorsion tensor. Considering this, we

can rewrite the energy-momentum tensor as

Tαβ = ∇̃αφµ∇̃βφµ + ∇̃µφα∇̃µφβ +Wα
β − δαβLM , (3.104)

being W a symmetric tensor self-defined through the equation above and LM is now taken to be

LM =
1

2
∇̃µφν∇̃µφν − V. (3.105)

Recalling that ρ ≡ T 0
0 and defining P 1 ≡ −T 1

1 we find that

ρ =
3

2
∇̃0φ0∇̃0φ0 +

1

2
∇̃0φi∇̃0φi +

1

2
∇̃iφ0∇̃iφ0 − 1

2
∇̃iφj∇̃iφj +W 0

0 + V, (3.106)

P 1 = −∇̃1φµ∇̃1φ
µ − ∇̃µφ1∇̃µφ1 −W 1

1 + LM , (3.107)

where “1” stands for any spatial index. We will be interested in the “mean pressure” P̄ =
∑
i P

i

3 which

turns to be

P̄ = −1

3
∇̃iφµ∇̃iφµ −

1

3
∇̃µφi∇̃µφi −

1

3
W i

i + LM (3.108)

=
1

2
∇̃0φ0∇̃0φ0 +

1

6
∇̃0φi∇̃0φi +

1

6
∇̃iφ0∇̃iφ0 − 1

6
∇̃iφj∇̃iφj −

1

3
W i

i − V. (3.109)
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Now the only nonvanishing Christoffel symbols for the flat Friedmann-Robertson-Walker metric (I.3) are

Γi0i = H and Γ0
ii = a2H (no summation in i) where H stands for the Hubble parameter and a = a(t)

is the scale factor (See Appendix H). Using these facts one can find the explicit expressions

∇̃0φ0∇̃0φ0 = ∂0φ0∂
0φ0 (3.110)

∇̃0φi∇̃0φi = ∂0φi∂
0φi −H2φiφ

i (3.111)

∇̃iφ0∇̃iφ0 = ∂iφ0∂
iφ0 − 2Hφi∂

iφ0 +H2φiφ
i (3.112)

∇̃iφj∇̃iφj = ∂iφj∂
iφj + 2H∂iφ

iφ0 +H2φ0φ
0. (3.113)

Since we require homogeneous fields we neglect spatial derivatives [66] and get

ρ =
3

2
φ̇2

0 +
1

2
φ̇2
i −

1

2
H2φ2

0 +W ′
0
0 + V ′, (3.114)

P̄ =
1

2
φ̇2

0 +
1

6
φ̇2
i −

1

6
H2φ2

0 −
1

3
W ′

i
i − V ′, (3.115)

where now W ′ and V ′ stand for the “potentials” restricted to the homogeneous condition as well. If we

define the equation of state

P̄ = wρ, (3.116)

we see that w is given by

w =
1
2 φ̇

2
0 + 1

6 φ̇
2
i − 1

6H
2φ2

0 − 1
3W

′i
i − V ′

3
2 φ̇

2
0 + 1

2 φ̇
2
i − 1

2H
2φ2

0 +W ′00 + V ′
. (3.117)

We know that W ′ and V ′ are suppressed by powers of the Newton constant G. That is why considerable

torsional effects are expected only at energies near the GUT scale. When the kinematical terms are

negligible we get

w '
− 1

6H
2φ2

0 − 1
3W

′i
i − V ′

− 1
2H

2φ2
0 +W ′00 + V ′

. (3.118)

We see that the first term in the last equation comes from the Christoffel symbol of our spacetime

metric and has nothing to do with torsion. So even if the kinematical terms are negligible, we get the

de Sitter limit w ' −1 only when V ′ � {W ′,−H2φ2
0} and the universe expands quasi-exponentially.

Let us remember that for accelerated expansion of the universe all we need is w < − 1
3 and with

W ′ � {V ′,−H2φ2
0} we get the limit w = − 1

3 . Finally when W ′, V ′ � 1, we get w = 1
3 and not w = 1 as

in the usual scalar inflaton. Let us recall that there is no freedom in choosing W ′ and V ′ but they are

determined by the dynamics of the theory. Even if we ignore them from the beginning, a “scalar” that

couples to the Riemannian connection along with a suitable potential would deviate from the standard

behavior of the scalar inflaton.

More generally, inflation will occur when ε ≡ 3
2

(
P
ρ + 1

)
= 3

2 (w+1) < 1. Apart of this, it is customary

(but not imperative) that “friction” terms ∼ φ̇ dominate over “acceleration” ones ∼ φ̈ in the equation
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of motion (See Appendix H). However, this equation is highly nontrivial due to torsional effects. To

overcome this analysis we must first find the equation of motion for our φ field in the context of the new

“effective” Lagrangian. This will be addressed elsewhere.

3.10.4. 3D gravity with torsion

Let us consider Lorentzian 3D gravity with a local Lorentz frame metric of the form ηij = (+,−,−).

The normalization of the totally antisymmetric tensor is such that ε012 = 1. Since in 3D an antisymmetric

tensor is dual to a vector, we make the following definitions: ωij = −εijkωk, Rij = −εijkRk. Then,

Cartan’s structure equations become

T i = dei + εijkω
j ∧ ek, (3.119)

Ri = dωi +
1

2
εijkω

j ∧ ωk. (3.120)

As before, we can split the spin connection in such a way that ωi = ω̃i + Ci, where ω̃i satisfies the

homogeneous first structure equation and Ci is the contorsion one-form such that T i = εimnC
m ∧ en.

Finally it is easy to show that

2Ri = 2R̃i + 2∇̃Ci + εimnC
m ∧ Cn, (3.121)

where R̃i is the Riemannian curvature. We will consider a natural generalization of General Relativity

with a cosmological constant, the so-called Mielke-Baekler model [67][68], namely,

SG[e, ω] =

∫
2aei ∧Ri −

Λ

3
εijke

i ∧ ej ∧ ek + α3LCS(ω) + α4e
i ∧ Ti, (3.122)

where a = 1
16πG and LCS(ω) = ωi ∧ dωi + 1

3εijkω
i ∧ ωj ∧ ωk is the Chern-Simons Lagrangian for the

Lorentz connection. The complete action will be ST [e, ω,Ψ] = SG[e, ω] + SM [e, ω,Ψ] where SM stands

for the action of arbitrary matter fields Ψ(x). We will consider the particular case

SM [e, ω,Ψ] ≡ S[e, ω, φ, 2, 1] = −λ
2

∫
?Fa ∧ F a, (3.123)

where as before Fa = ∇φa but now φa = φaµdx
µ is a Lorentz-valued one-form. The equations of motion

are

2aRi + 2α4Ti − Λεijke
j ∧ ek = Θi, (3.124)

2α3Ri + 2aTi + α4εijke
j ∧ ek = Σi, (3.125)

∇(?Fa) = ∇(?∇φa) = 0, (3.126)

where Θi = − δLMδei , Σi = − δLMδωi are the current 2-forms due to the presence of the matter field φa.

Following [69] when ∆ ≡ α3α4 − a2 6= 0 the first two equations can be rewritten as

2Ti − pεijkej ∧ ek = uΘi − vΣi, (3.127)

2Ri − qεijkej ∧ ek = −vΘi + wΣi, (3.128)
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where p ≡ α3Λ+α4a
∆ , q ≡ − (α4)2+aΛ

∆ , u ≡ α3

∆ , v ≡ a
∆ , w ≡ α4

∆ . Remembering that the energy-momentum

tensor is T ik ≡ ?(ei ∧Θk) we can express the energy-momentum 2-form as

Θi =
1

2
T ki εkmnem ∧ en = εimnt

m ∧ en, (3.129)

tm = −
(
T mk −

1

2
δmkT

)
ek, (3.130)

where T = T kk .

Equivalently since Ski = ?(ek ∧ Σi), we can write

Σi =
1

2
Ski εkmnem ∧ en = εimns

m ∧ en, (3.131)

sm = −
(
Smk −

1

2
δmkS

)
ek, (3.132)

where S = Skk . Using these results in the equation of motion for Ti we find that

Cj =
1

2
(pej + utj − vsj). (3.133)

Using this fact in the second equation of motion we get that

2Ri = qεijke
j ∧ ek − vεijktj ∧ ek + wεijks

j ∧ ek. (3.134)

Recalling the splitting between Riemannian and torsional contributions (3.121) we get that

2Ri =2R̃i + u∇̃ti − v∇̃si

+ εijk

(
p2

4
ej ∧ ek +

u2

4
tj ∧ tm +

v2

4
sj ∧ sm +

up

2
tj ∧ ek − vp

2
sj ∧ ek − uv

2
tj ∧ sk

)
. (3.135)

In this form of the gravitational field equations, the role of φi as a source of gravity is clearly described

by the one-forms ti and si. Together with the equations of motion for the matter fields (3.126) and a

suitable set of boundary conditions define the complete dynamics of the gravitational and matter fields.

3.10.5. Anti-restoration symmetry breaking

Let us consider the following action principle

S = − 1

16πG

∫
d4x
√
−g{R(ω)− 2Λ} − 1

2

∫
d4x
√
−g∇µφa∇µφa (3.136)

where ∇µφa = ∂µφ
a + ωabµφ

b.

We know that this can also be written as

S = − 1

16πG

∫
d4x
√
−g{R̃(ω̃)− 2Λ} − 1

2

∫
d4x
√
−g∇̃µφa∇̃µφa −

∫
d4x
√
−gV (φ), (3.137)
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where V (φ) stands for a potential that we would like to be bounded from below. If V has a minimum

at φa = υa, the expansion of V around the minimum yields the “mass matrix”

(µ2)ab =
1

2

(
∂2V

∂φa∂φb

)
φa=υa

. (3.138)

We can choose φa to be of the form

φa =


0

0

0

υ

 . (3.139)

All other solutions of φa are related to this one by a Lorentz transformation [70]. Then, the homogeneous

Lorentz group SO(3, 1) is broken down to the spatial rotation group O(3). The three rotation generators

Ji (i = 1, 2, 3) leave the vacuum invariant

Jiυi = 0, (3.140)

while the three Lorentz-boost generators Ki break the vacuum symmetry

Kiυi 6= 0. (3.141)

The Ji and Ki satisfy the commutation relations

[Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkKk. (3.142)

There are three zero-mass Nambu-Goldstone bosons, the same as the number of massive bosons, and

there are three massless degrees of freedom corresponding to the unbroken O(3) symmetry. After the

spontaneous breaking of the vacuum, one massive physical particle Φ remains [72]. No ghost particles

will occur in the unitary gauge. The mass term in the Lagrangian density is given in the unitary gauge

by

LM =
1

2

√
−gυbυc(ωµ)ab(ωµ) c

a . (3.143)

When Lorentz symmetry is restored for E < Ec, υ = 0 and LM = 0 and we obtain the standard

GR Lagrangian density with a massless spin-2 graviton, coupled minimally to a spin-0 Lorentz-valued

particle.

A phase transition is assumed to occur at the critical temperature Tc, when υa 6= 0 and the Lorentz

symmetry is broken so the three gauge fields (ωµ)0i become massive degrees of freedom (We know that

the true degrees of freedom of gravity are the two states of polarization of the graviton. However there

are alternative theories for the dynamics of spacetime that do consider the spin connection as a true

physical field which is clearly not the case for the Riemannian Hilbert-Einstein action so, having said

this, our arguments remain valid). Below Tc the Lorentz symmetry is restored, and we regain the usual
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classical gravitational field with massless gauge fields ωµ. The symmetry breaking will extend to the

singularity or the possible singularity-free initial state at t = 0, and since quantum effects associated

with gravity do not become important before EP , we expect that Ec ∼ 1019Gev.

After the symmetry is restored for E < EP , the entropy will rapidly increase provided that no

further phase transition occurs which breaks the Lorentz symmetry of the vacuum. Thus, the symmetry

breaking mechanism could “explain” in a natural way the low entropy at the initial state at t ∼ 0 and

the large entropy in the present universe.

Since the ordered phase is at a much lower entropy than the disordered phase and due to the

existence of a domain determined by the direction of the vev of the φ field, a “natural explanation” could

be given for the cosmological arrow of time and the origin of the second law of thermodynamics. Thus,

the spontaneous symmetry breaking of the gravitational vacuum corresponding to the breaking patters,

SO(3, 1)→ O(3), leads to a manifold with the structure R×O(3), in which time appears as an absolute

external parameter. The VEV, 〈φ〉0, points in a chosen direction of time to break the symmetry creating

an arrow of time.
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Caṕıtulo 4

Conclusions

We calculated the chiral anomaly in the context of the Holst action plus a non-minimally coupled

Dirac fermion to curved spacetime. Our aim was to relate the Immirzi parameter γ of the parity violating

sector of the Holst action with the non-minimal coupling parameter α in the newly defined Dirac

operator. The hope was to find that, upon the calculation of the anomaly, α = γ in a “natural” way, so

that the Nieh-Yan topological invariant would arise giving no classical effects of the Immirzi parameter.

The result was another, but it depends on some arbitrary identifications we must do.

During the final stage of this thesis, some authors have done a rather similar calculation although their

starting point was already the action containing the Nieh-Yan term. However, adapting our calculation to

this result implies that: I) There is another compelling reason for believing that the Immirzi parameter

is “non-classical” and II) In order to fix γ so the calculation of black hole entropy in LQG coincides

with Hawking’s formula, we could in principle accept that chiral fermions (as neutrinos) do couple

non-minimally.

Further discussion and possible phenomenology from this assertions must be extracted.

In the path to understanding why gauge bosons do not couple to spacetime torsion, we made a

canonical analysis of the Maxwell action without neglecting the antisymmetric part of the Christoffel

symbols right from the start. A well defined Hamiltonian 3 + 1 decomposition lead us to redefine time

derivatives and the Gauss law. Demanding invariance of the field strength we get a torsion tensor already

found some 30 years ago by Hojman et al. This torsion is dynamically generated by a scalar field named

“tlaplon”. So we see that the tlaplon arises in a natural way from the Hamiltonian point of view. The same

approach applied to Yang-Mills theory, however, fails. In the literature this problem has been somehow

“solved” introducing a non-canonical field strength for the Yang-Mills field. We have just quoted what

would be the implications of such a change. Finally we have noticed how the introduction of the tlaplon

field in the LQG scenario would account for new exclusive interaction terms between the tlaplon and

the fermions and thus, a new way to “measure” γ.

Finally we have systematically introduced a new kind of bosonic fields that serve as source of space-
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time torsion. These bosonic field however would not correspond to gauge boson fields because this

procedure of coupling them to the inner Lorentz space would break gauge invariance. Along with this

we have proved that this kind of torsion tensor is the Noether charge associated with the invariance of

the action under rotations in the inner space. Finally we have tried to get this mathematical framework

near the physical phenomenology of LQG and Inflation Theory. Further issues will be addressed in the

future.

The conclusion that we could extract from all this is that Einstein-Cartan theory should be revisited

since it could be a more complete “limit” of an underlying quantum theory of gravity like LQG or even

the String Theories. Even if spacetime torsion is unobservable in the present universe because it is

suppressed by Newton’s constants, it may have played a major role in the distant past, near GUT scale

and even near Planck scale.
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Apéndice A

Hermiticity of /∇ and /∇′

After the Wick rotation we have that γµ† = −γµ. Then, we use the notion of inner product in the

Hilbert space spanned by the eigenfunctions of /∇ = γµ∇µ. By definition,

(ϕn, /∇ϕm) =

∫
d4x|e|ϕ†n /∇ϕm

=

∫
d4x|e|ϕ†nγµ∇µϕm

= −
∫

d4x|e|(∇µϕn)†γµϕm

= −
∫

d4x|e|ϕ†n∇†µγµϕm

=

∫
d4x|e|ϕ†n∇†µγµ

†ϕm

=

∫
d4x|e|ϕ†n( /∇)†ϕm, (A.1)

where an integration by parts has been done neglecting a total derivative. So we get that under these

circumstances,

/∇† = /∇. (A.2)

For the case of the operator /∇′ = γµ
(
1− i

αγ5

)
∇µ all we have to do is to prove that γµ

(
1− i

αγ5

)
is

anti-Hermitian. In effect, (
γµ(1− i

αγ5)
)†

=
(
1− i

αγ5

)†
γµ†

= −(1 + i
αγ5)γµ

= −γµ(1− i
αγ5), (A.3)

where we have used the facts that {γ5, γµ} = 0 and that α ∈ <. This ensures that /∇′
†

= /∇′.
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Nieh-Yan topological invariant

The Nieh-Yan term is the only Lorentz invariant exact 4-form including torsion. It is given by

N = d(ea ∧ T a) = T a ∧ Ta − ea ∧ eb ∧Rab, (B.1)

identity that can be proven using the first Cartan structure equation along with its consistency condition,

the first Bianchi identity.

One can show that in the presence of torsion the relevant tangent group of rotations is SO(5) instead

of SO(4) so we have to consider the Pontryagin density associated with the curvature 2-form

RAB = dWAB +WA
C ∧WCB (B.2)

of the SO(5) connection

WAB =

(
ωab 1

` e
a

− 1
` e
b 0

)
a, b = 1, 2, 3, 4 A,B = 1, 2, 3, 4, 5, (B.3)

where ` is a lenght scale known as “the radius of the Universe”, which is neccesary in order to consider

the vielbein as a part of a connection. In this way,

RAB ∧RAB = Rab ∧Rab +
2

`2
(Ta ∧ T a − ea ∧ eb ∧Rab). (B.4)

Taking the integral of the last expression,

2

`2

∫
M4

N = P4[SO(5)]− P4[SO(4)], (B.5)

proves that the Nieh-Yan four-form N = d(ea ∧ T a) is indeed a topological invariant since it is the

difference of two Pontryagin classes.
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Apéndice C

Large gauge transformations

C.1. Yang-Mills gauge theories

Let us review the case of large gauge transformations in Yang-Mills gauge theories. Let the SU(N)

valued connection Aµ = AIµλ
I and its associated electric field Eγ = EγKλ

K (where I, J,K, · · · =

1, 2, 3, . . . , N2−1 are internal indices) be a couple of conjugate variables in the framework of a canonical

formulation of Yang-Mills gauge theories. The evolution of the system is limited to a restricted region

of the phase space by the first class Gauss constraint, expressed by the following weak equation

GI := DαE
α
I = ∂αE

α
I + f K

IJ AJαE
α
K ≈ 0. (C.1)

According to the Dirac quantization procedure, the state functional describing the quantum physical

system must satisfy the Gauss constraint, namely we have to require that

ĜIΦ(A) = −iDα
δ

δAIα
Φ(A) = 0, (C.2)

where the usual quantum representation of the operators has been assumed.

The Gauss constraint formalizes the request of gauge invariance of the quantum state describing the

physical system, namely it is equivalent to requiring that the state functional be invariant under the

small component of the gauge group G = SU(N), as can be easily realized. Since the global structure

of the gauge group in non-trivial, in view of quantization, it is particularly interesting to study the

behavior of the state functional under the large gauge transformations. A non-trivial global structure of

the gauge group, in fact, can produce striking effects in the non-perturbative theory, as, e.g, P and CP

violations, physically motivating this extension of the theory.

In this respect, let Ĝ be the generator of the large gauge transformations, acting on the state func-

tional Φ(A). Considering that the Hamiltonian operator, Ĥ , is invariant under the full gauge group (or,

more formally, it commutes with the operator Ĝ ), we can construct a set of eigenstates for the quantum
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theory by diagonalizing simultaneously Ĥ and Ĝ . In other words, the following equation

Ĝ ΦW (A) = ΦW (Ag) = eiθWΦW (A), where Ag = gAg−1 + gdg−1, (C.3)

is a super-selection rule for the states of the theory, which are now labeled by the winding number

W = W (g), according to their behavior under the action of the large gauge transformation operator.

The constant θ is an angular parameter, which indicates how much the state functional “rotates” under

the action of the large gauge transformations operator. Specifically, it represents a quantization ambiguity

connected with the non-trivial global structure of the gauge group.

Equation (C.3) implies that the wave functionals either have to satisfy suitable θ-dependent boundary

conditions passing from one “slab” to the next in the configuration space; or, a fully gauge invariant state

functional can be constructed, trasnferring the θ-dependence in the momentum operator. In this respect,

we recall that the so-called Chern-Simons functional,

Y (A) =
1

8π2

∫
tr

(
F ∧A− 1

3
A ∧A ∧A

)
, (C.4)

is characterized by the following remarkable property:

Y (Ag) = Y (A) +W (g). (C.5)

In other words, the Chern-Simons functional under a large gauge transformation turns out to be modified

by a quantity exactly corresponding to the winding number, expressed by the Maurer-Cartan integral

W (g) =
1

24π2

∫
tr (g−1dg) ∧ (g−1dg) ∧ (g−1dg). (C.6)

This directly implies that the new state functional,

Φ′(A) = e−iθY (A)ΦW (A), (C.7)

will be invariant under the full gauge group, as can be easily demonstrated. In other words we have

Ĝ Φ′(A) = Φ′(A). (C.8)

So, by using the rescaling (C.7), we have obtained a new fully gauge invariant quantum state func-

tional, at the price of modifying the momentum operator, namely, the θ-dependence has been transferred

from the boundary conditions to the momentum operator, which becomes:

E′
α

Φ′(A) = e−iθY (A)EαeiθY (A)Φ′(A) = −i
[

δ

δAα
− iθ

8π2
εαβγFβγ

]
Φ′(A). (C.9)

The above modification in the conjugate momentum reflects on the Hamiltonian operator, i.e

H ′ =

∫
d3x tr

[
1

2

(
Eα − θ

8π2
εαβγFβγ

)(
Eα −

θ

8π2
ε ρσ
α Fρσ

)
+

1

4
Fαβ F

αβ

]
, (C.10)

48



C.2. PARTIALLY GAUGE FIXED GRAVITY

generating a pseudo-vectorial term which prevents the new Hamiltonian H ′ from being invariant under

the CP discrete symmetry.

The new Hamiltonian corresponds to a topological modification of the classical action, consisting in

the presence of an additional term belonging to the Pontryagin class, i.e.

Snew(A) = −1

4

∫
tr ? F ∧ F +

θ

8π2

∫
trF ∧ F. (C.11)

The θ parameter appears as a multiplicative constant in front of the modification. It is worth mentioning

that the new term does not affect the classical equations of motion but modifies the vacuum to vacuum

amplitude in the path-integral formulation of the quantum theory. In other words, it allows to take

into account possible tunneling phenomena between distinct vacua characterized by different winding

numbers, violating the CP discrete symmetry.

C.2. Partially gauge fixed gravity

It has been argued that the Barbero-Immirzi parameter can have a topological origin analogous to

that of the θ-angle of Yang-Mills theories and the Nieh-Yan functional,

Y [e, ω] =

∫
ei ∧ T i, (C.12)

plays the role of the Chern-Simons functional Y (A). The situation though, is less clear here. The missing

point in this construction is the relation existing between the Nieh-Yan and the large gauge sector of

the theory, in analogy with the requirement of invariance under the large sector of the SU(N) gauge

group pertaining to the case of Yang-Mills gauge theories.

The Ashtekar-Barbero first class constraints are extracted from the fully covariant theory after having

fixed the temporal gauge. This fixes the zeroth component of the local basis, e0, in such a way that it

remains parallel to the normal vector, n, along the evolution and, simultaneously, reduces the gauge

group from SO(3, 1) to SO(3). Therefore, once the gauge has been partially fixed, the local symmetry

group reduces to the group of spatial rotations, SO(3), so that one is immediately induced to think that

the large gauge sector is merely related to the non-trivial global structure of SO(3). But, physically,

also the action of the T discrete operator, which acts on the zeroth component of the local basis by

flipping its orientation with respect to the normal vector, represents a large gauge transformation. As a

consequence the full gauge group is G = SO(3) × Z2 ' S3. Namely, it consists of two copies of SO(3),

correlated with the two orientations of the zeroth component of the local basis. In particular, recalling

that Π3(S3) = Z, the disconnected components of the large gauge group are labeled by an integer, which

is the winding number of the SU(2) ' S3 group. Noting that G = SO(3) × Z2 = SO(4)/SO(3), the

connection for SO(4), ΩAB , can be written in the MacDowell-Mansouri form

ΩAB =

(
ωij 1

` e
i

− 1
` e
j 0

)
(C.13)
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where A,B,C, . . . are indexes valued on SO(4), while i, j, k, . . . are valued on SO(3). The constant ` has

the dimension of a length and can be associated with the radius of the spheres obtained compactifying

the tangent planes. It is easy to show that

Y [Ω] = FAB ∧ ΩAB +
1

3
ΩAB ∧ ΩBC ∧ ΩCA

= Rij ∧ ωij +
1

3
ωij ∧ ω

j
k ∧ ω

k
i −

2

`2
T i ∧ ei = Y [ω]− 2

`2
Y [e, ω], (C.14)

where FAB is the curvature 2-form associated with the connection ΩAB , while Rij is associated with

the 3-dimensional connection ωij . Due to the fact that now G = SO(4)/SO(3), we can construct a

Chern-Simons functional for the large gauge group of gauge fixed gravity as the difference between Y [Ω]

and Y [ω], but this is exactly the Nieh-Yan functional since

Y [e, ω] =
`2

2
(Y [ω]− Y [Ω]). (C.15)

A new state functional, fully invariant under the large gauge group, can be obtained by rescaling the

original state functional of the Einstein-Cartan theory by the Nieh-Yan functional. The new state func-

tional satisfies the Ashtekar-Barbero constraints for General Relativity, revealing the topological origin

of the Barbero-Immirzi parameter.
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Apéndice D

Dirac Genus

Alvarez-Gaumé and Ginsparg [42] give us the following expression for the Dirac Genus up to fourth

order in the Pontryagin classes for the curvature 2-form

Â(M) = 1 +
1

(4π)2

1

12
trR2 +

1

(4π)4

[
1

288
(trR2)2 +

1

360
trR4

]
+

1

(4π)6

[
1

10368
(trR2)3 +

1

4320
trR2 trR4 +

1

5670
trR6

]
+

1

(4π)8

[
1

497664
(trR2)4 +

1

103680
(trR2)2trR4 +

1

68040
trR2trR6 +

1

259200
(trR4)2 +

1

75600
trR8

]
+ . . . (D.1)
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Apéndice E

Canonical Formalism

In a canonical formulation, the Hamiltonian H rather than the action is used to determine equations

of motion of any function f on the phase space by means of Poisson brackets, ḟ = {f,H}. The Poisson

structure defines the kinematical arena which follows from the field variables and momenta.

A canonical formalism (Hamiltonian framework) is achieved by performing a Legendre transform of

the action S, replacing time derivatives of configuration variables by momenta. This, as always, requires

one to treat space and time differently and is the reason why the canonical formulation is no manifestly

covariant. We introduce a foliation of the spacetime (M, gµν ) by a family of spacelike hypersurfaces

Σt : t = const in terms of a time function t on M . Canonical variables will depend on which time function

one chooses, but the resulting dynamics of observable quantities will remain covariant. Furthermore, let

tµ be a timelike vector field whose integral curves intersect each leaf Σt of the foliation precisely once

and which is normalized such that tµ∇µt = 1. This tµ is the “evolution vector field” along whose orbits

different points on all Σt ≡ Σ can be identified. This allows us to write all spacetime fields in terms of

t-dependent components defined on a spatial manifold Σ. Lie derivatives of spacetime fields along tµ are

identified with “time derivatives” of the spatial fields (for instance, if P = Pµdx
µ is a one-form its time

derivative reads Ṗµ ≡ £tPµ = tν∂νPµ + Pν∂µt
ν).

Let us decompose tµ into normal and tangential parts with respect to Σt by defining the lapse

function N and the shift vector Nµ as tµ = Nnµ + Nµ with Nµnµ = 0, where nµ is the unit normal

vector field to the hypersurfaces Σt. The spacetime metric gµν induces a spatial metric qµν by the

formula gµν = qµν − nµnν . Then one uses nµ = N−1(tµ −Nµ) and qµν = gµν + nµnν to project fields

normal and tangential to Σt.

Having said this we now make a comment about a fact that is usually not known. The Lie derivative

depends only on the structure of the manifold and not on the connection. In abstract matrix notation

it acts as an operator

£ξ = ξ · ∂ − [∂ξ, ]. (E.1)
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For a Riemannian connection, which is torsion-free, we can replace the ordinary by the covariant deriva-

tive

£ξ = ξ · ∇ − [∇ξ, ], (E.2)

since

ξ · ∇ − [∇ξ, ] = ξν∂ν + ξλ[Γαλβ , ]− [∂βξ
α + Γαβλξ

λ, ]

= ξ · ∂ − [∂βξ
α, ] = £ξ,

recalling that torsion-freedom implies symmetric Christoffel symbols. However, in the case of a nonvan-

ishing torsion tensor

Tαλβ = Γαλβ − Γαβλ 6= 0 (E.3)

we find instead

£ξ = ξ · ∇ − [∇βξa + Tαλβ ξ
λ, ], (E.4)

which can be quickly verified

ξ · ∇ − [∇βξa + Tαλβ ξ
λ, ] = ξ · ∂ + ξλ[Γαλβ , ]− [∂βξ

α, ]− [Γαβλξ
λ, ]− [(Γαλβ − Γαβλ)ξλ, ]

= ξ · ∂ − [∂βξ
α, ] = £ξ.

This justifies our rather strange definition of “time derivative” in the Hamiltonian decomposition of

gauge theories in the presence of spacetime torsion.
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Apéndice F

Energy density and pressure

The matter Hamiltonian is directly related to energy density by

ρ =
1
√
q

δHM

δN
. (F.1)

This is the usual term for energy per volume, and does not mean that ρ is a geometrical density.

The general, thermodynamical definition of pressure is the negative change of energy by volume,

which we can write as

P = − 1

N

δH

δ
√
q

(F.2)

whenever the Hamiltonian H depends isotropically on the metric. Otherwise, one has to use all compo-

nents of the stress tensor δH
δqab

which is not proportional to the identity. The derivative by the determinant

of the metric can be expressed in terms of metric components by using a suitable change of variables

which includes q as an independent one. We thus introduce qab ≡ q1/3q̄ab with det q̄ab = 1 such that
∂qab
∂q = 1

3q
−1qab where all components of q̄ab are kept fixed in the partial derivative. This is exactly what

we need to compute pressure since only the volume but not the shape of the fluid is varied. This change

of variables implies

δ

δ
√
q

= 2
√
q
δ

δq
= 2
√
q
∑
a,b

∂qab
∂q

δ

δqab
=

2

3
√
q

∑
a,b

qab
δ

δqab
,

and thus

P = − 2

3N
√
q
qab

δH

δqab
. (F.3)
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Apéndice G

Noether’s theorem

Consider a d-form Lagrangian L(ϕ, dϕ), where ϕ denotes collectively a set of p-form fields. An

arbitrary variation of the action under a local change δϕ is given by the integral of

δL = (E −L )δϕ+ dΘ(ϕ, δϕ), (G.1)

where E −L stands for equations of motion and Θ is a corresponding boundary term. The total change

in ϕ (δ̄ϕ = ϕ′(x′) − ϕ(x)) can be decomposed as a sum of a local variation and the change induced

by a diffeomorphism, that is, δ̄ϕ = δϕ + £ξϕ, where £ξ is the Lie derivative operator. In particular, a

symmetry transformation acts on the coordinates of the manifolds as δxµ = ξµ(x), and on the field as

δϕ, leading a change in the Lagrangian given by δL = dΩ.

Noether’s theorem states that there exists a conserved current given by

?J = Ω−Θ(ϕ, δϕ)− IξL, (G.2)

which satisfies d ? J = 0. This, in turn, implies the existence of the conserved charge

Q =

∫
Σ

?J, (G.3)

where Σ is the spatial section of the manifold, when a manifold is assumed to be of topology R × Σ.

The proof goes as follows:

Under the variation ϕA → ϕA + δϕA, the Lagrangian will vary in the form

δL(d) = EAδϕ
A + d(BAδϕ

A), (G.4)

where now we make explicit the fact that the Lagrangian is a d-form and A is the collective index that

labels the set of fields involved. Here,

EA(ϕ) = 0 (G.5)
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correspond to the Euler-Lagrange equations of motion and

BA(ϕ)δϕA|∂M = 0 (G.6)

are the boundary conditions. In this case we must stress that δ implies a functional variation of the form

δϕA = ϕA
′
(x)− ϕA(x). (G.7)

Let us consider that the Lagrangian L(d) possesses two symmetries: one is the symmetry under diffeo-

morphisms, the other one will be a gauge symmetry.

G.1. On-shell and off-shell diffeomorphism current

Under an infinitesimal diffeomorphism, xµ → xµ + ξµ, the functional variation of an arbitrary

differential p-form α = 1
p!αµ1µ2...µpdx

µ1 ∧ · · · ∧ dxµp is given by

δdiff α = −£ξα, (G.8)

where £ξ stands for the Lie derivative operator defined by

£ξ = dIξ + Iξd (G.9)

and Iξ is the contraction operator which acting on a p-form α gives

Iξα =
1

(p− 1)!
ξµ1αµ1µ2...µpdx

µ2 ∧ · · · ∧ dxµp . (G.10)

We now replace in (G.4) the functional variation asociated with a diffeomorphism, so we get

−£ξL
(d) = −EA£ξϕ

A − d(BA£ξϕ
A). (G.11)

Since L(d) is a d-form, £ξL
(d) = dIξL

(d), so we get the identity

d(BA£ξϕ
A − IξL(d)) + EA£ξϕ

A = 0. (G.12)

Defining

?J (diff-on) = BA£ξϕ
A − IξL(d), (G.13)

we have that

d ? J (diff-on) + EA£ξϕ
A = 0. (G.14)

When ϕA corresponds to a on-shell configuration, i.e., satisfies EA(ϕ) = 0, ?J (diff-on) is conserved,

d ? J (diff-on) = 0. (G.15)
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G.2. ON-SHELL AND OFF-SHELL GAUGE CURRENT

Of course, if the term EA£ξϕ
A is an exact form,

EA£ξϕ
A = dX, (G.16)

it is possible to define

?J (diff-off) = ?J (diff-on) +X, (G.17)

which will be conserved without demanding an on-shell configuration,

d ? J (diff-off) = 0. (G.18)

G.2. On-shell and off-shell gauge current

When the Lagrangian is invariant under an infinitesimal symmetry transformation ϕA → ϕA + εA,

we get from (G.4) that

EAε
A + d(BAε

A) = 0. (G.19)

So when we define ?J (gauge-on) = BAε
A, we have

d ? J (gauge-on) + EAε
A = 0, (G.20)

so, when ϕA corresponds to an on-shell configuration, J (gauge-on) is conserved,

d ? J (gauge-on) = 0. (G.21)

We notice than when EAε
A is an exact form,

EAε
A = dY, (G.22)

it is possible to define the conserved current

?J (gauge-off) = ?J (gauge-on) + Y, (G.23)

d ? J (gauge-off) = 0, (G.24)

for any configuration of ϕA.
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Apéndice H

β 6= 0 case formulas

For completeness we show the formulas in the implicit solution of the contorsion tensor C(a, b, i)

(equation (3.92)) for the “scalar” case (p = 1, q = 1) when β 6= 0.

A(a, b, i) =− 1

2
C(φ, a, b)φ(i)κ− 1

2
C(φ, a, i)φ(b)κ+

1

2
C(φ, b, a)φ(i)κ+

1

2
C(φ, b, i)φ(a)κ− 1

2
C(φ, i, a)φ(b)κ

+
1

2
C(φ, i, b)φ(a)κ+ C(a, l, l)d(b, i)− C(b, l, l)d(a, i) + κJ(a, b, i)− κJ(b, i, a). (H.1)

C(φ, b, i) =
1

2
C(φ, b, φ)φ(i)κ[1 + β2]R−1 − 1

2
C(φ, i, φ)φ(b)κ[1 + β2]R−1 + C(φ, l, φ)ε(φ, b, i, l)κβ3R−1

+ C(φ, l, l)d(b, i)[1− β2][1− κφ2 − β2]−1 − 1

2
C(b, l, l)φ(i)[1 + β2 − 2β4]R−1 − 1

2
C(b, l, l)φ(i)[1− β2][1− κφ2 − β2]−1

+
1

2
C(i, l, l)φ(b)[1 + β2 − 2β4]R−1 − 1

2
C(i, l, l)φ(b)[1− β2][1− κφ2 − β2]−1 − C(l, f, l)ε(φ, b, i, f)β[1− β2]R−1

+ κJ(φ, b, i)[1− κφ2 − β2]−1 + κβ2J(φ, b, i)R−1 + J(φ, i, b)κ[1− κφ2 − β2]−1 − J(φ, i, b)κβ2R−1

− J(b, i, φ)κ[1 + β2]R−1 + J(f, g, φ)ε(b, i, f, g)κβ3R−1 − 1

2
J(f, g, b)ε(φ, i, f, g)κβ[1− κφ2 − β2]−1

+
1

2
J(f, g, b)ε(φ, i, f, g)κβR−1 − 1

2
J(f, g, i)ε(φ, b, f, g)κβ[1− κφ2 − β2]−1 − 1

2
J(f, g, i)ε(φ, b, f, g)κβR−1.

(H.2)

R ≡ 1− κφ2β2 + β2 − 2β4. (H.3)

C(φ, l, l) = κβε(φ, f, g, h)J(f, g, h)[2 + κφ2 − 2β2]−1 − 2κJ(φ, f, f)[2 + κφ2 − 2β2]−1. (H.4)

C(b, l, l) = κ3φ2β[1− β2][2 + κφ2 − 2β2]−1X−1φ(b)ε(φ, f, g, h)J(f, g, h)

− 2κ3φ2[1− β2]X−1[2 + κφ2 − 2β2]−1φ(b)J(φ, f, f)− κ3φ2βX−1ε(φ, b, f, g)J(f, g, φ)

+ 2κ2[1− β2]X−1J(φ, b, φ) + κβX−1[1− κφ2 − β2]ε(b, f, g, h)J(f, g, h)− 2κX−1[1− κφ2 − β2]J(b, f, f).

(H.5)
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X ≡ 2− κφ2 − 4β2 + 2β4 + κφ2β2 − κ2φ4β2. (H.6)

C(φ, b, φ) = C(φ, l, l)φ(b)[1− κφ2 − β2]−1 − C(φ, l, l)φ(b)β2[1− κφ2 − β2]−1 − C(b, l, l)φ2[1− κφ2 − β2]−1

+ C(b, l, l)φ2β2[1− κφ2 − β2]−1 + 2J(φ, b, φ)κ[1− κφ2 − β2]−1 − J(f, g, φ)ε(φ, b, f, g)κβ[1− κφ2 − β2]−1.

(H.7)
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Apéndice I

Inflation from scalar fields

Let us consider the canonical scalar action in curved spacetime

S =

∫
d4x
√
−gLφ, (I.1)

with

Lφ =
1

2
gµν∂µφ∂νφ− V (φ). (I.2)

For simplicity, we assume a flat spacetime,

gµν =


1

−a2(t)

−a2(t)

−a2(t)

 , (I.3)

and the equation of motion for the field φ is

φ̈+ 3Hφ̇−∇2φ+
δV

δφ
= 0, (I.4)

where an overdot indicates a derivative with respect to the coordinate time t, and H = ȧ
a is the Hubble

parameter. We will be particularly interested in the homogeneous mode of the field, for which the gradient

term vanishes, ∇φ = 0, so that the functional derivative δV
δφ simplifies to an ordinary derivative, and the

equation of motion simplifies to

φ̈+ 3Hφ̇+ V ′(φ) = 0. (I.5)

The stress-energy for a scalar field is given by

Tµν = ∂µφ∂νφ− gµνLφ, (I.6)
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and, for a homogeneous field, it takes the form of a perfect fluid with energy density ρ and pressure p,

with

ρ =
1

2
φ̇2 + V (φ), (I.7)

p =
1

2
φ̇2 − V (φ). (I.8)

We see that the de Sitter limit, p ' −ρ, is just the limit in which the potential energy of the field

dominates the kinetic energy, φ̇� V (φ). This limit is referred to as slow roll, and under such conditions

the universe expands quasi-exponentially,

a(t) ∝ exp

(∫
Hdt

)
≡ e−N , (I.9)

where it is conventional to define the number of e-folds N with the sign convention

dN ≡ −Hdt, (I.10)

so that N is large in the far past and decreases as we go forward in time and as the scale factor a

increases. Recalling that Friedmann and Raychaudhuri equations (Einstein’s equations) are respectively(
ȧ

a

)2

+
κ

a2
=

8π

3m2
Pl

ρ, (I.11)(
ä

a

)
= − 4π

3m2
Pl

(ρ+ 3p), (I.12)

we can rewrite them in a convenient form (κ = 0)

H2 =
8π

3mPl

[
1

2
φ̇2 + V (φ)

]
, (I.13)(

ä

a

)
= H2(1− ε), (I.14)

where ε

ε ≡ 3

2

(
p

ρ
+ 1

)
=

4π

mPl

(
φ̇

H

)2

, (I.15)

specifies the equation of state. It can be shown that

ε = −d lnH

d ln a
=

1

H

dH

dN
. (I.16)

This is a useful parametrization because the condition for accelerated expansion ä > 0 is simply equiv-

alent to ε < 1. The de Sitter limit p→ −ρ is equivalent to ε→ 0, so that the potential V (φ) dominates

the energy density, and

H2 ' 8π

3mPl
V (φ). (I.17)
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We make the additional approximation that the friction term in the equation of motion (I.5) dominates,

φ̈� 3Hφ̇, (I.18)

so that the equation of motion for the scalar field is approximately

3Hφ̇+ V ′(φ) ' 0. (I.19)

This last equation together with Friedmann equation are referred to as slow roll approximation. Condition

(I.18) can be expressed in terms of a second dimensionless parameter, conventionally defined as

η ≡ − φ̈

Hφ̇
= ε+

1

2ε

dε

dN
. (I.20)

The parameters ε and η are referred to as slow roll parameters, and the slow roll approximation is valid

as long as both are small, ε, |η| � 1. It is not obvious that this will be a valid approximation for situations

of physical interest. η need not be small for inflation to take place. Inflation takes place when ε < 1,

regardless of the value of η. In the limit of slow roll, we can use (I.17),(I.19) to write the parameter ε

approximately as

ε =
4π

m2
Pl

(
φ̇

H

)2

' m2
Pl

16π

(
V ′(φ)

V (φ)

)2

. (I.21)

The inflationary limit, ε� 1 is then just equivalent to a field evolving on a flat potential, V ′(φ)� V (φ).

The second slow roll parameter η can likewise be written approximately as:

η = − φ̈

Hφ̇

' m2
Pl

8π

[
V ′′(φ)

V (φ)
− 1

2

(
V ′(φ)

V (φ)

)2
]
, (I.22)

so that the curvature V ′′ of the potential must also be small for slow roll to be a valid approximation.

Similarly, we can write the number of e-folds as a function N(φ) of the field as:

N ' −
∫

Hdt = −
∫

H

φ̇
dφ =

2
√
π

mPl

∫
dφ√
ε

' 8π

m2
Pl

∫ φ

φe

V (φ)

V ′(φ)
dφ. (I.23)

The limits on the last integral are defined such that φe is taken to be the end on inflation, and N

increases as we go backward in time, representing the number of e-folds of expansion which take place

between field value φ and φe.
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[30] B. Broda and M. Szanecki, “A relation between the Barbero-Immirzi parameter and the standard

model,” Phys. Lett. B 690, 87 (2010) [arXiv:1002.3041 [gr-qc]].

[31] N. D. Birrell and P. C. W. Davies, “Quantum Fields In Curved Space,” Cambridge, Uk: Univ. Pr.

( 1982) 340p

[32] B. S. DeWitt, “The global approach to quantum field theory. Vol. 1, 2,” Int. Ser. Monogr. Phys.

114, 1 (2003).

[33] D. V. Vassilevich, “Heat kernel expansion: User’s manual,” Phys. Rept. 388, 279 (2003) [arXiv:hep-

th/0306138].

[34] A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of gravitation,”

Sov. Phys. Dokl. 12, 1040 (1968) [Dokl. Akad. Nauk Ser. Fiz. 177, 70 (1967)] [Sov. Phys. Usp. 34,

394 (1991)] [Gen. Rel. Grav. 32, 365 (2000)].

[35] A. Ashtekar, A. Corichi and K. Krasnov, “Isolated horizons: The classical phase space,” Adv. Theor.

Math. Phys. 3, 419 (2000) [arXiv:gr-qc/9905089].

A. Ashtekar, J. C. Baez and K. Krasnov, “Quantum geometry of isolated horizons and black hole

entropy,” Adv. Theor. Math. Phys. 4, 1 (2000) [arXiv:gr-qc/0005126].

[36] M. Domagala and J. Lewandowski, “Black hole entropy from quantum geometry,” Class. Quant.

Grav. 21, 5233 (2004) [arXiv:gr-qc/0407051].

[37] K. A. Meissner, “Black hole entropy in loop quantum gravity,” Class. Quant. Grav. 21, 5245 (2004)

[arXiv:gr-qc/0407052].

[38] R. Gambini, O. Obregon and J. Pullin, “Yang-Mills analogues of the Immirzi ambiguity,” Phys.

Rev. D 59, 047505 (1999) [arXiv:gr-qc/9801055].

[39] S. Mercuri, “From the Einstein-Cartan to the Ashtekar-Barbero canonical constraints, passing

through the Nieh-Yan functional,” Phys. Rev. D 77, 024036 (2008) [arXiv:0708.0037 [gr-qc]].

[40] A. Perez, “Introduction to loop quantum gravity and spin foams,” arXiv:gr-qc/0409061.

[41] S. Mercuri, “A possible topological interpretation of the Barbero–Immirzi parameter,” arX-

iv:0903.2270 [gr-qc].

[42] L. Alvarez-Gaume and P. H. Ginsparg, “The Structure Of Gauge And Gravitational Anomalies,”

Annals Phys. 161, 423 (1985) [Erratum-ibid. 171, 233 (1986)].

[43] R. A. Bertlmann, “Anomalies in quantum field theory,” Oxford, UK: Clarendon (1996) 566 p.

(International series of monographs on physics: 91)

69



BIBLIOGRAFÍA
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