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Introduction

We begin this introduction with a brief survey on Einstein-Cartan Theory, the underlying framework

on which this thesis has been developed.

In Special Relativity Theory (SRT), the underlying Minkowski spacetime admits, as its group of
automorphisms, the full Poincaré group, consisting of translations and Lorentz transformations. It fol-
lows from the first Noether theorem that classical, special relativistic field equations, derived from a
variational principle, give rise to conservation laws of energy-momentum and angular momentum. Us-

ing Cartesian coordinates (z*), abbreviating ¢ , = % and denoting by 7 and S*P = —SYHP the

tensors of energy-momentum and of intrinsic angular momentum (spin), respectively, one can write the

conservation laws in the form

TH =0 (1)

)

and
(xhTVP — gV THP + SHP) , = 0. (2)
In the presence of spin, the tensor 7#” need not be symmetric,
TH TR = SHe (3)
Belinfante and Rosenfeld have shown that the tensor
THY — THY %(Sww + SvPr 4 SHey (4)

is symmetric and its divergence vanishes.
In quantum theory, the irreducible, unitary representations of the Poincaré group correspond to
elementary systems such as stable particles; these representations are labeled by the mass and spin.

In Einstein’s General Relativity Theory (GRT), the spacetime M is curved; the Lorentz group - but
not the Poincaré group - appears as the structure group acting on orthonormal frames in the tangent
spaces of M. The energy-momentum tensor ¥ appearing on the right side of the Einstein equation is

necessarily symmetric. In GRT there is no room for translations and the tensors 7 and S.
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INTRODUCTION

By introducing torsion and relating it to &, Cartan restored the role of the Poincaré group in
relativistic gravity: this group acts on the affine frames in the tangent spaces of M. Curvature and
torsion are the surface densities of Lorentz transformations and translations, respectively. In a space
with torsion, the Ricci tensor need not be symmetric so that an asymmetric energy-momentum tensor

can appear on the right side of the Einstein equation.
Sciama and Kibble showed that the equation of motion for such a theory is

M7 ig;u/jj” = 87(-7;61?‘ (5)

Here, RW and R are, respectively, the Ricci tensor and scalar formed from g. Neglecting indices one can

write symbolically
T =3 4+ 852 (6)
The symmetric tensor ¥ is

T = T V(810 + §7PF 4 SHoY), (7)

|~

It is remarkable that the Belinfante-Rosenfeld symmetrization of the canonical energy-momentum tensor
appears as a natural consequence of Einstein-Cartan Theory (ECT). From the physical point of view,
the second term on the right side of (6), can be thought of as providing a spin-spin contact interaction,

reminiscent of the one appearing in the Fermi theory of weak interactions.

It is clear from (5), (6) and (7) that whenever terms quadratic in spin can be neglected - in particular
in the linear approximation - ECT is equivalent to GRT. To obtain essentially new effects, the density
of spin squared should be comparable to the density of mass. For example, to achieve this, a nucleon of

mass m should be squeezed so that its radius rca¢ be such that

2
2 m
2y 0
TCart TCart

where (2 ~ 10733 cm is the Planck lenght (in general relativistic units so G = ¢ = 1 and h = ¢? so mass

and energy are measured in centimeters). Introducing the Compton wavelength rcomps = % ~ 10~ cm,

one can write
TCart ~ (gerompt)l/3~ (9)

The “Cartan radius” of the nucleon, rcare ~ 10725 cm, so small when compared to its physical radius
under normal conditions, is much larger than the Planck length. Curiously enough, the energy £2/rcar
is of the order of the energy at which, according to some estimates, the grand unification of interactions

is presumed to occur.

Having said this let us summarize the content of our work:

v



INTRODUCTION

= In Chapter I the chiral anomaly in the context of the Loop Quantum Gravity (LQG) canonical
formulation of gravity with fermions has been studied. In particular we have focused our attention
in the so called “non-minimal” coupling formulation for fermions, motivated mainly by recent
investigations about how to reconcile the nonvanishing torsion tensor generated by the presence
of fermionic degrees of freedom and the starting point of LQG, which is the Holst modification
of the Hilbert-Palatini action. A brief comment on the Atiyah-Singer index theorem as a way of
calculating the anomaly is made along with a naive ansatz for getting further “torsional topological

invariants” in arbitrary even spacetime dimensions.

s In Chapter II we canonically analize gauge theories in the presence of spacetime torsion. In the
literature it is usually assumed that gauge bosons cannot couple to spacetime torsion because it
would spoil the gauge invariance of the action leading to a disaster at the quantum level. However,
some 30 years ago Hojman et al. found a way of reconciling the two usually assumed principles
of nature, namely, minimal coupling and gauge invariance. Here we arrive at the same conclusion
in the Maxwell case and discuss a bit why this fails in the case of Yang-Mills theory but also how
it can somehow be “cured”. We also show that the radiation equation of state is not modified in
the presence of spacetime torsion. Finally we make a little analysis on how the “tlaplon” field (a
dynamical source of torsion) could modify the current understanding of the behavior of LQG in

the presence of spacetime torsion.

= In Chapter III we present our main proposal. It is known that fermions are not irreducible rep-
resentations of GL(4, R) but SO(3,1). This implies that in curved spacetime it is mandatory to
use the vielbein formalism along with the equivalence principle in order to have a well defined
Dirac operator. Thus we are led to a local gauge theory of gravity for the group SO(3,1) with
a corresponding “spin gauge connection”. As Cartan understood, it is arbitrary that the vielbein
(metric) will be the only independent field of the gravitational theory because the metric and affine
properties of space need not be related. The spin connection should be taken more seriously since
in analogy with electromagnetism, when a field couples to this connection it acquires a “charge”
in the Noether sense. We show that this charge is nothing but the torsion generated by this cou-
pling. The question then arises of why bosons could not do the same. All forms of matter generate
spacetime curvature through their energy-momentum content as Einstein taught us. So why the
generation of spacetime torsion should be an exclusive feature of fermions? We propose a new kind
of bosonic fields ((p — 1)-forms) in arbitrary dimensions that do generate torsion. Apart of being
an academic exercise, we try to realize what would be the implications of having such fields in
situations of physical interest. These “toy models” should not be taken so seriously as they are first

approximations of what this mathematical framework has to offer.

= Finally we present several appendices in order to make the discussion self-contained and as a source

of future reference.
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Capitulo 1

Chiral Anomaly in Loop Quantum

Gravity and spacetime torsion

1.1. Non-minimally coupled Dirac fermion and Holst action for
gravity

Let us consider four-dimensional “Holst action” [1], which at the Hamiltonian level reduces to the
Ashtekar-Barbero formalism for gravity [3][4][5]. Recall that in this setup for the gravitational interaction,
its connection belongs to a SU(2) algebra (universal covering of SO(3)). This connection is necessary in
order to preserve the local gauge freedom of the triad under rotations in the foliation leaves of spacetime.
Besides we add the contribution of a massless uncharged Dirac field which couples non-minimally to

curved spacetime and creates nonvanishing torsion [2]. The total action is
Sle,w, ¥] = Sgle,w] + Srle,w, V]
—sito( [ dsleitesniio) -2 [ dalderRi@)

+ g/ dzle] [\Iw’e? (1= 37) Va¥® = V0 (1 = 295) v’e‘f‘lf}a (1.1)
M

17 g : 1J _ 1J 1J sig 1J _
where w,,” is the Lorentz connection and R, (w) = 20[w,; + [wy,wy )™ its curvature. *R;, =

1el7, LRffyL is a Hodge dual and V,, = 9,, — %w/{'] oy is the Lorentz covariant derivative, where o;; are

the Lorentz algebra generators. In the spinorial representation o; ; = %[717 vil,80V, =0, + iwﬁ‘]v[I’yJ]
is the appropiate covariant derivative for fermions (with ; being the Dirac matrices in Minkowski space-

time) which is defined through [V, V,] = ;R y7s). v € R is the so-called Immirzi parameter [6][7]

of Loop Quantum Gravity (LQG)[8][9][10][11]. a € R is a non-minimal coupling for fermions [2][12].

Minimal coupling is recovered taking o — oo. We define ¥ = ve/V,, = v/, + %’yle’;wl{K'y[J'yK].

1



CAPITULO 1. CHIRAL ANOMALY IN LOOP QUANTUM GRAVITY AND
SPACETIME TORSION

1.2. Fujikawa method for the evaluation of the Anomaly

1.2.1. Minimal coupling

Let us follow the standard method due to Fujikawa for the evaluation of the Chiral Anomaly [15].

Gamma matrices in chiral representation are

0 1 , 0 o
0 = B 1 = . 5 1.2
v (1 0) ¥ (—01 0) (1.2)

0 4°% =1 and 4> = —1. Besides 7°7 = 7% and 7" = —47 s0 77" = 709740, with I = 0, 1,2, 3. We now

perform the following Wick rotation in the local Lorentz frame:

ey »iey, e——ie, =it =i’y =4ty (1.3)

With such a change we get the “inner” metric G’/ = diag(—1, -1, -1, —1). ¥ operator is Hermitian,

WT =V, so we can consider a complete basis set ©n(x) which satisfies

V@?L(I) = >\7z80n(17)7 (1.4)
[ d el @)on(@) = (15)

Proof of Hermiticity is easy (see Appendix A).

Let us now consider local chiral transformations on the Dirac field

() =0 (z) = e @10(z), (1.6)
U(z) =0 (z) = U(z)e s,

We can expand these fields in the complete basis in the form
() = ngn x)b, = Z<n|x>bn, (1.8)

n

where a,, and b,, are Grassmannian coefficients. Then,

Z ! on(x Z a, et 93)75 (2),

SO
Z/&mm,lﬂmlm%
= Cppnn. (1.9)



1.2. FUJIKAWA METHOD FOR THE EVALUATION OF THE ANOMALY

According with Grassmannian nature, 29'(x) = [],, da;,, = [detC,, ] 7' ], da,, and [detC,, ,]7' =
det[d,, ,, +1 [ d*zlele(x)p], (2)750n(x)] 1. Using Jacobi’s formula, detX = exp(Tr(InX)), we get that

[detC,, ,] 7" = exp

i Z / d4:c|e|e($)90;(3?)7590n(37)]

= exp {—;/ d4xe(m)£/(x)] (1.10)
where the anomaly &/ (z) has been defined as

= 22' |(pn ’75'7n( ) - 2T1“’75 : 6(0)a (1'11)

which is an ill-defined quantity. The Jacobian for 2W¥ gives an identical factor so Zu —
Duexp|—i [ d*ze(x)o/] where P is the total integration measure of the path integral. With the stan-
dard regularization & (z) is

= lim 2Z|e )k (2)15exp(BA2 ) on (@)
— Vm 1 loleBY Nt
glg%) xl/lglx 2Trysele ; on(x)pn (). (1.12)

The regulator 8 need not be taken to zero in order to regulate the trace. The reason is that for each
nonzero eigenvalue of Wg, there are two states of opposite chirality and therefore they cancel pairwise
in the trace. The only remaining contribution comes from the zero modes and on those states the
exponential of W2 is just the identity. Thus the anomaly equals the number of right-handed (v) minus

the number of left-handed (v_) zero modes, or

/ o(x)=vy —v_, (1.13)

so the anomaly is the index of the Dirac operator in the sense of the Atiyah-Singer theorem [16][17].
We recall that the commutator of two covariant derivatives for the group of diffeomorphisms of a

manifold in a coordinate basis is
Vi, Vo VA =T VVA+ R4 VA, (1.14)

where V4 represents any tensor (or spinor) under diffeomorpshims or under the group of tangent ro-
tations, and R4 5 is the curvature tensor in the corresponding representation [18]. Here curvature and

torsion play quite different roles: 77, is the “structure function” for the diffeomorphism group and

pv
RA Buy 18 @ “central charge”. The square of the Dirac operator acting on a spinor is given by

YU = 44V, (v"V,¥)
=iy eleJV Vv,
= (" 3l eerv, v, w
=VIV, T + aue‘;ef}[vu, V., ]¥



CAPITULO 1. CHIRAL ANOMALY IN LOOP QUANTUM GRAVITY AND
SPACETIME TORSION

so we have that [19][22]

1
v = VAV, — el T Vs + 56’;6301‘IUKLRKLW. (1.15)
The anomaly is
o (z) = lim lim 2Tr[ysexp(BY)]5(z, ) (1.16)
y—x 3—0

where §(z,y) is the generalized Dirac delta in curved spacetime

5 - d4k ’L‘kMV“E(I,y) 1 17
(xay) - (27T)4e ( . )

and X(z,y) is the geodesic biscalar [23], a generalization of the quantity %(x —y)? in flat spacetime.

Y(x,y) has the following properties:
L 3(z,y) = 39" (2)V,.2(2,y) V. E(z,y)
2. ¥(z,z) =0
3. limy ., V,VYE(z,y) = 9, = 5“”.

The integral over the “wave vector” k* requires some careful handling. The spacetime manifold over
which the anomaly is evaluated was taken to be a compact Euclidean space (e.g., S*) with a typical lenght
scale ¢ often called “the radius of the Universe” (this ensures that the tangent space symmetry SO(4)
can be embedded into SO(5)). Thus, k& must be quantized in multiples of the inverse radius, k* ~ 2mn”
with n* € Z. Now, since ¢ is supposed to be very large, the wave vectors k* can be approximated
by a continuous variable. This means that the integrations over k yield inverse powers of ¢, which we

normalize as

d*k 4 d*k v 1B v
/Wzg ; /(27r)4k#k ={"gh, etc. (1.18)

Applying the operator exp(ﬁWz) on the delta, taking the limit y — = and tracing over spinor indices,

(5) N . (1.19)

In the standard calculations, the lenght scales ¢ ~ /2 are identified with M ~'. This means that only
r )
the second term would be finite, while the first and third diverge like M2 and the terms O (%) ] ~

one finds

1 BY - BY e B\ -
%:82[—2(62)8 2e-R-e+<£2) Rb/\Rab+2<€2 (2T -T| +0

™

M~2 are neglected. In our case, we see that if one identifies 8 with £2 the expression for the _anomaly is
finite to all orders and the first three terms are
1

a 2 a a
53 R®AR,, + —(T*ANT, — Ry Ae® Ae)|, (1.20)

62



1.2. FUJIKAWA METHOD FOR THE EVALUATION OF THE ANOMALY

which is the Chern class for SO(5) (See Appendix B). The above result has been a source of controversy
[20][21] and it has been argued that it is not conceptually right. We think the line of thought is correct.
Moreover, other authors have obtained the same result using other methods [24][25][26][27].

We see that the relevant Dirac operator that entered in the regulator could be written as e,vy*V,,,
which is the way the vielbein enters in the embedding (w, e) — W. In agreement with

sa _ p—1_a
where e}, = ("¢},

this, the anomaly is the second Chern class for SO(5), instead of being the second Chern class for SO(4).

In terms of the “physical” fields w and €&, the regulator 8 = £? drops out the trace before the limit
B — 0 is performed. In other words, the result should be correct to all orders in powers of . This
is because the limit § — 0 is actually unnecessary: as we mentioned before, the trace erases all (-
dependence. Thus the result should be independent of 8 before the limit is performed. It should be
stressed that the choice 3 = ¢? is the only one needed to yield a S-independent result, and there seems
to be no other similarly simple adjustment that would do the trick. For example, if one had chosen
B’ = 94, with ¥ an arbitrary constant, the result would not be an exact form because this would change

the relative factor between the two terms in the Nieh-Yan form.

1.2.2. Non-minimal coupling

Let us now consider the non-minimal coupling. Before we had that v* = —~#T and that implied that
V' = V. Now, ¥ = vlef (1 — Lvs) V,, will be Hermitian as long as 4 (1 — £+3) is too. (The proof
can be found in Appendix A). Using the fact that {y5,7/} = 0 and 752 = 1, we obtain that in this case

vy = (1 + ;) V20 = V20, (1.21)

where Y stands for the minimal Dirac operator. So we have that exp(ﬁV2) — exp(ﬁxW2) = exp(ﬁXWZ)

and this leads us to

1 8 BY AN
’Q{Bx (x) :8? |: — 2X (W) £_2€ . R - € + X2 (62) Rab A Rab + 2X2 (62) E_ZT . T:|

x? (i) _2] : (1.22)

Now it all depends on the identification we will do.

+0

B=1

If we insist in taking 8 = £2, we get

. () YR ARy, + 22T T —2x02e-R-e| + O [x 2(7?]. (1.23)

" 82

The anomaly has to be of a topological character because it is a quantum effect not present at the

classical level. In order to achieve the Nieh-Yan four-form, it is necessary that the second and third

5



CAPITULO 1. CHIRAL ANOMALY IN LOOP QUANTUM GRAVITY AND
SPACETIME TORSION

terms in the above expression be of the same order for the Nieh-Yan topological invariant is N =
d(ea NT*) =T* AT, — eq A ey A R%®. In order to achieve this we take x? = x, implying that x = 0 or
X = 1. The first solution would lead us to a = £ but we need it to be real-valued (If not, ¥’ would not
be Hermitian and W’Q = 0). The second solution implies that o = oo, which leads us to the minimal

coupling scenario.

Bx = £

We could “save” the situation if we make the identification By = £2 = ﬁ where A is the “cosmological

constant”. Then we would get the following anomaly

1 2
s () = ) [Rab A Ry, + @(TG ATy — Ry Ne® A eb)}

1

a 2 a a
:87T_2|:Rb/\Rab+(T ATy — Ry Ne Aeb)]. (1.24)

€2

Now, if the regulator was M (as in the standard Fujikawa method), exp(—WQ/MQ) — exp(—sz/MQ) =
exp(fWQ/MXQ), where we have defined M,? = %2 Then one gets

1
A, (z) = ) [Rab ARy +2M* (T ATy — Ry Ae® A eb)]

1 " 2M? u

:W[Rb/\Rab—&— (T* AT, — Ry, Ne /\eb)}. (1.25)
If we perform the non-trivial transformation
a 1/2 a
a ~a € X €

= = 1.26
C O T Ma T M (1.26)

we arrive at a finite anomaly

1 [, 2 .
d(x)8ﬂ_2|:Rb/\Rab+€2(T AT, — Ry Ne /\eb)]
1
=53 [R‘“’ ARy +2[A[(T* ATy — Ry A e® A eb)} : (1.27)
u

Even if the transformation (1.26) is arbitrary we are performing the calculations on a given back-
ground spacetime without dynamics so it has no physical consequences and it is purely formal. In the
analysis e is an external classical background field. One could view the rescaling of the vielbein as an
invariance of the action, provided the Dirac field is suitably rescaled as well. However, in order for this
invariance of the action to be interpreted as a symmetry generated by charges acting on the fields, one
should include a scale-invariant Lagrangian for e. The vielbein has units of (mass)® and is, therefore,
not of the same canonical dimension as the connection. If e is to be regarded as part of a connection
of SO(5), the limit M — oo keeping ¢ fixed could be interpreted as a way to turn the SO(4)-invariant
action into that for a spinor minimally coupled to an SO(5) connection. In this case, the chiral anomaly

is then given by P;[SO(5)] as we have seen.

6



1.2. FUJIKAWA METHOD FOR THE EVALUATION OF THE ANOMALY

It has been shown that when o = v a classical effect of the Immirzi parameter through spacetime
torsion is avoided [2][12] since the usual “extra-term” of the Holst modification compared to Hilbert-
Einstein becomes the Nieh-Yan topological density multiplied by % and hence cannot affect the classical
behaviour of the system [13]. Since there is not known way of giving quantum dynamics to the gravi-
tational field (the calculation of the anomaly is performed on a classical spacetime background) we did
not success in finding a link between « and ~. However if we stick with the first approximation we took
for the non-minimal coupling case, a« = oo, we should accept that v will have classical implications and
could in principle be measured through spacetime torsion [28][29].

Surprisingly during the final stage of this thesis another closely related calculation has been published
[30]. The authors of this reference perform the calculation of the chiral anomaly using Schwinger’s
proper-time formalism and the Seeley-DeWitt heat-kernel expansion [31][32][33]. Based in the primary,

old-fashioned idea of Sakharov’s induced gravity and gauge interactions [34] they found that

(No + N1 —4Ny)
Y= 3N, )

(1.28)

where Ny is the number of minimal scalar degrees of freedom (dof), N 1 is the number of two-component
fermion fields, N is the number of gauge fields (half the number of gauge dof) and Ny, is the number of
chiral left handed modes. In the framework of the Standard Model, they take Ny = 4 (Higgs), N 1 =45,
Ny = 12, N, = 3 (neutrinos), yielding v = % ~ 0,11 which is quite close to the (a bit obsolete)
Ashtekar-Baez-Corichi-Krasnov value [35][36] yapcx = 22 = 0,13 (see [37] for a better estimation).

/3
Their starting point however was an action consisting in the Hilbert-Einstein plus Nieh-Yan terms.

We can adapt our calculation to these results. In the first approach we took, we should conclude
that dynamics for fermions must be of minimal coupling nature and the Immirzi parameter is a real
constant multiplying the Nieh-Yan topological term in the gravitational sector of the action so v does
not appear in the classical equations of motion. This alternative is attractive since it resembles the so
called 8gcp angle ambiguity of Quantum Chromodynamics [38][39] in the sense that a classical canonical
transformation would not be unitarilly implemented at the quantum level so the spectrum of geometric
operators depends explicitly on «y [40]. This suggests that the Ashtekar-Barbero canonical formulation of
gravity represents a non-trivial extension of the Einstein-Cartan theory. Specifically, the presence in the
action of the Nieh-Yan invariant, introduces into the theory also information about the global structure
of the local gauge group [41] and should not be regarded just as an ad-hoc way of getting rid of classical
effects of the Immirzi parameter in the presence of torsional matter. (See Appendix C)

If we stick with the second approach, we will be led to a “rescaled Immirzi parameter” v, that reads

(No + N% —4Ny)
3N,

1
Tx = X, x=1+5 (1.29)

In this way, reconciling Hawking’s semiclassical black hole entropy formula along with the particle
content of the Standard Model would require that chiral left handed modes (such as neutrinos) couple

non-minimally to curved spacetime. Suppose we are dealing with an action describing a massive neutrino.

7



CAPITULO 1. CHIRAL ANOMALY IN LOOP QUANTUM GRAVITY AND
SPACETIME TORSION

The equation of motion in a spacetime background would be
(Y —m)¥ = 0. (1.30)
Multiplying by (ZW/ +m) we get
(¥ +m*)¥ = (¥ +m?)¥ =o. (1.31)

Now let us go to a local frame where gravity is neglected in virtue of the equivalence principle so we set

e% = 6% and w* = 0. Then, the equation of motion reads
(x@ +m?)¥ =0, (1.32)
which is equivalent to the dispersion relation
E? =p*+m} (1.33)

where m, = 2. So we see that the naive “classical relativistic rest mass” is redefined in the presence of
X X

a non-minimal coupling parameter.

1.3. Calculation of the Anomaly via Index Theorem

For a fermionic theory with gravitational and Yang-Mills gauge fields we have to consider the following

Dirac operator:

D= ey (Ou + Ay +wp), (1.34)

with the Yang Mills one-form A = A, dz" = A} T*dz* and spin connection w = w,, dz# = %wabﬂaabdx“.

The Atiyah-Singer index theorem tells us that
index D, = / Ch(F)A(M), (1.35)
Moy

where D is the Weyl operator D = i[pP, and Py = (1 + v5) as usual [43].
Here €h(F') stands for the Chern character defined as

h(F) = trexp [;F]

™

. . 2
1
Y <Z> trF2+ ..., (1.36)

=Tt o o1 \ 27

where 7 is the dimension of the group and F' is the curvature 2-form, F' = dA + AN A.
A(M ) is the Dirac genus defined by

A(M) = Hmri;la/:j/Z (1.37)



1.3. CALCULATION OF THE ANOMALY VIA INDEX THEOREM

The quantities x, denote the skew eigenvalues of the curvature 2-form

0 X1
—I1 0

—ab — , (1.38)

ro | =

0 Tn

—x, 0

which we consider as a matrix in the Lie algebra of SO(2n). Each z, expresses a 2-form. The Dirac
genus A(M ) can be expanded to arbitrary order in R so it represents a sum of invariant polynomials
in the curvature 2-form to a given finite order depending on the dimension of the manifold [42]. (See
Appendix D)

In our expression for the AS theorem €h(F)A(M) means the wedge product of the Chern character
with the Dirac genus in a given order corresponding to the dimension of the manifold. Mixed terms occur
only in dimensions higher than or equal to 6 so in particular in n = 4 there are not mixed anomaly

contributions. Explicitly, for n = 4 the index of the Weyl operator is

. 1 1 9 T 9
index Dy = )2 /]vu{ 2trF +48trR . (1.39)

In the presence of torsion the relevant tangent group of rotations is SO(5) instead of SO(4) [19] (see

Appendix B) so we have to consider the Pontryagin density associated with the curvature 2-form

2
Run AR =R, AR™ + (T, ANT® — e, A ey A R™). 1.40
AB ab /2

Taking account of this fact, the index we should seek for is

1 1
index D_{ = / [—tr F? + Ltr RQ]
My

(27)2 2 48
_ ﬁ/ {—;trFQ + étr {R2 + E%(TQ - eQR)H , (1.41)
My

where DJ:C stands for the Weyl operator in the presence of torsion.

A naive ansatz would be that in order to obtain possible torsional contributions to the chiral anomaly
in even n-dimensional spacetimes for a fermionic theory with Yang-Mills and gravitational gauge fields,
all we have to do is to replace the SO(n) curvature 2-form by a SO(n+1) curvature 2-form (as in (1.40))

in the expansion of the Dirac genus. This will be carefully analized and discussed elsewhere.



CAPITULO 1. CHIRAL ANOMALY IN LOOP QUANTUM GRAVITY AND
SPACETIME TORSION
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Capitulo 2

Gauge Theories in the presence of

spacetime torsion

2.1. Maxwell Field in the presence of spacetime torsion

Let us consider the action for Maxwell electrodynamics in curved spacetime
1 v
Slg, T, A] = _1/ d*z/=gF,, F". (2.1)

If we take minimal coupling as a true principle of nature then

F,, =V, A, =V, A, =0,A, — 9,A, +T%, Ax, (2.2)

n%

A
uv

recalling that T =T = r, - This of course spoils gauge invariance in its usual form. Since gauge
invariance is a key feature for the renormalizability of Quantum Electrodynamics, the usual approach is
to take I' as the Levi-Civita connection and deny the possibility that “photons” can couple to spacetime
torsion. Let us take a stubborn attitude and stick with minimal coupling as a true principle of nature.
Canonical analysis will show us the way of reconciliation with gauge invariance.

We will perform the ADM Hamiltonian decomposition. Without loss of generality one takes the

metric to be
ds® = g, datdz” = —N?dt* + q;;(dz’ + N'dt)(dz’ + N7dt). (2.3)

N and N are called the Lapse Function and the Shift Vector, respectively [44][45]. They are Lagrange
multipliers associated with the Hamiltonian and Vector constraints of General Relativity. g;; is the 3-
metric induced in the foliation of spacetime we are performing in order to achieve a Hamiltonian analysis.

Using the fact that in this setup /—g = N,/q, we define the canonical momenta associated with the

11



CAPITULO 2. GAUGE THEORIES IN THE PRESENCE OF SPACETIME TORSION

spatial A field as

Y S _
' = — = —N,/qF", 2.4
5A, V4 (2.4)
and where we define Al = Q4; + TjOi A;j. (See Appendix E for a better understanding of this choice,
[43][46])).
With these facts we can write (2.1) in the following 3 + 1 form
- 1. - N -

Slg, T, A] = / d%/ dt{HlAi — I Fy; + Ao Dill’ — T\/z’Fij F”}, (2.5)
where D;IT* = 9;11° + T, II' is a covariant derivative. This deviation of the standard result is natural
when we realize that, as always, Ay has no dynamics so it enters in the action as a Lagrange multiplier
of the first class constraint of the U(1) gauge theory for electromagnetism, Gauss constraint. One can

prove that

N 4 4
Foi = %qiﬂ'nj + N7 F;. (2.6)

We then get the final form

. 1 1 o Vi .
I, A= 3 ‘A, + AgD,IT" — = N'II'F., — N| —II'Tl%q,, + Y=F,. FY | . (2.
Slav 4] = [ s [ ae{wid e apar = Svmn, -y (G, + SR P )L @)

Given a function f on phase space, we may associate with it a vector field V' on phase space by the

requirement that for any function g on phase space, we have V(g) = {f, g} pB, where the Poisson bracket

{f,g}pp is defined by
_ [ (2f99 _990f
{fvg}PB = /gt (aq on aq 871') . (28)

One may verify that the vector field V' associated in this manner with the “constraint function” f =
th X'¢; (where y is an arbitrary function on ¥, there is no summation on i and ¢; ~ 0 is a first class
constraint) is just the infinitesimal generator of the one-parameter family of transformations on phase
space associated with the gauge transformations of the theory. The constraint “generates” the gauge
transformations. By restricting to the “constraint submanifold” ¢; = 0 and to the space of orbits of V on
this submanifold, we obtain a consistent, constraint-free Hamiltonian formulation on a “reduced phase

space” [47][48]. So considering the Gauss first class constraint
DIT' ~ 0, (2.9)
we get that
A, =D, x =0ux+ TOOMX' (2.10)

12



2.1. MAXWELL FIELD IN THE PRESENCE OF SPACETIME TORSION

We note that in particular § Ag = Jdpx under a gauge transformation. Given this transformation we must

impose that the strength field be gauge invariant. So we require that
§F,, = 0,T%, x +T%, 0ux — 0,T%, x — T%, 0ux +T%,, 0,x + T, T%, x = 0. (2.11)
This is equivalent to the system
TS, —0,T%, +1%,,T%, =0, (2.12)
%, 0", —T%,6%, +T*,, =0. (2.13)
The second equation implies that 7%, TS, , = 0, so the first one is satisfied if

T%, = Oue, (2.14)
with ¢(x) some scalar field. Finally,
pr/ = 6PU6}1«90 - 6puau§07 (215)

where ¢(z) is the “tlaplon” field of Hojman et al. (HRRS theory, [49][50]), which in the literature has

been identified with the dilaton. In our case we have that
0A, = D,x = 0ux + XOu¢, foli =A; + DA;. (2.16)

HRRS theory arrives to the same form of torsion when taking dA4, = e¥9,A. In any case it is clear that
when ¢(x) vanishes we get the usual theory. So as it was stressed before for the Maxwell field, minimal
coupling and gauge invariance are consistent with nonvanishing torsion of a particular type. Dynamics
for the ¢(x) field is incorporated into the Hilbert-Einstein action if we consider the Ricci scalar R(T') as
a function of the full connection I'”,, which includes torsion. The Hamiltonian for the Maxwell theory
is

) 1 . 1 o \/a .
Hy = | d®z{ — AgDiII' + —NII'F,;, + N —I'Ilq,; + Y=F,. F ) ¢, 2.17
o L R R I ) S

a linear combination of first class constraints. Energy density is defined in this context as

1 6Hypy 1. . 1 -
= = —II'IVVq,. + - F,, F"Y. 2.18
P \/a SN 2q ql] + 44 ( )
On the other hand, pressure is defined as (see Appendix F)
2 H 1/1_. . 1 g
- —7qab57M - = iH’LH‘]qi‘ + - i‘Flj 5 (219)
3N/qG ™ dq,, 3\ 2 74
so, as always,
1
P= 3 (2.20)

and the presence of spacetime torsion does not affect the radiation equation of state [46].

13



CAPITULO 2. GAUGE THEORIES IN THE PRESENCE OF SPACETIME TORSION

2.2. Yang-Mills Fields in the presence of spacetime torsion

It is natural to generalize the above results for the case of Yang-Mills fields. In this case the field

strenght will be

FY, = 0,A% — 9,A% + gymf%. ALAS + T2, A%, (2.21)

N2

where f% _ are the structure constants of the Lie algebra where the connection belongs which we will
assume is SU(N). a,b,c = 1,...,N? — 1, are internal group indices and gyy stands for a coupling

constant. The Yang-Mills action is

S[g,T, A%] = *i/ d*a/—gFS, F". (2.22)

Going through the same ADM decomposition we get to the following form of the 3 + 1 action

o A 1 .. g
S[q,T, A%] :/d?’x/dt{H;A;MrAgDiH;—2NJH;F]@—N<MH;H31%+‘fF;;F‘“J)}, (2.23)

where again A‘j = 0p A} + Tjol- Af and the Gauss constraint reads
DI = 9,11 4 T, 118, — gym £, ALTIE ~ 0. (2.24)
The infinitesimal gauge transformation of the connection will be
1 1
§AC = D, X" = —9,x* + —T%, x* + f%. A’ x°. 2.25
b= D = 0 T x [ ALX (2.25)

We now demand that under such transformation the Yang Mills field strenght transforms homogeneously.

By this we mean that at the infinitesimal level,
SFS, =X f%Fp,- (2.26)

Applying (2.25) to (2.21) and demanding (2.26) we must impose the system

a,uTO()y 5ab - aUTOO# 5ab + gYMfabc TOO;L Ai - gYMfabc TOOV AZ + T)\,uy TOO)\ 5ab =Y (227)
%, 0", —T%,6", + 1%, =0. (2.28)

Multiplying the second equation by T , we get that, as before, 7%, Toop =0, so we are left with
auToou 0% — 3VTOOH 0% + gymf%e Tooﬂ AL = gymf%e TOOL/ A,CL =0. (2-29)
Now multiplying (2.28) by Af we can write (2.27) as
T, 0% — 8,T%,, 6% + gymf e T, AS = 0. (2.30)

Let us recall that for compact semisimple Lie groups we can always define a rank two symmetric tensor

as

Gab = fdac fcbd7 (231)

14



2.3. TLAPLON FIELD IN LOOP QUANTUM GRAVITY

which serves as a metric and defines an inner product in the group. We can always diagonalize this

metric so it is proportional to the identity tensor. If we define f;;. = g4, f%., using the Jacobi identity

abc dae + face dab + faeb fdac = O’ (232)

one can prove that the structure constants f,,. are completely antisymmetric [51][52]. Such is the case
of SU(N). So taking a # b # ¢ in (2.30) one is led to

gYMgadfdbc Tp;ul A; =0. (233)

So we see that in order to keep gauge invariance of the action equation (2.33) demands us to set the
torsion tensor 7, = 0.

For completeness we must stress that Mukku et al. found that a modification of the covariant deriva-
tive and the Yang-Mills field strength [53], namely

DN = 8M — igYMe_“”AM . @, (234)
F, = 0,A% — 9,A% + gyme P f4 AL A — ALTO,, (2.35)

where o(z) is the tlaplon field and the torsion tensor takes the same form as in the case of the abelian
theory. The net effect of torsion on the gauge field interactions is essentially to define an effective coupling
constant which is a function of the space-time point at which the interaction takes place.

Finally, it has been argued [54] that if we take the approach that the gauge coupling is a spacetime
function then D,, ~ 9, —ig(z)A,, recalling that F,, ~ [D,, D,] one can find that the torsion tensor is in
fact the one proposed by Hojman et al. and g(z) ~ gyme™¥. Moreover, if for example we take a product
group like SU(2),, x U(1)y where the covariant derivative is D, = 0, —igT* A, — i%/B# it can be shown
that since the tlaplon field is the only “torsional degree of freedom” of the theory then in this setup
the coupling constants must converge. This is quite interesting since torsional effects of spacetime are
expected to become important just around the Grand Unification Theory (GUT) scale. The nontrivial
assumption that the coupling could be a a spacetime function could be somehow justified in the light of
the so called “String Landscape” of Susskind and others [55]. Of course the stringent bounds on these
couplings remember us the fact that the universe we observe right now is Riemannian and torsion could
only have played a role in the distant past. The relation between a transition from Riemann-Cartan
to Riemann spacetime and a GUT (like SU(5) or SO(10), [56][57]) to the Standard Model of particle

physics could set an unknown bridge between Quantum Field Theory and Gravitation.

2.3. Tlaplon field in Loop Quantum Gravity

Nowadays, the covariant starting point of Loop Quantum Gravity is Dirac canonical quantization

program applied to the four-dimensional Lorentzian action known as the Holst modification of the
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CAPITULO 2. GAUGE THEORIES IN THE PRESENCE OF SPACETIME TORSION

Hilbert-Palatini action for the gravitational field,

Sle,w] = —5 /M4 dzeeley (Rabw - geadeRCdW> . (2.36)

Here R* = 28[”w“bu] +2wac[uw0by] and (3 is the Immirzi parameter of LQG which could be promoted to
a pseudoscalar field. We will split the Lorentz spin connection in a torsionless part @®® (Ricci connection,

which obeys the homogeneous structure equation) plus the contorsion one-form C so w“bﬂ = (Iﬂbu +

C’“bﬂ, where the contorsion tensor is C’“bu = e,‘fef,C”’pw cvr, = —C",, is related to the torsion tensor
™, =-1",, by C¥,, = %(T”W -1T,%, —1T,",). We are considering a torsion tensor of the form
TF,, =06°,0.p —0°,0,p, so the “trace” vector is T?,, =T, = 30, and we get that
S = f%/ d*ze {egegﬁwab — §T#T”},
1 4 v ab
_ _5/ d'ze {egeb . 63H<p3“<p}. (2.37)

So we see that if the torsion tensor is of “tlaplonic” form the Immirzi parameter has not classical
implications. However if we consider charged fermions coupled to curved spacetime where the fermionic

part of the action reads

i _ -
Sylesw il = 5 [ d'wect (09°V,0 - V). (2.38)
it has been shown that torsional trace and axial vectors arise [12][13][14], namely
B o I
TP ~ WJ(A), S ~ WJ(A)’ (239)

where J(p 4 = 1yPy°4) is the axial fermionic current.

Taking the Holst modification with a tlaplonic torsion tensor along with a Dirac charged particle
and the Maxwell action in the HRRS form will give us interaction terms between the fermionic axial
current and the tlaplon mediated by the Immirzi parameter (so it does not violate parity) besides
the usual interactions of the Einstein-Cartan-HRRS theory. This new term would be of the form ~
%&7“75w8a<p, and we see that the parity odd nature of the Immirzi parameter gives us the theoretical
chance of coupling trace and axial torsional vectors so a Dirac field could not only feel axial torsion but

also of tlaplonic nature.
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Capitulo 3

(p — 1)-forms as bosonic spacetime

torsion sources

3.1. The Action

Let us consider the following action:

A a a
S[e7w7 ¢7p7 Q] = 75/ *(vd)al...a,q) A v¢ L 7, (31)
where ¢,, ,, is a Lorentz valued (p — 1)-form and {ai,...,a,} is a completely antisymmetric set of

indices. As an abstract operator, V = d+ [w, | where d is the exterior derivative and w is the spin gauge
connection one-form of gravity. It is evident that 1 < p < n and 0 < ¢ < n in a n-dimensional spacetime
which for simplicity will be taken as Euclidean and compact. In doing so the inner space group becomes
SO(n) instead of SO(n — 1,1). A could be an n-dependent constant. If we define the “field strenght”

pformas F, ., =V, 4, ,ouraction reads
A ai...a
S[eawa¢ap7Q} :_5 *Fal...aq NF B
A

=5 '/Fal...aqbl...bp Forta k(€A NEP) N A N
p!p!
= T oppl(n—p)! / Faycagbyoby B ey, €y, €T A AN ET A N e

(3.2)
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CAPITULO 3. (P —1)-FORMS AS BOSONIC SPACETIME TORSION SOURCES

3.2. The Currents

3.2.1. Energy-momentum current

The definition of the energy-momentum (n — 1)-form U goes as follows [58]: Given a matter La-

grangian Zys[e] we replace e by e + f and calculate the term linear in f in the variation
5602”M[e] EXM[G—F,ﬂ —fM[e] :*Ua/\fa—‘rO(fQ). (33)

Here, xU, is a vector-valued (n — 1)-form, the “energy-momentum current of matter”. Integrated over
a (n — 1)-dimensional spacelike hypervolume it yields the energy-momentum of matter included in this
hypervolume. Our Lagrangian depends on the orthonormal frame only via the Hodge star. This we will
make it explicit writting x|. for the Hodge star associated with the metric described by the orthonormal
frame e. Its dependence on e is implicit and the variation not straightforward. We will derive the
“Maxwell case” in 4-D, i.e., F' shall be a 2-form with no inner space indices. The general case is a mere

generalization. Let us begin from the following identity
1
*[eFAe* Neb = ieabch AeC A el (3.4)

Now making the replacement e — e + f, considering the variation and neglecting terms quadratic in f

we get
K FAFENE 5[ F NN O+ (Kex fF —*|F) Ne® Neb = e JF A fOnel. (3.5)

We now multiply by —%Fab and contract. The result of doing so is
A b A cb d a
Zule+ [l — Zarle] = —§Fab *F ANe +ZFCZ’6 waF Net p A [ (3.6)

and we recognize the energy-momentum 3-form. The generalization is straightforward. Being Fy,  , a

p-form with ¢ indices in the Lorentz algebra its associated energy-momentum (n — 1)-form is
_ A ai...aq b1 bp71
*Uile,w, d,p, q] = mFal,..aqbl...bP,ﬂ * I NeTN---Ne

(fl)p(n*p))\ by

. b by —
2p'(n — 1)' ar..aqby.by € pbp+1..4bn,1iFal aq Ae’?tL A Ae 1 (37)

We can write this expression in a more compact way by means of the contraction operator [17]. Recalling
that I,,e/ = 5ji, we get that

_1)p-1y _1)nry
*Ui[e7w7¢7pa CI] = <()2> * F1--fa /\IeiFal..‘a + <(2)'> Fataa /\Iei *Fal a. * (38)
q P! -++Qq

What we usually call the energy-momentum tensor is defined as }C = x(e! AxUg).
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3.3. CURVATURE AS AN ABSTRACT OPERATOR

3.2.2. Spin current

Now if we vary the action with respect to the spin connection one-form we can define the spin-torsion

(n — 1)-form «J,, . This is not as involved as the vielbein case. Explicitly,

5], 6,prq) = A / KEy o NG F, (3.9)

We have that 0, F% % = §,V¢* % . Now let us recall that for a p-form V9 the covariant derivative
is defined in such a way that VV4§ =dV9 +w? AV] — (=1)PV% Aw [59]. Therefore, we have that

Vpiaa = d g0 4 )@ A ¢ § Ly e A pAraa-ic (3.10)
This implies that
GV hmaa = (—1)P~ 1§02t g St 4 ... (—1)PLger e gta (3.11)
Finally,
dwSle,w, ,p,q] = (—1)p)\q/ *Fyy g N QT A W, (3.12)
o
*Tyn 6w, 0,0,q) = (Z1)PAqx Fyy 4y A O™ (3.13)

The better known spin tensor is defined as Sij,~c = x(e' A *J 1)

3.3. Curvature as an abstract operator

From the definition F = Vo

o taking the exterior derivative and recalling that R =
g

ay...aq?

dw® + we, A w® we get a “kind of Bianchi identity”, namely
Ralc A (rbc...aq +eee At Raqc A (rbal...aq_lc = VFal...aq . (314)
We could shorten these expressions abstractly as

F=Vo,
R, ®] = VF = V*®, (3.15)

so we are lead to a definition of V? as an abstract operator,
V? =R, ] (3.16)
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CAPITULO 3. (P —1)-FORMS AS BOSONIC SPACETIME TORSION SOURCES

3.4. The Symmetries

Let us now consider (3.1) in a curved Riemann-Cartan background. Its variation induced by arbitrary

variations de?, 6w® and §@®1% is

6Sle,w, ¢, p, q| :/ {*Ua/\ée“—&—*Jab A(wb}. (3.17)

The coefficient of d¢® % is zero because of the equations of motion [60].

3.4.1. Lorentz symmetry

We know the fact that this action is Lorentz invariant, §;,.5 = 0. For the gravitational fields these

transformations are

b
01, eq = 0, €y,

6w = —Voeb, (3.18)

ab

where €% is an arbitrary antisymmetric O-form. Using this in (3.17) we get the conservation law

Vxdy + (=1 % U, Aey = 0. (3.19)

In Einstein-Cartan theory local Lorentz symmetry does not imply a vanishing antisymmetric piece of

the energy-momentum tensor T[W] . Instead it is proportional to the divergence of the spin tensor,
A

V)\S v 0.8 7—[IW] .

3.4.2. Diffeomorphism symmetry

It is well known that if we consider a diffeomorphism z# — 2'* = z# + £# (a general coordinate
transformation) in Riemannian geometry and impose d4iS = 0 we get Bianchi identity as the local
conservation of the energy-momentum tensor Ta[j 5 = 0. Let us derive the analog in our case. Under
a diffeomorphism a p-form transforms with the Lie derivative as an operator through Cartan’s magic

formula £¢ = dl¢ + I¢d, where d in the exterior derivative and I¢ is the contraction operator . Hence,

6diﬂ€a = —£§e“,

(Sdiffwab = —Jggwab. (320)
It is not hard to show that the following identities hold

Lee® = VE 4+ [T — I (w?)e’, (3.21)
£ew™® = V(Iw®) + IR, (3.22)
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3.5. THE EQUATIONS OF MOTION

The conservation law associated with this symmetry is, using (3.19),
V(UL )E" + (—1)" % Uy A LT + (—1)" x Jy AL R*™ = 0. (3.23)

In the last expression we cannot isolate immediately the arbitrary vector field £X. However it can be

shown that it reduces to

Tl + (D)™ T TP, + (-1)"TISA 4R | =0. (3.24)

X

Here ; stands for the total covariant derivative which includes torsion. Of course when torsion and
spin tensors are set to zero we recover the usual Riemannian covariant energy-momentum tensor

conservation law.

3.4.3. Conformal Weyl symmetry

Finally there is a conformal symmetry in this action, namely, if we consider the following transfor-

mation

opet = —JA(z)e?,
SAw® =0, (3.25)

our action is left invariant as long as
*U, Ne® =0. (3.26)

This is nothing but the known fact that conformal symmetry implies a vanishing trace of the energy-

momentum tensor, 7#, = 0.

3.5. The equations of motion
The equations of motion, d4S = 0, are “simply”

V*Fy, a,) = VY4, 4,) =0. (3.27)

21



CAPITULO 3. (P —1)-FORMS AS BOSONIC SPACETIME TORSION SOURCES

3.6. Torsion as a Noether current

3.6.1. (p—1)-forms

Let us apply Noether theorem to this family of actions [61]. An arbitrary variation is

5¢S[€7Wa¢7p, Q] = —)\/ *(v¢a1...aq) /\V6¢a1...aq

T (—1rriy / AH(Tq, o) A Gg00). (3.28)

The first term vanishes on-shell. The second term is the boundary [ d© (see Appendix G). It is somehow
clear that the conserved current will be *J,, defined in (3.13). The associated symmetry is that of
rotations in Lorentz inner space. As always, the conserved charge is the generator of the symmetry.
So we see that in analogy to electromagnetism and Yang-Mills theories, when matter couples to the
connection it acquires a kind of “gravitational charge”; in this case related to the spacetime torsion that
it creates. Let us see this in detail.

The rotation in Lorentz inner space is

/@1...Qq ay as Ag—1 aq b1bs...bg_1b
R N G L A L L

q—1

= (M +e0)™, (1+0)",, ... (L+e0)" 7, (1426)", ¢h02-barbe, (3.29)

q—1

where ¢ is an infinitesimal parameter and #%° are the generators of Lorentz algebra, which is
(Oaps Ocal = Neb0ad — Necaba + MavPea — Naabes- (3.30)
So we see that neglecting higher powers of ¢ <« 1, the symmetry transformation is
Saym@™ 00 = g0 @0 4 4 e, Pp--ta—1ba, (3.31)
Analogously,
5sym¢a1...aq = —59a1b1¢bl...aq - Eaaqbq%l...aq,lbq- (3.32)

Now let us calculate the [ dQ boundary term (see Appendix G). We have to take the difference S’[¢/] —
S[¢]. Explicitly

S'[¢'] - Sl¢] =

_ i _ by o by ai...aq ai b1...aq L. aqg ai...aq_1bg
2 *V((bal...aq aoal ¢b1.4.aq 89(1(1 qbal...aq,lbq) A V((b + et b1¢ + + ed bq(b )
A

45 [ #(V6u,0) AT = (3.33)
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3.6. TORSION AS A NOETHER CURRENT

where we have neglected powers of € greater than unity. So we find that in this case 2 = 0.

The Noether current is just xJ = —O. Thus we are led to

*J 1 n— p)\*( al.“aq) Aésym(bm,..aq

)

1)n ;D)\*( w1y ) A (Eealbl ¢b1...aq + 4+ Eeaqbq¢a1...aq_1bq)
)
)

n"- pe)\q*(

ai...aq

) A ¢a1~-aq71bq9aqbq

(-
(-
(-
(—1)"e % J,, 0. (3.34)

As it is well known, assuming that the spacetime manifold has a topology R x ¥, being X the spatial
section, there is a conserved charge @) = fz *J which is the generator of the symmetry in the sense of
Poisson brackets, dsym (-) = {-, Q}pB.

3.6.2. Fermions

For completeness we show that this conclusion is general. The fermionic action for a Dirac field is

Sylesw, B9 = 5 [ sea n (27270 - T, (335)

Here, VY = dip — iw“baabw, Vi = dip + ilﬁaabw”b with o, = %[fya,’yb]. Varying with respect to the

abc

spin connection and remembering that {y%, 0%} = 2¢2%¢ y5~%, the definition

5w Stle,w, b, 1] = /*Jab A 8w, (3.36)
gives us

[ ¢ ¢] 4 abcd*e ]A7 j.»(fl = 1/}},57%/,, (337)

where jjfl is the axial fermionic current. Varying S¢[e,w, 1, 1] with respect to ¢ we get Dirac equation

and a surface term. Explicitly,

d;S¢le,w RURTIE= /51/1*6(1/\7“V@/J— 7/5¢V (%eq v )

+§/wwu%ww. (3.38)
From this we get Dirac equation as
i % ea AV — %V(*emw ~0. (3.39)
This, in the usual form, is
"V, =0, (3.40)

_— iw
where V), =V, — 31",
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Let us analyze the surface term. Under Lorentz transformations, the spinor transforms as ¢ (z) —
exp (—1e(z)o,,) ¢(x). This implies that dy(z) = —16e%0 1b(z) so dY(z) = Ly)(x)o,, 6. The

surface 4 is then

B = —é /V (&ch&bc * eq 7 1)) . (3.41)
Varying with respect to 1, we get the adjoint Dirac equation and another surface term B. Explicitly
B = —é / \Y (*eaql_w“ésbcabcw) . (3.42)
The total surface is then
248 =1 [V (0,0 wers) = 1 [V (seaiin®scto,.0)
= —/d(éebc *Jy, ). (3.43)

3.7. Explicit separation of Riemannian and torsional contribu-

tions

It is easy to split the action into Riemannian and torsional parts. The result of doing so is

A ~ ~
S[eaw7¢1pv (A = _5/ *Fal...aq N Fta + / *Jab /\Cab

1 Aq aj...aqg—1 Aq q— 1 ; ag—1 ay...da
+ )\q (q — 2) / *(Caqf A ¢a1...aq,1f) A C d A ¢ 1..-Qq— d _ %/ *(Caqf A ¢a1.4.aq,1f) A C 4 A ¢ ..d q7
(3.44)

where the quantities with ~stand for Riemannian ones (i.e., dependent on the torsion-free Levi-Civita
spin connection) and C is the contorsion one-form such that 7% = C% A e’

Let us just quote that the analogue separation in the fermionic case gives
7 i ToaQ T/ Q
Sylesas 9,9] = 5 [ ea A (51796 = Thyw)

= %/ xeq A (Py*Vip — %’yaw) +/ * T, A C. (3.45)

3.8. Gravitational field

3.8.1. Holst gravity for n = 4.

Let us consider the following action for a theory of gravity in four dimensions coupled with arbitrary

forms of matter ¥(x):

1 1
SHolst[e, w, U, f] = ~ o /*(ea Aep) A R — % /ﬁ(a:) eqa Ney A R + Smatter|€, w, U]. (3.46)
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Here, k = 87G and 8 = B(x) is the Barbero-Immirzi (BI) pseudoscalar field. If it instead were a
parameter (fixed value) we are led to the action that in the absence of matter, at the Hamiltonian
level, corresponds to the canonical approach to gravity of Ashtekar and others known as Loop Quantum
Gravity (LQG) [8][9].

Let us define the tensor field P,, “}(z) = 1€, + (x)&t[fbd] so our action reads

1
Stolst[e,w, ¥, B] = o / Pade e. Neg A R + Smatter[€; w, U]. (3.47)

If we vary this action with respect to the vielbein, d.Suost = 0, we find the analogous of Einstein’s

equations,
P R Ney, = -k % U, (3.48)

where xU“ is the energy-momentum 3-form of the matter fields.
If we vary with respect to the spin connection w?,d,SHos; = 0, we find using Palatini’s identity
8w R = Vw® and integrating by parts that

V(P Yec Neq) = —2kx T,y . (3.49)
Let us recall Cartan’s structure equations:

T = de® 4+ w A e’ = Ve, (3.50)
RY® = dw® + w, Aw, (3.51)

and their respective consistency conditions, the Bianchi identities,

R ANeb =VTe, (3.52)
VR® =0. (3.53)

Since the equation defining the torsion 2-form is a first order differential equation for the vielbein, we
can always find an algebraic solution w®[e, U] = @®[e] + C®[e, ¥] so @ is the Riemannian Levi-Civita
connection, solution of the homogeneous equation de® + &% A eb =0and T = c% N eb. Using this in
(3.49) we get that

1
PadeCCf/\ef/\ed:—Edﬁ/\ea/\eb—/ﬁ*Jab. (3.54)

3.8.2. Nieh-Yan gravity for n =4

Using Cartan’s first structure equation and its consistency condition it is easy to prove that

dleg NTY) =T, NT* — e, A ey AN R™. (3.55)
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The integral of this 4-form over a compact space is known as the Nieh-Yan topological invariant. Let us

then consider the following alternative to Holst action:

Snyle,w, ¥, 8] = — *(ea/\eb)/\R“b—%/ﬁ(x)ea/\eb/\R“b—ki/b’(m)T“ATa

2K
+ Smatter [8, w, lI/]

1
=5 *(eq Aep) A R 4+ /[3 d(eq ANT*) + Smatter|e, w, U],
1
=5 *(eq Aep) A R — — /dﬁ A eq AT + Smatter[€, w, V] (3.56)

Varying with respect to the vielbein, d.Sny = 0, gives
*Ryy Neb =dB AT, — kxU,. (3.57)
Varying with respect to the spin connection, §,Sny = 0, gives

e’ CI Nep Neg=—dB Neg Ney — 26 % Ty . (3.58)

3.9. Substituting solutions for algebraic equations of motion

within the action

First order gravity & la Palatini was developed in first place as a computational tool only. It is a trick
to vary in a quick and easy way the Hilbert-Einstein action to get Einstein’s field equations. Einstein-
Cartan theory is however, inequivalent to Einstein’s theory in the presence of fermionic matter as it is
a torsion source because it couples with the spin connection. It is a well known fact that the vielbein
and the spin connection are independent fields from a geometrical point of view. The vielbein defines
a notion of metricity and the connection that of affinity of space. These properties are not necessarily
linked as Cartan understood. However, in the theories of gravity we are considering, the equation of
motion for the spin connection is algebraic so it can be solved and then we are allowed to put this back
into the original action leaving us an equivalent action at least at the classical level.

For instance we can split the curvature 2-form as

R® = R 4 R, (3.59)
R® = do®™ + 0%, A&, (3.60)
R =v(C® — e NCP, (3.61)

where as before, @ is the Levi-Civita spin connection and C? is the contorsion 1-form such that
= C% A e’ T* being the torsion 2-form. Here R is the Riemannian part of the curvature 2-form
such that Rab A e’ = 0. With these expressions we will be able to easily separate the Riemannian and

torsional contributions in the gravitational sector.
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For completeness let us recall the theorem behind the fact that algebraic equations of motion can be
pulled back into the action giving a completely equivalent theory [62][48]:
Let S(q;,Q;) be an action depending on two sets of dynamical variables, ¢; and Q;. The solutions of

the dynamical equations are extrema of the action with respect to both sets of variables. If the dynamical

equations g—i = 0 have a unique solution, q(o)(Qj) for each choice of Q;, then the pull-back S(q;(Q;), @;)

i
of the action to the set of solutions has the property that its extrema are precisely the extrema of the

total action S(g;, Q;).

3.10. Toy models

In this section we review some “toy models” which can serve as an insight about the behavior of the
objects we have just defined. They are not to be taken so seriously and in some cases they are just mere
statements for future work. The actual calculations that will survive severe judgement and criticism will
be further discussed elsewhere [13].

3.10.1. Particular case:n=4,p=1,¢q=1

Let us consider a Lorentz valued 0-form, ¢®. Now let us perform a Wick rotation so our spacetime
becomes Euclid and compact and our forms are now SO(n) valued. We can always come back to the

Lorentzian case by reverting the Wick rotation. The action for this object is (A = 1),

1
Sle,w, 6,1,1] = —5/ (Vo) A V", (3.62)
its associated energy-momentum 3-form is

1 1 .
*Uile,w, ¢,1,1] = S Fyy + F* + 1 Fyy g Nel Ned, (3.63)

and its associated spin-torsion 3-form is
*Jab [67 W, ¢7 L, 1] =% F[ad)b]

_ —%{*(nga)gbb o (Vn)ba)- (3.64)

B =0 case

Let us see what this implies in the Einstein-Cartan theory. The equation we must solve is (3.54)

making § = 0. So we have
CdCCf ANepNeg=—KxJy

= —kx Jy + 5{K(CLT61)00 = #(Cy 61)6a} (3.65)

ieab
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where we define
. 1 . .
*ap = =5 1x(Va)p — x(Vp)da}- (3.66)

Taking the Hodge dual, remembering that for a p-form w,, in euclidean space, % w, = (—1)P(""Plw, so
in particular x x e’ = —¢?, defining (x * jab)iei = J,,; €' and using the fact that n,, = d,,, (3.65) can be
written in the following way:

1 K
geabcdcclj €ijld — §{Cali¢b¢l = O bar} — £y =0, (3.67)
remembering the fact that C,, = —C,; and J;;, = —J, ;-

Now we introduce the following notation: Let A be a generic tensor field. From now on we will

ijk...rst
call it Ay . = A(i,4,k,...,7,5,t). In this manner we will shorten the notation for objects like
Ajip rsrpi = Alp,Jik, ...y s, t) where ¢; = (i) is a generic vector field.
Our equation becomes

1 , 1 , 1 _ 1 .

§C(¢7 a, Z)qb(b)’% - §O(¢7 b7 Z)QZ)(Q)KZ + 50(0’7 Z b) - ic(av l7 l)d(bv Z)

1 1
- iC(b, i,a) + iC(b,l, Dd(a,t) — J(a,b,i)xk = 0, (3.68)

where we also denote d(a,b) = 4.
In 4 dimensions C;, has 24 independent components. According to SO(4) it can always be decomposed
as 24 =4+ 4 4 16 in the following way:
1 1
Cijr = g{Tj‘sm = Ti0} + 6€ijklsl + Gk (3.69)

where T; = C;;

part of Cij g and g;; = —q;; Is a tensor whose trace and completely antisymmetric part are zero, i.e.,

; Is a trace vector, S; = ¢; j w1Ci ji 1 a pseudovector dual to the completely antisymmetric
Qiji = €ijriijr = 0
Aplying this splitting we get

1 1

ST@OB)) ~ STO)Da)3(i) — 5d(a,)T(B) — cdla,OO)T - s+ 5d(b,i)T(a)

+ 2d(b,)0(a)T - 0r — =52(5,6,0,)9(b)x + T52(S,6,b,)6as + £o(5,a,b,1)

12
1 1 1 1
- ‘](a’a b7 Z)’% + §Q(¢7 a, Z)d’(b)‘% - §Q(¢a ba Z)¢(Q)H + 5(]((17 7;5 b) - §Q(ba iv CL) = E(CL, ba Z) = Oa (370)
where FE(a,b,i) = —FE(b,a,i) has been defined and X - Y = X,V;. Now let us take the product
d(a,i)E(a,b,i7) = 0. This gives us
1 1 1
_T(b) - ET(b)(ZQ'% - §¢(b)T : qu& + J(b7 L l)'% - §q(¢7 b7 ¢)H =0, (371)

where ¢ = ¢ - ¢.
Let us now consider ¢(b)d(a,i)E(a,b,i) = 0. This is

—%T-¢¢%—T-¢+J(¢,l,l)m — 0, (3.72)
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so we find that

2K

T 0= o rap

(¢al7l) (373)

Now let us consider ¢(a)é(i)E(a,b,i) = 0. This is

—_

- STO)F - 1T(b><z>4f<a +SOOT 66+ Z60T 6~ J(6,b,0)n
q(¢, b, ¢) — (¢>, b, $)¢*k = 0. (3.74)

wm—tw

From this we have that

12+ re?] 2 2K
b, - T( b,
0(0..0) = 3 T (T8 = G)T -0} + 21 (6.b.0)
1 ¢? [2 + HQSZ] 2K 2%
ng(b) - m@b(bﬂ((?, L1) + mﬂ% b, §). (3.75)
Using these relations we finally obtain that
_ 2k[1 — ke? 23 ¢? B 212
T(0) = "o O L)+ G 6 (L)~ 5= T (0h0), (370
and for completeness we give g(¢, b, ¢) as a function of ¢ only:
_ 26¢%[2 + Ko 26[6 — 5rp? — K2pY 26[2 + ko?]
q(¢,b,0) = WJ(ILU) + 3[1 — ~d?|2 — w7 J(9.b,0) — W¢(b)J(¢7l7Z)- (3.77)

Now we consider the following product e(a, b,i, m)E(a,b,i) = 0, which is
—S(m) = ZSm)Ps + 5o(m)S - o+ J(f, g, We(m, £.9. Wk — (6. £.9)e(60m foghe = 0. (3T8)
It is clear that taking ¢(m)e(a,b,i,m)E(a,b,i) = 0 should tell us what S - ¢ is. In doing so we get
S ¢ =re(d, f,9,h)J(f,9,h). (3.79)

Now we consider the combination E(a,b,i)+ E(a,i,b)— E(b,i,a) = H(a,b,i) = 0. If we take the product
d(a)e(p, m,b,i)H (a,b,i) =0, we get

LS8 — Lo0m)S -6+ J(F.9.0)e(0,m. f,9)% + (6, 9)e(6.m, f.9) =0. (380)
Using these equations we find that

S(m) = re(m, f,9,h)J(f.g.h) + K*c(,m, f,9)J (f.g.9). (3.81)
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Let us now focus on ¢(a)H (a,b,i) = 0 because this will allow us to see what g(¢, b, %) is. This is because

the explicit expression is

2TO)00) — TR+ 3db, )T 6675+ (b )T 6~ (5, 6,b,1)

(6.~ J (61,0 + S (0,1, )% — 5a(6.,6)0(i)r + a(,b.1)

1 . 1 . 1 . .
- Eq(¢7 ba Z)¢2’% + §q(¢7 Z gb)(b(b)/ﬂ - §Q(¢7 Z, b)d)ZK’ = D(ba Z) =0. (382)
If we now consider D(i,b) = 0 we can isolate ¢(¢,,b) as

K 2 K
0(6.i:0) = S BT EE Ti)o0) - 0,07 0} - gt s +

2K . 2K . .
*’Ejif;gﬁjj(¢»l’b)*’ngj;ggjj(@la¢)‘* q(¢,b, 9)p(i)

. iiﬂ a(6:.9) + —Hndﬂ] a(o,i, )o(b). (3.83)

If we substitute the value of ¢(¢, b, ) we get that

J(¢,b,1)

2 — k¢?]

_|_

2 + K¢?]
3[1 — ke?|

. K . .
+ WJ(@ b, i) + mmp, i,b) — kJ(bi, )

HQ 2

+ mﬂﬂﬂ@ b,¢) — M= rd?|

(¢, b,i) =

{TO)80) — db,i)T - 6} + 2e(5,6.b,3)

¢(0)J (9,4, §). (3.84)

Explicitly in terms of ¢ this is

3[1 — re?]
% 2+ Ko7 coy K2+ K2 . 2 K32 i
+§[1_K¢2] J(¢,1,0) 3 J(bi, ¢) + 3 [1—m¢2][2—m¢2]¢’(b)¢( VI (9,1,1)

B b _LR2 4 ne?) i
3[1— k%2 — Ko?] 3T Zng Y0(8,0,0). (3.85)

K [4— k]

J(¢,0,14)

¢(1)J (¢, b, 0)

The reason we have considered H(a,b,i) = 0 is that in doing so we can isolate the term ¢(a,b,1).
Explicitly H(a,b,1) is

=

@GO — TSR — dla,i)T(0) ~ 3dla,)OO)T - 6r + >d(b,i)T(a)

d(b,i)p(a)T - dpx — és(s, ¢,a,b)p(i)k — éE(S, a,b,1) — J(a,b,i)k — J(a,i,b)k + J(b,i,a)k

+ W =

N =N =W =

+50(6,0,D)00)5 + 3a(6,0,)00) — 30(6,b,0)0(0) — Sa(6,b,)0(a)s + 5a(0,1, )00

2
q(é,1,b)p(a)k + q(a,b,i) = 0. (3.86)
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We see that we already have all the ingredients to express unequivocally g(a, b, i) as a function of ¢. So,
a(a,b,1) = STOHR6(a)o0) +2d(0, 1)} — 3T(@)00)06) +2d(b,0)
+ gT -p{p(b)d(a,i) — p(a)d(b,i)} + ge(s, ¢,a,b)¢(i) + %5(5, a,b,i) + rJ(a,b,i)
+wd(a,0,6) = rJ(bi,a) = Zo(0){a(0.0.0) — a(6.b.0)} = S(){a(.a,) +(0.i.a)}
+ 50 {a(,b.9) + a(6,.D)}. (3.87)
Explicitly as a function of ¢ this is
qla,b,i) = Qﬁ{z}(a b,i) + J(a,i,b) — J(b,i,a)} + %2{2¢(i)J(a,b7 ¢) + ¢(b)J(ai, ¢) — ¢(a)J (b, i, )}
{6(0)(6,a.1) + 6(0).1(6.0) = $(a)(9.b.1) — $(a)T(.1.5)}

- n m;z]
2K2 ) 4K? , .
[ Hd)z] {¢( ) ( ) (aalvl) (b( )d)(l)‘](bvlvl)} + W{J(¢v a, ¢)d(b,%) - J(¢7b7 ¢)d(a72)}
- 4[7_H¢2+ ¢6] a, ) — a,t

W2 - 567 - %oﬁﬂ
1= ro?2 — nd?2 + nd?]

K'g? :
+ [1 _ K¢2] [2 . H(bg] ¢(Z){¢(b)J(¢a a, qj)) - (b(a)‘]((ba b? ¢)} (388)

J (9,1, D){d(a,)p(b) — d(b,i)¢(a) }

Finally we find our contorsion tensor, solution of the equation of motion:

C(a,b,i) = kJ(a,b,i) + kJ(a,i,b) — kJ(b,i,a) + k*¢(i)J (a, b, ¢)

:‘{2

b 16,00+ 6@ 0,10) - 60006, 000) - 60650}

- [2_27Z¢2]d(b, z‘){w(qb, a.9) -7 _ﬁfd;] [ﬁi&] $(a)J (¢, 1,1) — [1 — k¢?]J (a,1, l)}

_ [2_27’:@2]‘““’ i){w(cb, bo) - —ﬁfdg] [f’;zﬂd)z] S(b)J(6,1,1) — [1 — K¢?)T(b,, z)}
oo | )20

_ [2_"Z¢Q]¢(a)¢(i){ g _2¢; 77 (6:0,6) ~2J(0,1 1)} (3.89)

The total action is

1 N B P |
Stotal[e,w,qﬁ]:—%/*(ea/\eb)/\R“b—i/*Fa/\F“—2—/*(ea/\eb)/\C“d/\Cdb

K
1
- 5/ *C, I NCY gt (3.90)

The first two terms are the usual Riemannian ones. The other two are torsional contributions which

depend upon the contorsion one-form. We see that we get a nontrivial interaction potential for the field
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¢®. The appearance of denominators which depend upon x¢? is a charasteristic feature of the problem.
So for certain configurations of the field ¢® the interaction terms can grow enormously within the action
or the dynamics, recalling that the equation of motion V(xV¢,) = 0 contains torsional terms in the
covariant derivative. However, it is almost an impossible task to solve at least analytically the equation
of motion for our field and we do not have extra parameters to play with so we will not be able to control
the dynamics for our own convenience if for example, we would like to use this toy model as a viable
alternative for current Inflation Theory. The good thing about our toy model is that the “potential” is
univoquely defined through the algebraic equation of motion for the spin connection and so would be
a falsifiable self-contained proposal instead of an ad-hoc ansatz for the “inflaton” potential. It could be
argued that a proper Wick rotation will give us back a faithful Lorentzian expression but in order to
be sure we must repeat this calculation with a Lorentzian n from the beginning. The vacuum will be

carefully analized elsewhere [73].

B # 0 case

Let us now consider the case when § # 0, but a finite constant. The equation of motion we have to

solve is

56,0, 0)6(0) — 5C(6,b, (@) + 50(a,i,) — 5C(a,LDd(b,1) + 2 Cla, ,9)2(b.7, )8
- %C(b,i, a) + %C(IL l,0)d(a,i) — %C’(b7 fr9)e(ayi, f,9)8 — J(a,b,i)k = 0. (3.91)

We will not split the C' tensor in terms of irreducible parts as before, mainly because doing so does not
give us any new insights but makes the analysis more obscure. This is because § behaves as a pseudo-
number (like a Vacuum Expectation Value (VEV) of a pseudo-scalar field) and mixes up the nature of
them. We will just quote the result here because the difficulty grows exponentially when we consider a

non-vanishing £ term. After a pretty long and tedious calculation we get that

j) = L a,i) —Cl(a )

C(a’a b) Z) - [1 + 52 _ 2ﬂ4] {C(bv lyl)d( bl ) C( ala l)d(b7 )}
1+ 2 , _ k(32 . .

+ ALt + 846 Loetab fo0) b+ oot - 600000 |
2k 32 . B3 . .

+ mj(av ba Z) + [14‘62_264]{14(1), f7 g)e(a, Z, fv g) - A(a7 f7g)€(ba Z, fv g)} (392)

In equation (3.92) all the terms in the right hand side are given by well established expressions which
finally reduce to nonlinear functions of ¢* and 8 (See Appendix H). We see that § acquires classical
“measurable” effects when matter that couples with the spin connection of gravity is taken into account.
This we knew for Dirac fermions but if bosons could “feel” the gauge connection of gravity, they could
also tell us something about the rather ambigous 5 parameter of LQG. We observe that 3 enters in the
denominators of our expressions so certain configurations of the ¢* field for a given 3 could dominate

the dynamics during the Inflation scenario.
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The value for the Immirzi parameter is somehow fixed by the semiclassical value of black hole entropy
S = 14 (in Planck units), where A stands for the area of the event horizon of the black hole. In LQG

one gets that S = 7—0A recalling that g = —1 So we should set 8 = _'yio if we want to recover the
famous Hawking’s formula Between several estlmates of 7y one can find 1n(2) 1\%3”) 1\%3) Unfortunately

since |y| < 1, |8| > 1 so a “perturbative” approach does not apply and we must retain all powers of 3 in
our expressions.

It has been argued that 8 should be thought of as a pseudoscalar field (like the axion) and what we
call the Immirzi parameter is a vacuum expectation value (). If this is the case the difficulty increases
but also the richness of the solution.

Finally it must be stressed that in order to apply these ideas to a realistic scenario we should recover
Lorentzian expressions. The Euclidean option is easier in dealing with FORM [63][64] but lacks of

realism.

3.10.2. Equation of state for the Lorentz-valued scalar

Let us consider

== / d*a/=gV .6, V" " = / d*z\/—gF,, F*", (3.93)

where V¢, = 0,0, —I'?,,¢,. We define

58
¥ = =2 = —N/gF", (3.94)
om
SO
. | N
:/dsx/ dt {H”qﬁy §H”FOV - Tf F} (3.95)
where ¢, = doy, — I'” 4¢,, or using the fact that
F, N " + N'F, (3.96)
= =9 i\ .
oA \/(} A A
we get that
o 1 . 1 \/a )
S=[da dt {11"¢, — =N'II"F,, — N | —=II*I1" YoF, F™ | 5. 3.97
[ e [arfore, - gvmer, —n(Gowaw, IR ) L @

Now recalling that p = %g—ﬁ and P = 3quab &1 (See Appendix E), we get that

1 .
= —II"11” F . .
P=5 Iuw + 5 F (3.98)
A long but straightforward calculation gives

1
P=2p+B (3.99)
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with

1(1 1 ) ) .

B = 3{HNHVg,uv _ 7HaHanb . 2Fz’u Fv 4+ qabngiu Fbu + qabgyaFiu Fszb}7 (3100)
q q

so a gas of massless matter described by this dynamical theory would not respect the traditional

radiation-like equation of state at the classical level as in the case of fermions [65].

3.10.3. Lorentz-valued scalar as the inflaton

Let us consider the action

2
Mpy

Slg,T,¢] = T

/ d4x\/ng(F)+% / d*x/=gV .0, V" ¢" (3.101)

which after varying with respect to I', solving the algebraic equation of motion, and putting the solution
back takes the form

Slg.¢) = ML

_ 16W/d4x\/jg}~%(f)+/ d%\/fg{;@mywd)u_v(@} 3.102)

~ af — —2 6(V/=gLwm)
The energy-momentum tensor 17" = T %3

is
o

TP = V¢, VPo! +V,0°V e’ — g*P L. (3.103)

We know that the connection I' can always be decomposed as g, = L gy T K%, where T stands
for the Levi-Civita connection (Christoffel symbol) and K is the contorsion tensor. Considering this, we

can rewrite the energy-momentum tensor as
Taﬁ _ @a¢u@6¢u + ?}%ﬁa@;ﬂﬁﬁ + WOB _ 6(15[:1\/{’ (3.104)
being W a symmetric tensor self-defined through the equation above and Ly, is now taken to be
1~ -
Lar = 5V, V40" — V. (3.105)
Recalling that p = TY and defining P! = —T", we find that
3¢ =00, Lg =0 i, Le =i 0 Lo i 0
p= §VQ¢0V o+ §V0¢¢V o'+ §V2¢0V o — §V2¢jv ¢+ W +V, (3.106)

Pl = V¢, Vit -V, ' Vié, — WY + Ly, (3.107)

where “1” stands for any spatial index. We will be interested in the “mean pressure” P = ngl which

turns to be
5 1 =i le = Lo
P=—2Vig V'¢/' = 2V, V'¢" = SW + L (3.108)

1~ ~ 1~ S ~ 1~ ~o 1
= §V0¢0V0¢0 + EVOQ‘VOW + gvszovlfﬁo - gvi%vlqy - gWZi -V (3.109)
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Now the only nonvanishing Christoffel symbols for the flat Friedmann-Robertson-Walker metric (I.3) are
Iy, = H and I'Y,, = a®H (no summation in i) where H stands for the Hubble parameter and a = a(t)

is the scale factor (See Appendix H). Using these facts one can find the explicit expressions

VogoV°0° = dugod°¢° (3.110)
Vogi VO’ = 09$:0°¢" — H> ¢’ (3.111)
VigoV'e" = 0i00'¢° — 2H;0'¢° + H> ¢’ (3.112)
VigiVie? = 0,6,0'¢7 + 2H;¢'¢° + Hpo". (3.113)
Since we require homogeneous fields we neglect spatial derivatives [66] and get
3. 1. 1
p=50+ 5% - §H2¢3+W’°0+V’, (3.114)
1. 1. 1 1
P =g+ =67 — —H>¢g — -W", = V' 11
2¢O+6¢’L 6 ¢O 3W 7 V7 (3 5)

where now W' and V' stand for the “potentials” restricted to the homogeneous condition as well. If we

define the equation of state
P = wp, (3.116)

we see that w is given by

o 30+ 50— GHP G — W~V (3.117)
388+ 507 — H2G+ WO + V7

We know that W’ and V' are suppressed by powers of the Newton constant G. That is why considerable
torsional effects are expected only at energies near the GUT scale. When the kinematical terms are
negligible we get
gy —sw =V
—SH2QE+ WO + V!

(3.118)

We see that the first term in the last equation comes from the Christoffel symbol of our spacetime
metric and has nothing to do with torsion. So even if the kinematical terms are negligible, we get the
de Sitter limit w ~ —1 only when V' > {W’ —H?¢2} and the universe expands quasi-exponentially.
Let us remember that for accelerated expansion of the universe all we need is w < —% and with
W' > {V',—H?¢3} we get the limit w = —3. Finally when W', V' < 1, we get w = £ and not w = 1 as
in the usual scalar inflaton. Let us recall that there is no freedom in choosing W’ and V' but they are
determined by the dynamics of the theory. Even if we ignore them from the beginning, a “scalar” that
couples to the Riemannian connection along with a suitable potential would deviate from the standard
behavior of the scalar inflaton.

More generally, inflation will occur when € = % <% + 1> = %(w+ 1) < 1. Apart of this, it is customary

(but not imperative) that “friction” terms ~ d) dominate over “acceleration” ones ~ qS in the equation
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of motion (See Appendix H). However, this equation is highly nontrivial due to torsional effects. To
overcome this analysis we must first find the equation of motion for our ¢ field in the context of the new

“effective” Lagrangian. This will be addressed elsewhere.

3.10.4. 3D gravity with torsion

Let us consider Lorentzian 3D gravity with a local Lorentz frame metric of the form n,; = (+,—,—).

012 — 1. Since in 3D an antisymmetric

The normalization of the totally antisymmetric tensor is such that e
tensor is dual to a vector, we make the following definitions: w = —€" kwk’, R = —¢l kRk. Then,

Cartan’s structure equations become
T =de’ + € jpw’ Ne, (3.119)
. A
R =dw' + §e’jkw] AwP. (3.120)

As before, we can split the spin connection in such a way that w’ = & + C?, where @° satisfies the
homogeneous first structure equation and C* is the contorsion one-form such that 7% = €, C™ A e™.

Finally it is easy to show that

2R; = 2R; + 2VC; + ¢,

mn

cmAC™, (3.121)

where R; is the Riemannian curvature. We will consider a natural generalization of General Relativity

with a cosmological constant, the so-called Mielke-Baekler model [67][68], namely,
_ A o .
Sale,w] = / 2ae' N R; — geijkez Aed AeF + azLes(w) + aget AT, (3.122)

where a = ﬁ and Lcs(w) = w! A dw; + %eijkwi A wl A W is the Chern-Simons Lagrangian for the

Lorentz connection. The complete action will be Srle,w, U] = Sgle, w] + Samle,w, ¥] where Sps stands

for the action of arbitrary matter fields ¥(z). We will consider the particular case

Sule,w, U] = Sle,w, ¢,2,1] :—%/*FGAF“, (3.123)
where as before F, = V¢, but now ¢* = ¢, ,dz" is a Lorentz-valued one-form. The equations of motion
are

2aR; + 204T; — Aeijkej AeF =0, (3.124)

203R; + 2aT; + aue el N et =3, (3.125)

V(*xF,) =V(*V¢,) =0, (3.126)

where ©; = —5(561;47 Y = —‘ZLT?‘K are the current 2-forms due to the presence of the matter field ¢,.

Following [69] when A = agay — a® # 0 the first two equations can be rewritten as

2T, — peijkej AeP =u0; —v%;, (3.127)
2R; — qeijkej Aek = —v0,; +wyy, (3.128)
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2
A
= w7 q= (0‘4)% u=%,v= %, w= 3. Remembering that the energy-momentum

tensor is 7% = (e’ A ©f) we can express the energy-momentum 2-form as

where p =

1
0; = 57”‘; Epmne Ne" =€, t™ Ne”, (3.129)

o (T”; _ ;;ka) o (3.130)

where 7 = Tkk .

Equivalently since S¥; = x(ef A %;), we can write

fSk e Ne" =¢€,,,5" Ne”, (3.131)

i €kmn
s = — (Smk — 25%8) e, (3.132)
where § = Skk. Using these results in the equation of motion for T; we find that
1. . ,
¢’ = 5(17@j + ut?! —wvs’). (3.133)
Using this fact in the second equation of motion we get that
2R; = qe;je’ A ek — Ve pt! A ek + we, 1,87 N ek (3.134)
Recalling the splitting between Riemannian and torsional contributions (3.121) we get that
2 2 2
+ €k (Zeﬂ A el + UZL‘J At + Uzs] As™+ %tﬁ Ael — g—psj Ael — %tj A sk> . (3.135)

In this form of the gravitational field equations, the role of ¢; as a source of gravity is clearly described
by the one-forms ¢; and s;. Together with the equations of motion for the matter fields (3.126) and a

suitable set of boundary conditions define the complete dynamics of the gravitational and matter fields.

3.10.5. Anti-restoration symmetry breaking

Let us consider the following action principle

5=- 16 TorG | TV 9B )—QA}—% / d*ov/=gV 0 V" " (3.136)

where V¢ = 0,¢% + w“bugbb.

We know that this can also be written as

S=- 167TG/d4x\/7{R( )72A}7 %/ d4I\/jg@lz¢a@'u¢a7/d4l’\/ng(¢), (3137)
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where V(¢) stands for a potential that we would like to be bounded from below. If V' has a minimum

at ¢, = v,, the expansion of V around the minimum yields the “mass matrix”

1 0%V
2y - . 3.138
() 2me%>%wu (3.138)
We can choose ¢, to be of the form

0

0
Y = 3.139
¢ 0 (3.139)

v

All other solutions of ¢, are related to this one by a Lorentz transformation [70]. Then, the homogeneous
Lorentz group SO(3,1) is broken down to the spatial rotation group O(3). The three rotation generators

Ji (i =1,2,3) leave the vacuum invariant
Ty =0, (3.140)
while the three Lorentz-boost generators K; break the vacuum symmetry
K, £0. (3.141)
The J; and K; satisfy the commutation relations
(i, Jj] = i€k, [Ji, K] = i€, K, (K, K] = —ie; 5, Kk (3.142)

There are three zero-mass Nambu-Goldstone bosons, the same as the number of massive bosons, and
there are three massless degrees of freedom corresponding to the unbroken O(3) symmetry. After the
spontaneous breaking of the vacuum, one massive physical particle ® remains [72]. No ghost particles
will occur in the unitary gauge. The mass term in the Lagrangian density is given in the unitary gauge
by

1
Ly = 5\/—gvbvc(w#)“b(w”)ac. (3.143)

When Lorentz symmetry is restored for £ < E., v = 0 and £); = 0 and we obtain the standard
GR Lagrangian density with a massless spin-2 graviton, coupled minimally to a spin-0 Lorentz-valued
particle.

A phase transition is assumed to occur at the critical temperature 7., when v, # 0 and the Lorentz
symmetry is broken so the three gauge fields (w#)Oi become massive degrees of freedom (We know that
the true degrees of freedom of gravity are the two states of polarization of the graviton. However there
are alternative theories for the dynamics of spacetime that do consider the spin connection as a true
physical field which is clearly not the case for the Riemannian Hilbert-Einstein action so, having said

this, our arguments remain valid). Below T, the Lorentz symmetry is restored, and we regain the usual
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classical gravitational field with massless gauge fields w,. The symmetry breaking will extend to the
singularity or the possible singularity-free initial state at ¢t = 0, and since quantum effects associated
with gravity do not become important before Ep, we expect that £, ~ 10'°Gev.

After the symmetry is restored for £ < Ep, the entropy will rapidly increase provided that no
further phase transition occurs which breaks the Lorentz symmetry of the vacuum. Thus, the symmetry
breaking mechanism could “explain” in a natural way the low entropy at the initial state at ¢ ~ 0 and
the large entropy in the present universe.

Since the ordered phase is at a much lower entropy than the disordered phase and due to the
existence of a domain determined by the direction of the vev of the ¢ field, a “natural explanation” could
be given for the cosmological arrow of time and the origin of the second law of thermodynamics. Thus,
the spontaneous symmetry breaking of the gravitational vacuum corresponding to the breaking patters,
SO(3,1) = O(3), leads to a manifold with the structure R x O(3), in which time appears as an absolute
external parameter. The VEV, (@), points in a chosen direction of time to break the symmetry creating

an arrow of time.

39



CAPITULO 3. (P —1)-FORMS AS BOSONIC SPACETIME TORSION SOURCES

40



Capitulo 4

Conclusions

We calculated the chiral anomaly in the context of the Holst action plus a non-minimally coupled
Dirac fermion to curved spacetime. Our aim was to relate the Immirzi parameter 7 of the parity violating
sector of the Holst action with the non-minimal coupling parameter « in the newly defined Dirac
operator. The hope was to find that, upon the calculation of the anomaly, & = v in a “natural” way, so
that the Nieh-Yan topological invariant would arise giving no classical effects of the Immirzi parameter.
The result was another, but it depends on some arbitrary identifications we must do.

During the final stage of this thesis, some authors have done a rather similar calculation although their
starting point was already the action containing the Nieh-Yan term. However, adapting our calculation to
this result implies that: I) There is another compelling reason for believing that the Immirzi parameter
is “non-classical” and II) In order to fix v so the calculation of black hole entropy in LQG coincides
with Hawking’s formula, we could in principle accept that chiral fermions (as neutrinos) do couple
non-minimally.

Further discussion and possible phenomenology from this assertions must be extracted.

In the path to understanding why gauge bosons do not couple to spacetime torsion, we made a
canonical analysis of the Maxwell action without neglecting the antisymmetric part of the Christoffel
symbols right from the start. A well defined Hamiltonian 3 + 1 decomposition lead us to redefine time
derivatives and the Gauss law. Demanding invariance of the field strength we get a torsion tensor already
found some 30 years ago by Hojman et al. This torsion is dynamically generated by a scalar field named
“tlaplon”. So we see that the tlaplon arises in a natural way from the Hamiltonian point of view. The same
approach applied to Yang-Mills theory, however, fails. In the literature this problem has been somehow
“solved” introducing a non-canonical field strength for the Yang-Mills field. We have just quoted what
would be the implications of such a change. Finally we have noticed how the introduction of the tlaplon
field in the LQG scenario would account for new exclusive interaction terms between the tlaplon and

the fermions and thus, a new way to “measure” .

Finally we have systematically introduced a new kind of bosonic fields that serve as source of space-
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time torsion. These bosonic field however would not correspond to gauge boson fields because this
procedure of coupling them to the inner Lorentz space would break gauge invariance. Along with this
we have proved that this kind of torsion tensor is the Noether charge associated with the invariance of
the action under rotations in the inner space. Finally we have tried to get this mathematical framework
near the physical phenomenology of LQG and Inflation Theory. Further issues will be addressed in the

future.

The conclusion that we could extract from all this is that Einstein-Cartan theory should be revisited
since it could be a more complete “limit” of an underlying quantum theory of gravity like LQG or even
the String Theories. Even if spacetime torsion is unobservable in the present universe because it is
suppressed by Newton’s constants, it may have played a major role in the distant past, near GUT scale

and even near Planck scale.
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Hermiticity of ¥ and W/

After the Wick rotation we have that 'y“’T = —v#. Then, we use the notion of inner product in the

Hilbert space spanned by the eigenfunctions of ¥ = v#V . By definition,

(on: Viom) = [ dlalelelVion
:/d“wlelwlv“vwm
— - [ dalel(Tuen)trom
= —/ d*zle|@], Vi om
— [ il viaion
— [ dlalelel (@) om (A1)

where an integration by parts has been done neglecting a total derivative. So we get that under these

circumstances,
v =v. (A2)
For the case of the operator v = o (1 — é%) V. all we have to do is to prove that v* (1 — é%) is
anti-Hermitian. In effect,
i 1 i\
(’Y“(l - 575)) = (1 - 575) ’Y“T
=—(1+ Lys)y*
= —"(1 = &), (A.3)

where we have used the facts that {7°,v*} = 0 and that o € R. This ensures that V/T =V
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Apéndice B
Nieh-Yan topological invariant

The Nieh-Yan term is the only Lorentz invariant exact 4-form including torsion. It is given by
N =d(ea NT*) =T AT, — e, Aey A R, (B.1)

identity that can be proven using the first Cartan structure equation along with its consistency condition,
the first Bianchi identity.
One can show that in the presence of torsion the relevant tangent group of rotations is SO(5) instead

of SO(4) so we have to consider the Pontryagin density associated with the curvature 2-form

RAP = awAP 4 Wi A WP (B.2)
of the SO(5) connection
AB wt et
WAB — : a,b=1,2,3,4 A B=17234,5, (B.3)
—zeb 0

where £ is a lenght scale known as “the radius of the Universe”, which is neccesary in order to consider

the vielbein as a part of a connection. In this way,

a 2 a a
RABARAB:Rab/\Rb—i—é—Q(Ta/\T —eq Ney A R?). (B.4)
Taking the integral of the last expression,
2
72 N = P4[SO(5)] — P4[SO(4)], (B.5)
My

proves that the Nieh-Yan four-form N = d(e, A T®) is indeed a topological invariant since it is the

difference of two Pontryagin classes.
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Apéndice C
Large gauge transformations

C.1. Yang-Mills gauge theories

Let us review the case of large gauge transformations in Yang-Mills gauge theories. Let the SU(N)
valued connection A, = A{L)\I and its associated electric field E7 = E;’()\K (where I, J, K, - =
1,2,3,...,N?—1 are internal indices) be a couple of conjugate variables in the framework of a canonical
formulation of Yang-Mills gauge theories. The evolution of the system is limited to a restricted region

of the phase space by the first class Gauss constraint, expressed by the following weak equation
Gp = DoEf = 0.E} + f1,XALE% ~ 0. (C.1)

According to the Dirac quantization procedure, the state functional describing the quantum physical

system must satisfy the Gauss constraint, namely we have to require that

Gi®(A) = (A) =0, (C.2)

—iDg SAT
where the usual quantum representation of the operators has been assumed.

The Gauss constraint formalizes the request of gauge invariance of the quantum state describing the
physical system, namely it is equivalent to requiring that the state functional be invariant under the
small component of the gauge group G = SU(N), as can be easily realized. Since the global structure
of the gauge group in non-trivial, in view of quantization, it is particularly interesting to study the
behavior of the state functional under the large gauge transformations. A non-trivial global structure of
the gauge group, in fact, can produce striking effects in the non-perturbative theory, as, e.g, P and C'P
violations, physically motivating this extension of the theory.

In this respect, let < be the generator of the large gauge transformations, acting on the state func-
tional ®(A). Considering that the Hamiltonian operator, jg;, is invariant under the full gauge group (or,

~

more formally, it commutes with the operator ¢), we can construct a set of eigenstates for the quantum
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theory by diagonalizing simultaneously A and 9. In other words, the following equation
GOy (A) = By (A9) = Dy (A), where A9 = gAg~' + gdg™ ", (C.3)

is a super-selection rule for the states of the theory, which are now labeled by the winding number
W = W(g), according to their behavior under the action of the large gauge transformation operator.
The constant 6 is an angular parameter, which indicates how much the state functional “rotates” under
the action of the large gauge transformations operator. Specifically, it represents a quantization ambiguity
connected with the non-trivial global structure of the gauge group.

Equation (C.3) implies that the wave functionals either have to satisfy suitable #-dependent boundary
conditions passing from one “slab” to the next in the configuration space; or, a fully gauge invariant state
functional can be constructed, trasnferring the -dependence in the momentum operator. In this respect,

we recall that the so-called Chern-Simons functional,

1 1
A)=— FANA—-ANANA 4
& (A) 87r2/tr(/\ 3/\ /\), (C.4)
is characterized by the following remarkable property:
W (A% =X (A)+W(g). (C.5)

In other words, the Chern-Simons functional under a large gauge transformation turns out to be modified

by a quantity exactly corresponding to the winding number, expressed by the Maurer-Cartan integral

W(g) / tr (g~'dg) A (g7 dg) A (97" dg). (C.6)

= 242

This directly implies that the new state functional,
'(A) = e 7D Py, (A), (C.7)
will be invariant under the full gauge group, as can be easily demonstrated. In other words we have
GO (A) = '(A). (C.8)

So, by using the rescaling (C.7), we have obtained a new fully gauge invariant quantum state func-
tional, at the price of modifying the momentum operator, namely, the §-dependence has been transferred
from the boundary conditions to the momentum operator, which becomes:

0 10

5A - WﬁaﬁryFﬁ,\/} ¢/(A) (Cg)

ElaCI)/(A) — e—ieﬁy(A)EaeiQ?I(A)q)/(A) - |:
The above modification in the conjugate momentum reflects on the Hamiltonian operator, i.e
1 0 0 1
— 3 « af o a3
H/—/d xtr |:2 (E —8?6 A/FB,)/) (Ea— 8?606;) Fpo’) —‘rzFa,@F :| 5 (ClO)
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generating a pseudo-vectorial term which prevents the new Hamiltonian H’ from being invariant under
the C'P discrete symmetry.
The new Hamiltonian corresponds to a topological modification of the classical action, consisting in
the presence of an additional term belonging to the Pontryagin class, i.e.
SHEW(A):—}/tr *F/\F—i—i tr F'AF. (C.11)
4 82
The 6 parameter appears as a multiplicative constant in front of the modification. It is worth mentioning
that the new term does not affect the classical equations of motion but modifies the vacuum to vacuum
amplitude in the path-integral formulation of the quantum theory. In other words, it allows to take
into account possible tunneling phenomena between distinct vacua characterized by different winding

numbers, violating the C'P discrete symmetry.

C.2. Partially gauge fixed gravity

It has been argued that the Barbero-Immirzi parameter can have a topological origin analogous to
that of the 6-angle of Yang-Mills theories and the Nieh-Yan functional,

@[e,w]z/ei/\Ti7 (C.12)

plays the role of the Chern-Simons functional 2(A). The situation though, is less clear here. The missing
point in this construction is the relation existing between the Nieh-Yan and the large gauge sector of
the theory, in analogy with the requirement of invariance under the large sector of the SU(N) gauge
group pertaining to the case of Yang-Mills gauge theories.

The Ashtekar-Barbero first class constraints are extracted from the fully covariant theory after having
fixed the temporal gauge. This fixes the zeroth component of the local basis, €°, in such a way that it
remains parallel to the normal vector, n, along the evolution and, simultaneously, reduces the gauge
group from SO(3,1) to SO(3). Therefore, once the gauge has been partially fixed, the local symmetry
group reduces to the group of spatial rotations, SO(3), so that one is immediately induced to think that
the large gauge sector is merely related to the non-trivial global structure of SO(3). But, physically,
also the action of the T discrete operator, which acts on the zeroth component of the local basis by
flipping its orientation with respect to the normal vector, represents a large gauge transformation. As a
consequence the full gauge group is G = SO(3) x Zy ~ S3. Namely, it consists of two copies of SO(3),
correlated with the two orientations of the zeroth component of the local basis. In particular, recalling
that I13(S?) = Z, the disconnected components of the large gauge group are labeled by an integer, which
is the winding number of the SU(2) ~ S® group. Noting that G = SO(3) x Zy = SO(4)/SO(3), the

connection for SO(4), Q4B can be written in the MacDowell-Mansouri form
AB w" %ei
0AB — L (C.13)
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where A, B,C, ... are indexes valued on SO(4), while 4, j, k, . .. are valued on SO(3). The constant £ has
the dimension of a length and can be associated with the radius of the spheres obtained compactifying

the tangent planes. It is easy to show that

1
3
=R A Lt AW, AW, — 2T N e = D] -~ C.14
= wij+§wj Wi AW~ g5 e; = ¥ w] 7 [e,w], (C.14)
where FAP is the curvature 2-form associated with the connection Q42 while R¥ is associated with
the 3-dimensional connection w®. Due to the fact that now G = SO(4)/SO(3), we can construct a
Chern-Simons functional for the large gauge group of gauge fixed gravity as the difference between #[Q]
and % [w], but this is exactly the Nieh-Yan functional since
52

Yle,w] = 5

(@ [w] — Z[Q)). (C.15)

A new state functional, fully invariant under the large gauge group, can be obtained by rescaling the
original state functional of the Einstein-Cartan theory by the Nieh-Yan functional. The new state func-
tional satisfies the Ashtekar-Barbero constraints for General Relativity, revealing the topological origin

of the Barbero-Immirzi parameter.
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Dirac Genus

Alvarez-Gaumé and Ginsparg [42] give us the following expression for the Dirac Genus up to fourth
order in the Pontryagin classes for the curvature 2-form

A 11, 1

AM) =1+ =

360

L(tr R?)% +

- 4
@212 @ |2 trR]

1
+ [10368

1
tr R%tr RS
T a@n® [497664 103680 68040 ™ T 959200

+ ... (D.1)

1 1
tr R*)3 + ——tr R®tr R* + ———tr RS
(tr B+ oot B B+ gt
(tr R*)* +

(tr R?)*tr R* + (tr RY)? +

ol
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Apéndice E

Canonical Formalism

In a canonical formulation, the Hamiltonian H rather than the action is used to determine equations
of motion of any function f on the phase space by means of Poisson brackets, f = {f, H}. The Poisson
structure defines the kinematical arena which follows from the field variables and momenta.

A canonical formalism (Hamiltonian framework) is achieved by performing a Legendre transform of
the action S, replacing time derivatives of configuration variables by momenta. This, as always, requires
one to treat space and time differently and is the reason why the canonical formulation is no manifestly
covariant. We introduce a foliation of the spacetime (M, gw) by a family of spacelike hypersurfaces
Y : t = const in terms of a time function ¢ on M. Canonical variables will depend on which time function
one chooses, but the resulting dynamics of observable quantities will remain covariant. Furthermore, let
t* be a timelike vector field whose integral curves intersect each leaf ; of the foliation precisely once
and which is normalized such that t*V,t = 1. This ¢* is the “evolution vector field” along whose orbits
different points on all 3; = 3 can be identified. This allows us to write all spacetime fields in terms of
t-dependent components defined on a spatial manifold 3. Lie derivatives of spacetime fields along t* are
identified with “time derivatives” of the spatial fields (for instance, if P = P,dz" is a one-form its time
derivative reads PM = £P, =t"0,P, + P,0,t").

Let us decompose t* into normal and tangential parts with respect to ¥; by defining the lapse
function IV and the shift vector N* as t* = Nn* + N* with N#n, = 0, where n* is the unit normal
vector field to the hypersurfaces ;. The spacetime metric g, induces a spatial metric g, by the
formula g, = g, — nyn,. Then one uses n# = N=L(t# — N#) and ¢* = g"” + nHn” to project fields
normal and tangential to X;.

Having said this we now make a comment about a fact that is usually not known. The Lie derivative
depends only on the structure of the manifold and not on the connection. In abstract matrix notation

it acts as an operator
Le=¢€-0—[0€, |- (E.1)
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For a Riemannian connection, which is torsion-free, we can replace the ordinary by the covariant deriva-

tive
since

£V —[VE | =¢€"0, + % p, | — [0s6* + T3, ]
:f'af[aﬁgav ]:‘ffa

recalling that torsion-freedom implies symmetric Christoffel symbols. However, in the case of a nonvan-

ishing torsion tensor
T% =T%5—T%, #0 (E.3)
we find instead
£e=E-V = [V +T%:, ], (EA)
which can be quickly verified

-V [V +T%; A 1=¢0+ 5/\[Fa,\ﬁ> ] =088, ] = [Faﬂ,\f/\7 | =I5 — Faﬂ,\)F, ]
26-8— [aﬁ§a7 ]: "65'

This justifies our rather strange definition of “time derivative” in the Hamiltonian decomposition of

gauge theories in the presence of spacetime torsion.
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Apéndice F
Energy density and pressure

The matter Hamiltonian is directly related to energy density by
1 6Hy
"~ V4 0N

This is the usual term for energy per volume, and does not mean that p is a geometrical density.

p (F.1)

The general, thermodynamical definition of pressure is the negative change of energy by volume,

which we can write as

N3

whenever the Hamiltonian H depends isotropically on the metric. Otherwise, one has to use all compo-
nents of the stress tensor 5‘;% which is not proportional to the identity. The derivative by the determinant
of the metric can be expressed in terms of metric components by using a suitable change of variables
which includes ¢ as an independent one. We thus introduce ¢ ,, = q'/ 3cjab with det g,, = 1 such that
ag—;b = %q_lqab where all components of g, are kept fixed in the partial derivative. This is exactly what
we need to compute pressure since only the volume but not the shape of the fluid is varied. This change

of variables implies

5 5 dq,, O 2 5
_— 2 _— = 2 a = a s
ENG Va5, \/6%; dq bq,, 3\/6%;(1 * 644,

and thus

2 SH
. RSl
3N g *dq,,

(F.3)
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Apéndice G
Noether’s theorem

Consider a d-form Lagrangian L(p,dy), where ¢ denotes collectively a set of p-form fields. An

arbitrary variation of the action under a local change d¢ is given by the integral of
0L = (& — L)dp + dO(p, dy), (G.1)

where & — % stands for equations of motion and © is a corresponding boundary term. The total change
in ¢ (6p = ¢'(2') — ¢(z)) can be decomposed as a sum of a local variation and the change induced
by a diffeomorphism, that is, ¢ = d¢ + £¢p, where £¢ is the Lie derivative operator. In particular, a
symmetry transformation acts on the coordinates of the manifolds as dx#* = £#(x), and on the field as
d¢p, leading a change in the Lagrangian given by 6L = df).

Noether’s theorem states that there exists a conserved current given by
*J =Q —0O(p,dp) — I L, (G.2)
which satisfies d x J = 0. This, in turn, implies the existence of the conserved charge
Q= /2 *J, (G.3)

where X is the spatial section of the manifold, when a manifold is assumed to be of topology R x .
The proof goes as follows:

Under the variation p4 — ¢? + §p4, the Lagrangian will vary in the form
SLYD = E 60 4 d(Badp™), (G.4)

where now we make explicit the fact that the Lagrangian is a d-form and A is the collective index that

labels the set of fields involved. Here,

Ealp) =0 (G.5)
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APENDICE G. NOETHER’S THEOREM

correspond to the Euler-Lagrange equations of motion and
Ba()de™ o =0 (G.6)
are the boundary conditions. In this case we must stress that § implies a functional variation of the form
b = "' (z) — o (@), (G.7)

Let us consider that the Lagrangian L(?) possesses two symmetries: one is the symmetry under diffeo-

morphisms, the other one will be a gauge symmetry.

G.1. On-shell and off-shell diffeomorphism current

Under an infinitesimal diffeomorphism, z# — z#* + £, the functional variation of an arbitrary

differential p-form a = Lo dxt N --- Adztr is given by
p:

H1pize pip
daig o = —Leay, (G.8)

where £¢ stands for the Lie derivative operator defined by

Le=dle + 1Icd (G.9)

and I¢ is the contraction operator which acting on a p-form « gives

Ica = M gy, T N N dt (G.10)

1
(p—1)!
We now replace in (G.4) the functional variation asociated with a diffeomorphism, so we get

—£eL D = —E £e0% — d(Bafep™). (G.11)

Since L4 is a d-form, £¢LY = dI. LY so we get the identity

d(Bafep? — I.LY) + Ex£ep® = 0. (G.12)
Defining
*JUEn) — B Lo — [ L@, (G.13)
we have that
dx JWFN 4 By Lep? = 0. (G.14)

When ¢4 corresponds to a on-shell configuration, i.e., satisfies Ea(e) =0, xJ(diffon) 49 congerved,

d JUdifen) — (G.15)
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G.2. ON-SHELL AND OFF-SHELL GAUGE CURRENT

Of course, if the term F4£ 5<pA is an exact form,
Ealep® =dX, (G.16)
it is possible to define
o J(diff-off) _  p(diff-on) |y (G.17)
which will be conserved without demanding an on-shell configuration,

d » Jidifoff) — (G.18)

G.2. On-shell and off-shell gauge current

When the Lagrangian is invariant under an infinitesimal symmetry transformation ¢ — 4 + €4,
we get from (G.4) that

Eae® + d(Bae?) = 0. (G.19)
So when we define x.J(82uge-o0) — B, ¢4 we have
dx Jeaveeon) 4 g A — (G.20)
so, when ¢* corresponds to an on-shell configuration, .J (gauge-on) js conserved,
dx JEauseon) — (G.21)
We notice than when E e is an exact form,
E et = dy, (G.22)
it is possible to define the conserved current

*J(gauge—oﬁ) — *J(gauge—on) + Y’ (GQS)

d x Jg2eeo) = g (G.24)

for any configuration of ¢4.
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Apéndice H
B # 0 case formulas

For completeness we show the formulas in the implicit solution of the contorsion tensor C/(a,b, %)
(equation (3.92)) for the “scalar” case (p =1,q = 1) when S # 0.

Afa,b,) = = SC(6,0,0)8(0)n — 5C(6,0,)0()x + 506, b))+ 5C(6,b,)0(a)s — 5C(6,, )6 (B)n

+ %C(Qx i,D)p(a)k + Cla, 1, 1)d(b, i) — C(b,1,1)d(a,i) + £ (a,b,i) — kJ(b, i, a). (H.1)

C(0,b,1) = 506, b, OB+ FIR™ — SC(6,1, )6(B[1 + PR + C(6,1,0)el6, b1, DR

+ O LA - B~ 5?57 = SCOLDG + 5~ 28R — SO0 L0661~ F1 — e — 577
+5CGLNGOL+ 52~ 28R = SCGLDSO)[L — FI[1 — w6 — B2)7) — C(L £, De(byi, 511~ BB
+KJ($,b,)[1 — k> — B2~ + £B%T(¢,b,)) R + J(¢,,b)k[1 — k® — B°] 7" = J (¢4, b)sB>R™"

(0,1, ORI+ BRI, (b f0)R R — LI 9,061, )61 — e — 67

45T 9 D)6y, FLgWBR™ — ST(F,0,1)el0,b, £, 98B — 5” — 17 = LT(F,9,0)l6.b, f.g)wBR .
(H.2)
R=1-k¢*p%+ 3% — 28 (H.3)

C(¢,1,1) = kBe(d, 9. 1) I (f, g, h)[2 + ko = 28°] 71 = 26J (¢, f, )2+ Ko? — 25°] L. (H.4)

C(b,1,1) = K2¢*B[1 — )12+ rd® — 28%) ' X9 (b)e(8, £, 9,h) I (f, 9, h)

—26°0%[1 = BP)X T2 + wo® = 26771 0(0) (9, f, ) — KPP BX e(0,b, £,9) T (f, 9, )

+26°[1 = B21X T (9,b, ) + wBX 1 — ko? — B2Je(b, £,9,h) T (f, 9,h) — 26X 1 [1 — kg® — B*|J (b, f, f).
(H.5)
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X =2 — ke? —46% + 28 + ko?B? — k29162 (H.6)

Cl¢,b,¢) = C(, L, Dp(b)[1 — kp* — B2~ = C(¢, L, 1)p(b)B°[1 — ko* — B2] 7" = C(b,1,1)¢*[1 — kp* — 5]

+ C(ba lvl)¢262[1 - Hd)z - ﬂ2]71 + 2J(¢7 ba ¢)K’[1 - Kj¢2 - ﬂz]il - J(faga (725)6((,25, ba fa g)’iﬂ[l - R¢2 - 62]71'
(H.7)
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Apéndice 1
Inflation from scalar fields

Let us consider the canonical scalar action in curved spacetime

S:/d‘lx\/—gﬁd),

with
Lo

£¢ = 59 a,u¢au¢ - V(d))

For simplicity, we assume a flat spacetime,
1
_ —a*(t)
I —a?(t) ’
—a*(t)

and the equation of motion for the field ¢ is

. . 5V

¢+3H¢—V2¢+% =0,

where an overdot indicates a derivative with respect to the coordinate time ¢, and H =

(L4)

4 is the Hubble

parameter. We will be particularly interested in the homogeneous mode of the field, for which the gradient

term vanishes, V¢ = 0, so that the functional derivative % simplifies to an ordinary derivative, and the

equation of motion simplifies to
b+ 3Hp+V'(¢) =0.
The stress-energy for a scalar field is given by
T, = 0,000 — g Lo,
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and, for a homogeneous field, it takes the form of a perfect fluid with energy density p and pressure p,
with

p= 5P+ V), (L7)
p= 38~ V(o) (18)

We see that the de Sitter limit, p ~ —p, is just the limit in which the potential energy of the field
dominates the kinetic energy, (b < V(¢). This limit is referred to as slow roll, and under such conditions

the universe expands quasi-exponentially,

a(t) «x exp (/ Hdt> =e N, (1.9)
where it is conventional to define the number of e-folds N with the sign convention
dN = —Hdt, (1.10)

so that IV is large in the far past and decreases as we go forward in time and as the scale factor a

increases. Recalling that Friedmann and Raychaudhuri equations (Einstein’s equations) are respectively

a\? & 87

z = .11

() 5= (L11)
a 47
Y)Y = 2T (4 3p), 112
(5) =g toa (112)

we can rewrite them in a convenient form (k = 0)

2= %" [1(/;2 + V(¢)] 7 (1.13)

o 3mpl 2

(Z) = H*(1 —¢), (I.14)

. 2
_3(p I

specifies the equation of state. It can be shown that

L _1an
dlna ~ HdN’

where €

(1.16)

This is a useful parametrization because the condition for accelerated expansion d > 0 is simply equiv-
alent to € < 1. The de Sitter limit p — —p is equivalent to € — 0, so that the potential V(¢) dominates
the energy density, and

2~ 8w

~ 117
S (L17)
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We make the additional approximation that the friction term in the equation of motion (I.5) dominates,
é < 3H9, (1.18)

so that the equation of motion for the scalar field is approximately
3Ho+V'(¢) ~ 0. (1.19)

This last equation together with Friedmann equation are referred to as slow roll approximation. Condition

(I.18) can be expressed in terms of a second dimensionless parameter, conventionally defined as

(ég 1 de
=_2 — 1.2
"= T T AN (1.20)

The parameters € and n are referred to as slow roll parameters, and the slow roll approximation is valid
as long as both are small, ¢, |n| < 1. It is not obvious that this will be a valid approximation for situations
of physical interest. n need not be small for inflation to take place. Inflation takes place when € < 1,

regardless of the value of 7. In the limit of slow roll, we can use (I1.17),(I.19) to write the parameter e

N\ 2
I ) o m V' (9)
i)y

The inflationary limit, € < 1 is then just equivalent to a field evolving on a flat potential, V'(¢) < V(¢).

approximately as

The second slow roll parameter 1 can likewise be written approximately as:

A
Ho
_mb [VI(9) 1 (V@)
=5 g -2 (7o) ] (122

so that the curvature V" of the potential must also be small for slow roll to be a valid approximation.

Similarly, we can write the number of e-folds as a function N(¢) of the field as:

o[ [ e 3’2

~ o. 1.2
mPl/ V(o 1:23)

The limits on the last integral are defined such that ¢. is taken to be the end on inflation, and N

increases as we go backward in time, representing the number of e-folds of expansion which take place
between field value ¢ and ¢..
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