

EdItobs
JaMES D. and EDWARD S. DANA.
ABBOCLATE EDITORS
Profesbors asa GRay, josiah p. Cooke, and JOHN TROWBRIDGE, of Cambrider,

Profesbors F. A. Newton and A. E. VERRILL, of New Havbe,

Prorizson GEORGE F. BARKER, of Pbladeliphla.

THIRD SBEIBE.

VOL. XXXIV. -[WHOLE NUMBER, CXXXIV.]
Fitil plater in to ix
No. 203-NOVEMBER, 1887.
NEW HAVEN, CONN.: J. D. \& E. S. DANA.
1887.

TETTLD, MOREEOURE * TAYLOR, PRIFTKRG, STA BTATE STREET.

american Journal of science.

[THIRD SERIES.]

Arr. XXXVI-On the Reative Motion of the Earth and the Luminiferous Ehher; by Albert A. Micheison and Edwiad W. Morley.*

The discovery of the aberration of light was soon followed by an explanation according to the emission theory. The effect was attributed to a simple composition of the velocity of light with the velocity of the earth in its orbit. The difficalties in this apparently sufficient explanation were overlooked until after an explanation on the ondulatory theory of light was proposed This new explanation was at first almost as simple as the former. But it failed to account for the fact proved by experiment that the aberration was unchanged when observationa were made with a telescope filled with water. For if the tangent of the angle of aberration is the ratio of the velocity of the earth to the velocity of light, then, since the latier velocity in water is three-fourths its yelocity in a vacuum, the aberration observed with a water telescope should be fourthirds of its true value. \dagger

- This resuarch was carried out with the aid of the Bache Fund.
\dagger It may be nobiced that most uriters adruit the sufficiency of the oxplanation necording to the emission theory of light; while in fact the diffeculty is even greater chan accorting to the undulatory theory. For on the emisaion theory the relocity of light must be greater in the water telescope, and therefore tive waple of sberration ahould be leas; hence, in order to reduce it to its true value, we carries the rey of light in the opposise direction!
AM. Jous Sar-Term Serre, Form XXXIY, No. 203,-Nov., 1889. 32

On the undulatory theory, according to Fresnel, first, the ether is supposed to be at reat except in the interior of transparent media, in which secondly, it is sapposed to move with a velo ciy less than the velocity of the medium in the ratio $\frac{n^{3}-1}{n^{2}}$, where n is the index of refraction. These two hypotheses give a complete and satisfactory explanation of aberration. The second hypothesis, notwithstanding its seeming improbability, must be considered as fally proved, first, by the celebrated experiment of Fizeau, * and secondly, by the ample confirmation of our own work. \dagger The experimental trial of the first hypothesis forms the subject of the present paper.

If the earth were a transparent boity, it might perhaps bo conceded, in view of the experiments just cited, that the intermolecular ether was at rest in space, notwithstanding the motion of the earth in its orbit; but we bave no right to extend the conclusion from these experiments to opaque bodies. But there can hardly be question that the ether can and does pass through metals. Lorentz cites the illastration of a metallic barometer tube. When the tobe is iucined the ether in the space above the mercary is certainly forced out, for it is imcompressible \ddagger But gagain we bave no right to assume that it makes its escape with perfect freedom, and if there be any resistance, bowever slight, we certainly could not assume an opaque loody buch as the whole earth to offer iree passage through its entire mase. But as Irorentz aptly remarks: "quoi quil en zoit, on fera bien, a mon avis, de ne pas se laisser guider, dans nne question aussi importante, par des considerations sur le degré de probabilité on de simplicite de lune on de l'antre hypothèse, mais de s'addresser a l'expórience pour apprendre is connaitre l'atat, de repos on de mouvement, dans lequel be troave l'éther a la surface terrestre. "S
In April, 1881, a method was proposed and carried out for testing the question experimentally.

In deducing the formala for the quantity to be measured, the effect of the motion of the earth through the ether on the path of the ray at right angles to this motion was overlooked. T

* Corpplas Rendus, rixifi, 349, 1851 ; Pogg. Atns. Erganznagsband, 3il, 15\%, 1853 ; ADn, Chim. Phys, III, 1vit, 385, 1859.
Infleence of Motion of the Medium on the Velocity of 'Light. This Journal, ${ }_{4}$,
the walls; but this onild be cresy escepo by the space between the mercury snd 8 Archived Noerlandaises, provented by amaigamatiug the walle.
The relative motion of the earib and the luminiferous ether, by Aibert A. Mchalison, this Jour. IIT, xiii, 120 .
I It may be mentioned here that the error was poluted out to the author of the former paper by M. i. Potier, of Paria, in the winter of 1891.

The discassion of this oversight and of the ontire experiment forms the subject of a very searching analysis by H. A. Irorentic; who finds that this effect can by no means be disregarded In consequence, the quantity to be measured had in fact but one-half the valus supposed, and as it was already barely beyond the limits of errors of experiment, the conclasion drawn from the result of the experiment might well be questioned; since, bowever, the main portion of the theory remains unquestioned, it was decided to repeat the experiment with euch modificationis as would insure a theoretical result mnch too large to be masked by experimental errors. The theory of the method may be briefly stated as follows:
Iret sa, fig. 1 , be a ray of light which is partly reflected in $a b$, and partly transmitted in $a c$, being retarned by the mirrors b and c_{3} along $b a$ and $c r, \quad b a$ is partly transmitted along $a d$,

and $c a$ is partly reflected along ad. If then the pathe ab and ac are equal, the two raye interfere along ad. Suppose now, the ether being at rest, that the whole apparatus noves in the direction ss, prith the velocity of the earth in its orbit, the direc-
*De ITfinence du Monvement de La Terre sur lea Pbon. Inm, Archives Sterlemidrisos, 2EI, $3^{m u}$ livr 1886.
tions and distances traversed by the rays will be altered thus:The ray sa is reflected along ab, fig. 2; the angle bab, being equal to the aberration $=a$, is returbed along $b a_{i}(a b a,=2 a)$, and goes to the focus of the telescope, whose direction is unaltered. The transmitted ray goes along $c c$, is retarned along $c a$, and is reflected at α, making ca, e equal $90-\alpha$, and therefore still coinciding with the first ray. It may be remarked that the raya ba, and $c a$, do not now meet exaclly in the same point a_{s}, thongh the difference is of the second order; this does not affect the validity of the reasoning. Let it now be required to find the difference in the two paths $a b a_{j,}$ and $a c a_{r}$
Let $V=$ velocity of fight.

$D=$ distance $a b$ or $a c$, fig. 1.
$\mathrm{T}=$ time light ocenpies to pass from a to c.
$T=$ time light occupies to retarn from c to $a_{r 1}$ (fig. 2.)
Then $T=\frac{D}{V-v}, T,=\frac{D}{V+v}$. The wbole time of going and com* ing is $T+T,=2 D \frac{V}{V^{2}-v^{2}}$ and the distance traveled in this time is $2 \mathrm{D} \frac{\nabla^{3}}{\bar{V}^{3}-v^{2}}=2 \mathrm{D}\left(1+\frac{v^{2}}{\nabla^{2}}\right)$, neglecting terms of the fourth order. The length of the otber path is evidently $2 \mathrm{D} \sqrt{1+\frac{v^{2}}{V^{2}}}$, or to the same degree of accoracy, $2 \mathrm{D}\left(1+\frac{v^{2}}{2 \bar{V}^{1}}\right)$. The difference is therefore $\mathrm{D}_{\overline{\mathrm{V}^{2}}}^{\boldsymbol{v}^{*}}$. If now the whole apparatus be tarned through 90°, the aifference will be in the opposite direction, bence the displacement of the interference fringes should be $8 D_{\overline{V^{2}}}^{\boldsymbol{v}^{2}}$, Considering only the velocity of the earth in its orbit, this wonld be $2 \mathrm{D} \times 10^{-4}$. If, as was the case in the first experiment, $\mathrm{D}=2 \times 10^{\text {. }}$ waves of yellow light, the displacement to be expected would be 0.04 of the distance between the interference fringes.

In the first experiment one of the principal difficalties encountered was that of revolving the apparatos without producing distortion; and another was its extreme sensitiveness to vibration. This was so great that it wras impossible to see the interference fringes axcept at brief intervals when working in the city, even at two o'clock in the morniag. Finally, as before remarked, the quantity to be observed, namely, a displacement of something less than a twentieth of the distance between the interference fringes may have been too small to be detected when masked by experimental errors.

The first named difficulties were entirely overcome by moanting the apparatus on a massive stone loating on mercury; and the second by increasing, by repeated reflection, the path of the light to sbout ten times its former value.
The apparatus is represented in perspective in fig. 3 , in plan in fig. 4 , and in vertical section in fig. 5 , The stone a (6. 5 . 5) is about 1.5 meter square and 0.3 meter thick It resta on an annalar wooden float $86,1.5$ meter outside diameter, 077 meter inside diameter, and 0.25 meter thick. The loat reas on mercary contained in the cast-iron trough $c c, 15$ centimeter thick, and of such dimensions as to leave a clearance of about one centimeter around the float. A pin d goided by arms gggg, fits into a socket e attached to the float. The pin may be pushed into the socket or be withdrawn, by a lever piroted at f. This pin keeps the float concentric with the trough, bat does not bear any part of the weight of the stone. The annular jron troagh rests on a bed of cement on a low brick pier bailt in the form of a hollow octagon.

At each corner of the stone were placed four mirrors $d d$ ee fig. 4. Near the center of the stone was a plane-parallel glass b. These were so disposed that light from an argand burner a passing through a lens, fell on b so as to be in part reflected to d; the two pencils followed the paths indicated in the figare, $b d e d b f$ and $b d, e, d b f$ respectively, and were observed by the telescope f. Both f and a revolved with the stone. The mirrors were of epeculum metal carefully worked to optically plane surfaces five centimeters in diameter, and the glasees of and e were plane-parallel and of the same thickness $1-25$ centimeter;
their surfaces measmred 5.0 by 7.5 centimeters. The second of these was placed in the path of one of the penoils to compensate for the passage of the other through the same thickness of glass. The whole of the optical portion of the apparatus was kept covered with a wooden cover to prevent sir currents and rapid changes of temperatare.

The adjustment was effected as follows: The mirrors having been adjusted by screws in the castings which held the

4

mirrors, against which they were pressed by apringa, till light from both pencils could be seen in the telescope, the lengths of the two paths were measared by a light wooden rod reaching diagonally from mirtor to mirror, the distance being read from a small steel scale to tenths of millimeters. The difference in the leogths of the two paths was then annulled by moving the mirror e_{r}. This mirror bad three adjustments; it had an adjustment in altitude and one in azimath, like all the other mirrors,
but finer; it also had an adjustment in the direotion of the incident ray, sliding torward or backward, but koeping very accurately parallel to its former plana. The three adjnatmenta of this mirror could be made with the wooden cover in position.

The paths being now approximately equal, the two images of the source of light or of some well-defined objeot placed in front of the condensing lens, were made to coincide, the telescope was now adjusted for distinct vision of the expected interference bands, and sodium light was substituted for white light, when the interference bands appeared. These were now made as clear as possible by adjusting the mirror e_{j}; then white light was restored, the screw altering the length of path was very slowly moved (one tarn of a acrew of one hundred threads to the

inch altering the path nearly 1000 wave-lengths) till the colored interference fringes reappeared in white Jight These were now given a convenient width and position, and the apparatos was ready for observation.

The observations were conducted as follows: Around the cast-iron trough were sixteen equidistant marks. The apparatus was revolved very slowly (one turn in six minutes) and after a few minutes the cross wire of the micrometer was set on the clearest of the interference fringes at the instaut of passing one of the marka The motion was so slow that this could be done readily and accurately. The reading of the screw-head on the micrometer was noted, and a very slight and gradual impulee was given to keep up the motion of the stone; on passing the second mark, the same process was repeated, and this was continued till the apparatus bad completed aix revolutions. It was fonnd that by keeping the apparatus in slow uniform rootion, the results were macb more aniform and consistent than when the stone was brought to rest for every observation; for the effeots of alraine could be fioted for at least half a minute after the atone came to reat, and during this time effects of change of temperature came into action.

The following tables give the means of the six readings; the first, for observations made near noon, the second, those near six o'elock in the evening. The readinge are divisions of the screw-heads. The width of the fringes varied from 40 to 60 divisions, the mean value being near 50 , so that one division
means 0.02 wave-length. The rotation in the observations at noon was contrary to, and in the evening observations, with, that of the hands of a watch.

Noon Obserfattoss

	16. 1. 2	2	4.	5										15.	1:
July 8	4	3971	$35 *$	3	अа	235	28	282	S38		3	7		B 2	3 T
July 9	5746	79\%	887	$80 \sim$	60: 8_{1}	120	015	88-5	*5 8^{\prime}	53	887	707:	530	Tor	Tang
Juit 18		103:	1922	193	18:1	188	1892	143	1393;	129)	13.3	122	$10:$	73	$0 \cdot 5$
Mean.	$439^{\circ} 117{ }^{\text {c }}$	394	3.7	381	5	878	$35-3$	$34 \cdot 6$	H-3	; 341	31:1	359	387	314	${ }^{30} 5$
Mean in w. I.	Sta	${ }^{786}$	-24	- $2 \times$	7388		700	\%	-ess.	,	.888	-n8	872	830	${ }^{6} 16$
	700 70 CL	\%88	-648	B,8	${ }^{-6,2)}$		-18								
final mea															

P. i. Onservatione.

The results of the observations are expressed graphically in fig. 6. The upper is the carve for the observations at noon and the lower that for the eveniug observations. The dotted curves represent one-eighth of the theoretical displacementa It seems fair to conclude from the figure that if there is any dis-

placement due to the relative moxion of the earth and the lominiferous ether, this canuot be much greater than 0.01 of the distance between the fringes
Considering the motion of the earth in its orbit only, this
displacement should be $2 \mathrm{D} \frac{v^{4}}{V^{1}}=2 \mathrm{D} \times 10^{-1}$. The distance D was about elayen meters, or 2×10^{1} wave-lengths of yellow light; bence the displacement to be expected was 0.4 fringe. The actual displacement was cartainly leas than the twentieth part of this, and probably less than the fortieth part. Bat since the displacement is proportional to the square of the velocity, the relative velocity of the earth and the ether is probably less than one aixth the earth's orbital velocity, and certainly less than ove-fourth.
In what precedes, only the orbital motion of the earth is considered. If this is combined with the motion of the solar system, concerning whicb but little is known with certainty, the result would have to be modified; and it is just possible that the resultant velocity at the time of the observations was small though the chances are mach against it. The experiment will therefore be repeated at intervals of three months, and thas all nucertainty will be avoided.
It appears, from all that precedes, reasonably cartain that if there be any relative motion between the earth and the luminiferous ether, it must be small; quite amall enough entirely to refute Fresnel's explanation of aberration. Stokes has giyen a theory of aberration which assumes the ether at the earth's burface to be at reat with regard to the latter, and only requires in addition that the relative velocity dave a potential; but Lorentz shows that these conditions are incompatible. Lorenta then proposes a modification rhich combines some ideas of Stokes and Fresnel, and assames the existence of a potential, together with Fresnel's coefficient If now it were legitimate to conclude from the present work that the ether is at rest with regard to the earth's surface, according to Lorentz there could not be a relocity potential, and his own theory also fails.

Supplement

It is obvious from what has gone before that it would be hopeless to attempt to solve the question of the motion of the solar system by observations of optical phenomens af the surface of the earth. Bnt it is not impossible that at even moderate distances above the level of the sea, at the top of an isolated mountain peak, for instance, the relative motion might be perceptible in an spparatos like that osed in these experiments. Perhaps if the experiment should ever be tried in these oircum. stances, the cover should be of glass, or should be removed.

It may be worth while to notice another method for multiplying the square of the aberration anfficiently to bring it within the range of obseryation, which has presented itself daring the
preparation of this paper. This is founded on the fact that reflection from surfaces in motion varies from the ordinary laws of reflection.

Let $a b$ (fig. 1) be a plane waye falling on the mirror $m n$ at an incidence of 45°. If the mirror is at rest, the wave front after reflection will be ac.

Now sappose the mirror to move in a direction wbich makes an angle a with its normal, with a velocity ω. Let ∇ be the velocity of light in the ether supposed stationary, and let $a d$ be the increase in the distance the light bas to travel to reach d. In this time the mirror will have moved a distance $\frac{c d}{\sqrt{2} \cos a}$. We have $\frac{c d}{a d}=\frac{\omega \sqrt{2} 2 \cos a}{\mathrm{Y}}$ which put $=r$, and $\frac{a c}{a d}=1-r$.

In order to find the new wave front, draw the arc $f g$ with b as a center and ad as radius; the tangent to this arc from d will be the new wave front, and the normal to the tangent from b will be the new direction. This will differ from the direction $b a$ by the angle θ which it is required to find. From the eqnality of the triangles $a d b$ and $e d b$ it follows that $\theta=2 \varphi, a b=a c$,

$$
\tan a d b=\tan \left(45^{\circ}-\frac{\theta}{2}\right)=\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}=\frac{a c}{a d}=1-r
$$

or neglecting terms of the order r^{3};

$$
\theta=r+\frac{r^{x}}{2}=\frac{\sqrt{2} \omega \omega \cos \alpha}{\mathrm{~V}}+\frac{\omega^{2}}{\bar{V}^{2}} \cos ^{3} \alpha
$$

Now let the light fall on a parallel mirror facing the first, we should then have $\theta_{1}=\frac{-\sqrt{2} \omega \cos \alpha}{\bar{Y}}+\frac{\omega^{3}}{V^{2}} \cos ^{4} \alpha_{1}$ and the total deviation wonld be $\theta+\theta_{s}=2 \rho^{2} \cos ^{2} \alpha$ where ρ is the angle of aberration, if only the orbital motion of the earth is considered. The maximum displacement obtaiued by revolving the whole apparatus through 90° would be $\Delta=2 p^{2}=0 \cdot 004^{\prime \prime}$. With fifty such coaples the displacement would be $0 \cdot 2^{\prime \prime}$. But astronomical observations in circumstances far less favorable than those in which these may be taken have been made to handredths of a second; so that this new method bids fair to be at least as sensitive as the former.
The arrangersent of apparatus might be as in fig. 2; s in the focus of the lens a, is a slit; $b b c c$ are two glass mirrors optically plane and so silvered as to allow say one-twentieth of the light to pass through, and reflecting say dinety per cent. The intensity of the light falling on the observing telescope df

wonld be about one-millionth of the original intensity, so that if sunlight or the electric arc were used it could atill be readily seen. The mirrors $b b$, and $c c$, wonld differ from parallelism sufficiently to separate the successive images. Finally, the apparatus need not be mounted so as to revolve, as the earth's rotation would be sufficient.
If it were possible to measure with sufficient accuracy the velocity of light without returning the ray to ita starting point, the problem of measaring the first power of the relative velocity of the earth with respect to the ether would be solved. This may not be as hopeless as might appear at first sight, since the difficulties are entirely mechanical and may possibly be surmounted in the course of time.
For example, sappose (fig. 3) m and m_{r} two mirrors revolving with equal velocity in opposite directions. It is evident that light from s will form a stationary image at s, and similarly light from s, will form a stationary image at s_{s}. If now the velocity of the mirrors be increased sufficiently, their phases atill being exactly the same, both images will be deflected from s and s, in inverse proportion to the velocities of light in the two directions; or, if the two deflections are made equal, and the difference of phase of the mirrors be simultaneously measared, this will evidently be proportional to the difference of velocity in the two directions. The only real difficulty lies in this measurement The following is perhaps a possible solation: $g g_{\text {, (fig- }}$ 4) are two gratings on which sunlight is concentrated. These are placed so that after falling on the revolving mirrors m and m_{s}, the light forms images of the gratings at s and s_{n} two very sensitive selenium cells in circoit with a battery and a telephone. If everytbing be symmetrical, the soand in the telephone will be a maximum. If now one of the slits s be displaced through balf the distance between the image of the grating bars, there will be silence. Suppose now that the two deflections having been made exactly equal, the slit is adjosted for silence. Then if the experiment be repeated when the earth's rotation has turned the whole apparatus through 180°, and the deflections are again made equal, there will no longer be silence, and the angular distance through which s mast be moved to restore silence will measure the required difference in pbase.
There remain three other metbods, all astronomical, for attacking the problem of the motion of the solar system through space.

1. The telescopic observation of the proper motions of the stars. This has given us a highly probably determination of the direcrion of this motion, but only a guese as to its amount
2. The spectroscopic observation of the motion of stars in the line of sight. This could furnish data for the relative
motions ouly, though it seems likely that by the immense improvements in the photography of atellar spectra, the informa fion thus obtained will be far more accurate than any other.
3. Finally there remains the determination of the velocity of light by observations of the eclipses of Jupiter's satellites. If the improved photometric methods practiced at the Harvard observatory make it possible to observe these with sufficient securacy, the difference in the results found for the velocity of light when Jupiter is nearest to and farthest from the line of motion will give, not merely the motion of the solar system with reference to the stars, but with reference to the laminiffrous ether itself.
