Inverse moments equilibria for helical anisotropic systems
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An energy functional is devised for magnetic confinement schemes that have anisotropic
plasma pressure. The minimization of this energy functional is demonstrated to reproduce
components of the magnetohydrodynamic (MHD) force balance relation in systems with
helical symmetry. An iterative steepest descent procedure is applied to the Fourier moments of
the inverse magnetic flux coordinates to minimize the total energy and thus generate
anisotropic pressure MHD equilibria. Applications to straight ELMO Snaky Torus (NTIS
Document No. DE-84002406) configurations that have a magnetic well on the outermost flux

surfaces have been obtained.

I. INTRODUCTION

Helical magnetic axis stellarator configurations with
circular coils constitute a potentially very attractive magnet-
ic fusion energy reactor concept because they are steady state
devices that have finite rotational transform and can be built
modularly. However, they possess a magnetic hill in the
vacuum state and are therefore susceptible to large scale
magnetohydrodynamic (MHD) instabilities. To construct a
device that has a magnetic well, one possible approach is to
deform the plasma boundary into a bean shape with a linked
toroidal hard core. This configuration is called a Heliac."* A
different scheme that does not sacrifice the volume utiliza-
tion and the modularity is the ELMO Snaky Torus con-
ceived by Furth and Boozer.? This type of device is a helical
axis stellarator that has displaced circular coils that generate
a toroidal (axial) magnetic field and has an energetic elec-
tron population that provides stability in a similar way as the
hot electron rings in the ELMO Bumpy Torus concept.*

To obtain anisotropic pressure MHD equilibria in the
limit of helical symmetry, we formulate a positive definite
energy minimization procedure that employs a steepest des-
cent method to determine the Fourier moments of the nonig-
norable geometric coordinates and of a periodic poloidal an-
gle renormalization parameter in terms of the magnetic flux
coordinates.’ Using this approach, we generate numerically
straight ELMO Snaky Torus equilibria.

Previously, Miller has calculated helically symmetric
ELMO Snaky Torus equilibria.® His work is different from
ours in three important aspects. First, he employs a standard
direct method to obtain the helical flux as a function of the
nonignorable geometric coordinates. We use an inverse mo-
ments method that can be straightforwardly extended to
three dimensions.’ Second, Miller advocates transport argu-
ments to prescribe zero averaged plasma current along the
magnetic field lines. We define an effective axial plasma cur-
rent that vanishes on each flux surface from which we re-
cover the zero current condition of the isotropic pressure
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model whenp, =p, .7 Third, he searches for the conditions
that will generate a global magnetic well and finds that a hot
electron population that occupies almost the entire volume
of the plasma is required. We rely on a more local hot elec-
tren layer to obtain a magnetic well on the outermost flux
surfaces only and then tailor the thermal pressure profiles to
have weak radial gradients in regions where a magnetic hill
prevails. Consequently, the work we present here is comple-
mentary to that of Ref. 6.

In Sec. II, we discuss the magnetic field geometry. In
Sec. III, we discuss the MHD force balance, define an effec-
tive axial current, and present the corresponding rotational
transform. In Sec. I'V, we construct an energy functional and
demonstrate that its minimization with respect to an artifi-
cial time parameter yields components of the MHD force
balance relation in helical symmetry. The Fourier moments
steepest descent procedure is outlined. In Sec. V, we derive
the radial force balance. In Sec. VI, we present applications
to a straight ELMO Snaky Torus configuration, and, in Sec.
VII, we discuss the summary and conclusions.

Il. MAGNETIC FIELD GEOMETRY

The Maxwell equation V-B = 0, in a magnetic confine-
ment system with a coordinate of symmetry ¢, implies that
the magnetic field in contravariant representation has the
form

B = V4 XVV + gB? VpX V0

= VX V¥ + VOXVE,, (1)

where 27V and 27® are the helical and axial magnetic
fluxes, respectively, which are functions only of the radial
variable p. The variable 6. corresponds to a poloidal angle in
a flux coordinate system in which the magnetic field lines are
straight. It can be expressed in terms of any arbitrary poloi-
dal angle & by the relation 8. =6 + A(p,0), where 4 is a
periodic renormalization parameter.® In systems with heli-
cal symmetry, it is convenient to identify the ignorable angu-
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FIG. 1. Schematic diagram of the geometry in a system with helical symme-
try. The coordinate system (X, Y,¢) constitutes a rotating Cartesian frame
about the Z axis. These coordinates are related to the static Cartesian co-
ordinates (X,,Y;,Z) through X=X cos¢d + Y,sing, Y= — X,sin ¢

+ Y, cos ¢, and ¢ = hZ. Note that X, = X(¢ =0) and Y, = Y(¢ =0).
The elliptical contour identifies a flux surface with label p of a magnetic flux
coordinate system (p,6,4).

lar coordinate ¢ as ¢ = hZ, where A is the helical pitch and Z
is the axial distance. With this choice for ¢, the Jacobian of
the transformation from the rotating Cartesian frame
(X,Y,4) to the magnetic flux coordinates (p,8,¢) and the
metric elements g; acquire very simple forms.® A schematic
diagram of the geometry in systems with helical symmetry is
shown in Fig. 1.

The magnetic field components in the covariant repre-
sentation are By =gB % + g4, B?, By = 8oy B° + 84,B°%,
and B, =g,, B°+ g,,B?. The magnetic field components
in the contravariant representation are BY = (1 +J1/
30)®'/\Jg and B® = '/ \Jg,® where ¢(p) =¥'/®’ is the ro-
tational transform and the primes denote derivatives of flux
surface quantities with respect to p.

lll. EFFECTIVE PLASMA CURRENT

In systems with a coordinate of symmetry, the vanishing
of the MHD force balance component along the magnetic
field lines is invoked to demonstrate that the perpendicular
pressurep, is related to the parallel pressure p, that both are
functionals of p and B, and that the MHD force reduces to

)
F= — 2y, 1 KxB, (2)
dp

where K=V X (0B) is the effective current density and
o = 1/uy — (3p,/3B)/B is the anisotropy parameter.’

In an equilibrium state, we have that F = 0. Conse-
quently, K satisfies the same properties as the current den-
sity J in the isotropic pressure limit, namely that K-¥p =0
and V<K = 0. Therefore, in analogy with the scalar pressure
case, we define an effective axial current

I(p) =ffdp 46 Jg(K-Vg) =fd0(aBg). (3)

Expanding B, as shown in the previous section, we can de-
rive an expression for ¢ (p) that corresponds to a prescribed

I(p),
I(p) — §d6(o®'/\g) (1 + A /36)g,,

4)
§d0(o®'/\g)gss

t(p) =
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For configurations of the stellarator type, the absence of in-
duced currents makes /(p) = 0 within each flux surface a
natural choice.

IV. ENERGY MINIMIZATION
We define the total energy of the system as

- [[feZenen)y
2#0 (r-n
where we express the parallel pressure as
= ' 1+ p(p,B)
Py (p.B) =M(p)[®'(p)]T ————— | (6)
e o T p BT

in which M (p) represents the mass function introduced pre-
viously in the scalar pressure formulation of this problem?®
and is a flux surface quantity, p(p,B) is the energetic species
contribution to the pressure, and (p(p,B)) =(fd0ds

x\/gp(p,B) denotes its flux surface average. For an adiaba-
tic index I" > 1 (that we typically take to be the ratio of spe-
cific heats 5/3), W is positive definite which guarantees that
the minimum energy state corresponds to an MHD equilib-
rium. We then vary the energy W with respect to an artificial
time parameter ¢ in such a way that the magnetic fluxes ®
and ¥, the mass M, and the magnetic coordinates p, 6, ¢
remain invariant.’ This also entails a variation of the func-
tion p which is carried out through its dependency on B,
namely,

dp _3p 3B
dt 9B ™
As a result, we obtain for a fixed boundary calculation
that
- —Jffd dodg F o X
ay
- dpdf@d¢ F, —
[ Jaoanasr,
~[ [ [dodeasr, 2, )
where
a O'L((D)[aX ( 8/1) ]
Fy=— 1
* ae{ & Lo U "5
149 (Bz )}
+.____ —_—
K 2ﬂ0+h
411 6Y(32 )]
p [h 36 \20, TP
a((b)( c?xl) aY ( al ]
— T+ = =41+ == , (9
vg a6 + a6 ®)
and
Py = S {EONLIT (1 ]
Il g

_Loxm, )
h ap\2u,
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o1 o3,
t ool n se\as, T2

O B )]

Jg a6/l a0 a0 (10)
An alternative form for the force balance relation given in
Eq. (2) is F= —V(p, +B?/2u,) + (B-V)(0oB). Then,
noting from Fig. 1 that VY XVé =h(VX — YV¢) and
VéXVX =h(VY + XV$), it is easy to show that
(BV)(VY XV¢) = hB* (VY + XV¢) and (B-V)(V¢
XVX) = — hB*(VX — YV¢). With these expressions it
becomes a straightforward vector algebra exercise to demon-
strate that the force components that result from the vari-
ation of the energy are Fy = gVY XV¢-F/h and Fy
= gV¢ X VX-F/h. These constitute the covariant compo-
nents of the MHD force balance relation in the rotating Car-
tesian frame. The remaining component in Eq. (8),

d ,
F, =—[(9B,)¥], (11)

corresponds to — \/§<I>’Bpr-F/B 2, which is basically the
binormal component of the force balance. An equilibrium
state is achieved when these force components simulta-
neously vanish. Note that the vanishing of F, makes the
function (0B, ) a flux surface quantity.

The next step in the procedure to obtain an MHD equi-
librium is to expand each term of Eq. (8) in a Fourier series.
The path of steepest descent that minimizes the energy of the
system corresponds to

X,

= = F,, (p), (12)
3t xm (P)

Y,

— 2 =F,. (p), (13)
At vm (P)

and

al

" _F . (14)
31‘ /lm(p)

The subscript m denotes the Fourier amplitude of the
expression with respect to the poloidal mode number m. The
Fourier moments of X, Y, and A are thus advanced iterative-
ly in ¢ until all of the force amplitudes vanish within some
tolerance. The convergence of these equations is accelerated,
however, with a second order Richardson scheme.® The nu-
merical procedure was previously developed and applied to
axisymmetric and three-dimensional systems with isotropic
pressure.” In this article, we extend the method to helical
devices with anisotropic pressure dynamics.

V. RADIAL FORCE BALANCE

To diagnose an equilibrium obtained with the energy
minimization scheme we have described, it is useful to evalu-
ate the radial component of the force balance relation (2),
F =gV8 XVO-F

P

- _g[fg_% , 8(oBy)
Jg L@ dp dp
+(1 ﬂ) 9By 0B, (15)
6] dp 36
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This expression set to 0 corresponds to the MHD equilibri-
um equation (the anisotropic helical Grad-Schliiter—Sha-
franov equation) in the magnetic flux coordinates that was
solved by Miller to obtain straight ELMO Snaky Torus equi-
libria.®

Vi. APPLICATION

We have implemented a computer code to obtain heli-
cally symmetric MHD equilibria that have anisotropic plas-
ma pressure with the steepest descent energy minimization
procedure we have described. This is a variant of the isotrop-
ic pressure code HESMEC.'°

An appropriate model for electron cyclotron resonance
heated (ECRH) energetic electron species is a Maxwellian
distribution function with a scale factor that loads particles
in the perpendicular velocity direction,

M 372
Fh (E,,U,P) = Nh (p)(—_L_)

2nT, (p)
E ﬂBM(P) L
Xex (— )( ) ,  (16)
AT\ E

where NV, is an average hot electron density on a flux surface,
T, is the electron temperature, M, is the electron mass, B,,
is the minimum value of the magnetic field B on a flux sur-
face, E is the energy, p is the magnetic moment, and the
integer L is the anisotropy factor. Typical distribution func-
tionsinv, -v, space for different values of L are shown in Fig.
2. A hot electron pressure moment p(p,B) that is consistent
with this type of distribution function is

p(p:B) =p, (p)[By (p)/B}". (17)

We choose to represent the function p, (p) by a Gaussian
centered about a flux surface p = p, with a width A,

Pi(p) =poexp[ — (p —p, )?/2A%]. (18)
To describe the mass profile, we choose

M(p) = Mo{M, + (1 = M)[1— (p/p) 1H1 +2:(0)]"
(19a)

for p <p, and

M(p) = MM, [1— (p—p.)/(1 —p) ] [1 +ps ()17

(19b)
forp>p,, where M, is an arbitrary constant, M, is a constant
between 0 and 1, and

1=2[p, /(1 ~p,) | [M,/(1— M,)], (20)

so that M is a continuously differentiable function. The phi-
losophy that underlies the choice for the mass profile we
have made is the generation of pressure profiles that have
very weak or nonexistent radial gradients in regions where
there is a magnetic hill in the “vacuum” which would be
susceptible to MHD instabilities, and we concentrate all the
gradients in the region of magnetic well. In this context, the
term “‘vacuum” means the equilibrium state with zero ther-
mal pressure but finite hot electron pressure.

All the numerical calculations we present have zero ef-
fective axial plasma current prescribed within each flux sur-
face, satisfy the mirror stability criterion r=3d(oB)/dB>0
everywhere,” have @' =p, and are carried out on a grid with
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FIG. 2. Contours of the constant number of particles in v -v, space of a
loaded Maxwellian distribution function with L = 8 (top figure), L =6
(middle figure), and L = 4 (bottom figure).
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FIG. 3. The axial (®) magnetic flux surfaces (the nearly circular con-
tours), the mod-B contours (the nearly vertical lines), and the hot electron
pressure surfaces (the moon-shaped contours) defined by (p; + 2p, )/3 of
areference straight ELMO Snaky Torus equilibrium with a minor radius of
023 m, h=10/(0.375 m), M,=34X10"% M, =0.15, p, =093,
Po=95A=0.1,and L = 8.
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41 radial points, 25 poloidal points, and 8 poloidal mode
numbers.

A. Reference equilibrium

A reference equilibrium case in the “vacuum” is ob-
tained for a configuration that has a circular cross section
with a minor radius 0f 0.23 m, a helical pitch # = 1.0/(0.375
m) with M, =3.4X10"% M, =0.15, p, = 0.93, p, = 9.5,
A =0.1, and L = 8, The flux surfaces, the mod-B surfaces,
and the energetic electron pressure surfaces for this case are
shown in Fig. 3. This equilibrium has a S8, ~0 and
B, = 0.7%, where we have defined

B, = $55d°x py,
th — y
S55d>x(B*/2u,)

(21)

8, — I55d°xGpi + o)
N Sisdx (B 2u,)

, (22)
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FIG. 4. The differential volume profile (top figure), the hot electron pres-
sure profile {p, + 2p, )/3 (dashed line in middle figure), the thermal pres-
sure profile (solid line in middle figure), the ¢ profile (dashed line in bottom
figure), and ¢ profile (solid line in bottom figure) as functions of the axial
flux & for the reference equilibrium shown in Fig. 3.
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and the subscripts th and 4 refer to the thermal and hot
particle components, respectively. The minimum value of
L7 18 0.017 and the peak value of B, is 4.6%. In Fig. 4, we
plot the differential volume, pressures, and ¢ and g=1/t ra-
dial profiles. The differential volume profile shows that a
magnetic hill exists on the inner flux surfaces. A magnetic
well develops, however, on the outer flux surfaces where the
hot electron pressure gradient is strongly negative. The ¢
profile shown corresponds to that in the rotating frame of
reference. One must add unity to it to obtain the rotational
transform values in the laboratory frame.”

B. Variation of hot electron layer radial width

We vary the radial extent of the band of hot electrons by
changing the parameter A. The flux surfaces, mod-B con-
tours, and hot electron pressure contours for A = 0.1 (the

0.25+

FIG. 5. The axial (®) magnetic flux surfaces (the nearly circular con-
tours), the mod-B contours (the nearly vertical lines), and the hot electron
pressure surfaces (the moon-shaped contours) for the reference equilibria
that have A = 0.1 (top figure), A = 0.2 (middle figure), and A = 0.3 (bot-
tom figure).
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FIG. 6. The differential volume profiles for the reference equilibria that
have A = 0.1, A = 0.2, and A = 0.3 as functions of the axial flux ®.

referencecase), A = 0.2,and A = 0.3 are presented in Fig. 5.
As A increases, the radial extent of the hot electron layer
broadens and also its peak moves slightly toward the mag-
netic axis. The flux surfaces and mod-B contours are not
noticeably altered. The differential volume profiles for each
of these cases are shown in Fig. 6. As A increases, the mag-
netic well becomes slightly broader and shallower as the neg-
ative radial hot electron pressure gradient becomes less lo-
calized, which is evident in Fig. 7. To obtain a hot electron
induced local magnetic well that extends to the plasma edge,
af, =12% with A=0.2and a8, = 1.5% with A =0.3
are required, respectively.

C. Variation of hot electron poloidal extent

We vary the poloidal extent of the band of hot electrons
by changing the integer L. The flux surfaces, mod-B con-
tours, and hot electron pressure contours for L = 8 (the ref-
erence case), L = 6, and L = 4 are presented in Fig. 8. All
these equilibria have S8, ~0.7%. As L increases, the hot
electrons become more localized poloidally about the point
at which the magnitude of the magnetic field is a minimum

7.0+
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™
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-~
0 3.01
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o= 2.0
1.0

~r

-1.0 T
0 0.25

T

0.75 1

0.50
i)

FIG. 7. The hot electron pressure profiles (p, + 2p, )/3 for the reference
equilibria that have A = 0.1, A = 0.2, and A = 0.3 as functions of the axial
magnetic flux P.
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FIG. 8. The axial (P) magnetic flux surfaces (the nearly circular con-
tours), the mod-B contours (the nearly vertical lines), and the hot electron
pressure surfaces (the moon-shaped contours) for the reference equilibria
that have L = 8 (top figure), L = 6 (middle figure), and L = 4 (bottom
figure).

on the flux surface where these electrons are radially concen-
trated. The flux surfaces and the mod-B contours are not
noticeably altered, nor are the differential volume profiles.
However, of these cases, the L = 8 example seems the most
realistic because the hot electron pressure contours are more
closely aligned with the mod-B contours, which is a result
one would expect with energy deposition from an ECRH
source. For L > 8, the mirror stability criterion is violated for
the 3, ~0. 7% required to produce a magnetic well in the
plasma edge region.

D. Variation of thermal beta

We vary £, while keeping 3, fixed as well as control-
ling the thermal pressure gradients in the region of vacuum
magnetic hill, by changing M, M,, and p,. The flux surfaces,
the mod-B contours, and the hot electron contours for
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B, =0 (the reference case), for B, ~2% (M,=8.0
X107%, M, =03, p,=0.64), and for B, ~18%
(My=69X10"%4 M, = 0.93, p, = 0.067) are presented in
Fig. 9. All these cases have 8, ~0.7%. The mod-B contours
are affected by the change in 8, but only on the outermost
flux surfaces. The flux surfaces and the hot electron pressure
contours are not noticeably altered. The pressure profiles are
shown in Fig. 10. As can be seen, we have tailored the ther-
mal pressure profile so that its radial gradients remain close
to zero in the regions where there is a magnetic hill in the
vacuum state. As a consequence, there is no perceptible shift
of the magnetic axis with increasing 8,,. The differential
volume profiles that appear in Fig. 11 show a deepening of
the magnetic well induced by the thermal pressure gradient
as B, increases, but no significant change of the region and
magnitude of the vacuum magnetic hill.

0.257

FIG. 9. The axial (®) magnetic flux surfaces (the nearly circular con-
tours), the mod-B contours (the nearly vertical lines ), and the hot electron
pressure surfaces (the moon-shaped contours) for the reference equilibria
thathave 5, = 0 (topfigure), B, = 2% (middle figure), and 8, = 18%
(bottom figure).
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FIG. 10. The thermal pressure profiles (solid lines) and the hot electron
pressure (p, + 2p, )/3 profiles (dashed lines) for the reference equilibria
that have 8, = 0 (top figure), 8, = 2% (middle figure),and 8, = 18%
(bottom figure) as functions of the axial magnetic flux ®.

VIl. SUMMARY AND CONCL.USIONS

In summary, we have formulated an energy functional
for magnetic confinement schemes that have anisotropic
plasma pressure. We have demonstrated that the variation of
this energy functional with respect to an artificial time pa-
rameter reproduces the two covariant components of the
MHD force balance relation that lie in planes of helical sym-
metry (surfaces with ¢ = const) in a rotating Cartesian
frame. The third force component is binormal (perpendicu-
lar to the magnetic field line on a flux surface) and its vanish-
ing makes the function (0B, ) a constant on a flux surface. A
steepest descent procedure is applied to iterate the Fourier
amplitudes of the inverse coordinates X(p,8) and Y(p,0),
and of the poloidal angle renormalization parameter A (p,0)
to minimize the energy of the system, and as a result generate
MHD equilibria with helical symmetry and anisotropic
pressure.
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We have implemented a computer program to construct
numerical ELMO Snaky Torus MHD equilibria in the limit
of helical symmetry that employs an accelerated steepest
descent method. All the calculations that we have carried
out have zero effective axial plasma current within each flux
surface. We find that an energetic electron layer localized on
the outer flux surfaces with a modest energy content
(B, =0.7%) can reverse the magnetic hill to a well at the
outer edge of the plasma. To generate equilibria with high
thermal beta (B, ), we tailor the thermal pressure profile so
that its radial gradient is concentrated in the region where
there is a magnetic well when 8, = 0. In the region of the
magnetic hill, which is susceptible to MHD instabilities, we
tailor the thermal pressure profile such that it has a weak
radial gradient. This, in conjunction with the zero effective
axial current condition, removes the sources of free energy
that could drive these classes of modes. As a result of the
small pressure gradients throughout the bulk of the plasma,
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FIG. 11. The differential volume profiles for the reference equilibrium that
hasB,, = 0 (topfigure), B, = 2% (middie figure),and B, = 18% (bot-
tom figure) as functions of the axial magnetic flux ®.
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neither the magnetic axis nor the magnetic hill displays any
perceptible change with increasing B, .
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