OSCILLATORY INSTABILITIES IN BENARD-MARANGONI CONVECTION
IN A FLUID BOUNDED ABOVE BY A FREE SURFACE

R. D. BENGURIA

Departamento de Fisica, F.C.F.M
Universidad de Chile

Casilla 487/8, Santiago, Chile

M. C. DEPASSIER

Facultad de Fisica

Universidad Catdlica de Chile
Casilla 6177, Santiago 22, Chile

ABSTRACT. We study numerically the linear stability theory of a fluid bounded above by a free
deformable surface and below by a rigid or free plane surface. Oscillatory instabilities are found
which do not exist when surface deformation is neglected. Analytical results are given for a long
wavelength oscillatory instability which we identify as gravity waves.

Introduction

In many analytical studies of convection it is assumed that the boundaries of the
fluid are free but plane. This boundary condition is chosen since it is simpler to
treat analytically than the rigid boundary condition.! A real free surface, however,
is deformed due to the fluid motion, effect which is frequently neglected for the
sake of simplicity. If the full boundary conditions on the free surface are used,
the monotonicity principle is no longer valid in Rayleigh-Bénard convection and we
may expect oscillatory instabilities. We have studied this problem numerically and
analytically®-3; the results are described below.

Mathematical Formulation

Let us consider a two dimensional fluid bounded above by a thermally insulating
passive gas and below by a plane stress-free perfect thermally conducting medium
which, at rest, lies between z = 0 and z = d. Upon it acts gravity § = —gz. In the
Boussinesq approximation the equations that describe the motion of the fluid are

V-¥=0
dv -
;oo;i-lti = —Vp+pV?i+gp
dT
e v 2
il T
p=po|l —a(T - T,)]
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where d/dt = 3/3t + 7V is the convective derivative; 7= (4,0, w) is the fluid velocity,
p is the pressure, and T is the temperature. T, and p, are a reference temperature
and density respectively. The viscosity, s, thermal diffusivity, x, and coefficient of
thermal expansion, a are constant.

On the upper free surface z = d + n(s,t) the boundary conditions are

Ny +ung =w

2u 2
P—Pa — 3z ws + tamz — nz(ux +ws)] =0
p(1 = n2)(vs + ws) + 2pna(ws — uz) =0

and
T, — Ty = —FN/k

Subscripts z and z denote derivatives with respect to the horizontal and vertical
coordinates respectively. Here N = (1+ n2)'/?, F is the normal heat flux, k is the
thermal conductivity, and p, is a constant pressure exerted on the upper free surface.

We shall assume that the lower surface is either stress-free and plane or rigid,
and it may be at constant temperature T, or at constant heat flux. The boundary
conditions on the lower surface z = 0 are then w = u, = 0, if it is stress-free, or
w = u = 0 if it is rigid; and T = T, if it is held at constant temperature or dT/dz = —F /k
if the heat flux F is held fixed.

The static solution to these equations is given by T, = —F(z - d)/k + To, ps =
po[l+ (@ F/k)(z — d)), and p, = pa — gpo|(z — d) + (aF/2k)(z - d)?]. It is convenient to adopt
d as unit of length, d?/« as unit of time, p,d® as unit of mass, and T,(0) — 7,(d) as
unit of temperature. Then only three dimensionless parameters are involved in
the problem, the Prandtl number o = p/pox, the Rayleigh number R = poga(T,(0) -
T,(d))d%/xu and the Galileo number G = gd®p%/p®. Introducing a stream function
¥(z,z,t) in terms of which the velocity is given by # = (¢,,0, —¢.), the linear equations
for the perturbations to the static state may be reduced to

(D? — a?)(D? — a® — X/o)y = iaRf
(D? — a® — A)d = day

where D = d/dz, 6 is the perturbation to the static temperature profile, and where we
have assumed that all perturbations evolve in time as exp(At) and in the horizontal
variable as exp(iaz). The linearized boundary conditions become

A(D? - 3a% ~ A\[o) Dy — a*(0G +a®/C)¢p =0

R
;—C-;—_l——l;z—/?(pz - 3412 - /\/O')D‘l/) + 1aRT9 =0

(D% + %)y —

The dimensionless numbers that have appeared are the Capillary number C =

px/rod and T = v/pogad® . The Marangoni number is given by M = I'R, we have

chosen to use T as an independent parameter instead of M. The thermal boundary

conditions are either 6 = 0 or D§ = 0. We have solved the linear equations for different
boundary conditions on the lower surface in search for oscillatory instabilities.
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Results

The effect of surface deformation on the eigenvalues A and R is measured by the size
of 0G +4?/C. When this coefficient tends to infinity we recover the simpler stress-
free boundary conditions. In the case when the lower surface is rigid, an oscillatory
instability is found at finite wavenumber. The critical R for overstability decreases
with increasing I' and increases with G (figs.1-2). This shows that surface tension is a
driving mechanism for this instability. The critical Rayleigh number remains higher
than the corresponding value for the onset of steady convection within the range
of validity of the Boussinesq approximation. When the lower surface is stress-free
an oscillatory instability with similar features to the case just described is present.
In addition we have found a long wavelength instability at critical R considerably
lower than the corresponding value for the onset of steady convection (figs.3-4). The
driving mechanism for this instability is buoyancy alone. An asymptotic analysis
of this long wave instability shows that the leading order stream function and
temperature perturbations are given by ¢ = z and ¢ = a(2® — 3z)/6. The critical
Rayleigh number is given by R. = 30/(1 - 5T'/2) and the frequency at criticality
is given by w = av/0°G - oTR,. This instability corresponds to gravity waves in a
shallow viscous fluid.
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Figure 1. Rayleigh number vs. wavenumber for different values of
the Galileo number, with T = 1.8. The dashed lines correspond to
the marginal curves.
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Figure 2. Rayleigh number vs. wavenumber for G = 150 and different
values of T.
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Figure 3. Rayleigh number vs. wavenumber for a small value of T (= 0.2)
and different values of G.
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Figure 4. The same as in Fig. 3 for two different (small) values
of T and fixed G.



