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Abstract. We study a family of equations of the Korteweg-de Vries type. Different elements 
of this family are characterised by their linear dispersion relation w ( k ) .  We prove that 
there are only three members ofthis family which possess a non-trivial polynomial conserved 
quantity and have a linear dispersion relation analytic in a neighbourhood of the origin. 
These correspond to the Korteweg-de Vries equation itself, the Benjamin-Ono equation 
and the intermediate long wave equation. As is well known, these equations have indeed 
infinitely many conserved quantities. 

1. Introduction 

One of the remarkable properties of the Korteweg-de Vries (Kdv)  equatipn is that it 
has infinitely many conserved quantities (see, e.g., Miura et a1 1968). Typically, 
autonomous evolution equations with translation invariance have only three conserved 
quantities, namely the mass, the momentum and the energy. These are the ‘classical’ 
conserved quantities. The fact that the K d v  equation has infinitely many conserved 
quantities is directly related to its complete integrability. So far two other equations 
of the K d v  type with infinitely many conserved quantitites have been found. These are 
the Benjamin-Ono equation (Benjamin 1967, Ono 1975), and the intermediate long 
wave ( I L W )  equation (Joseph 1977, Kubota et a1 1978). A natural question we may 
ask is whether there exist other equations of the same form as the K d v  equation which 
have infinitely many conserved quantities and are, therefore, likely to be completely 
integrable. This question was considered by Satsuma et a1 (1979) who, based on the 
existence of a Backlund transformation, gave a criterion (the so-called T conditions) 
for the existence of infinitely many conserved quantities (see also Ablowitz et a1 1982). 
In this paper we consider a more modest question, namely we search for equations of 
the K d v  type with one non-trivial (meaning non-classical) polynomial conserved quan- 
tity. By equations of the Kdv type we mean evolution equations having the same 
non-linear structure as the K d v  equation but different dispersion relations. We find a 
necessary condition on the dispersion relation (see equation (26) below) in order for 
the associated evolution equation to have a non-trivial conserved quantity. This 
equation is more general than the T conditions. Then we show that there are only 
three solutions to this equation (26) which are analytic in the neighbourhood of k = 0. 
These correspond to the dispersion relations for the K d v  equation, for the Benjamin-Ono 
equation and for the I L W  equation. We point out that there are other, non-analytic, 
solutions to equation (26). 
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The rest of this paper is organised as follows. In P 2 we introduce the equations 
of the K d v  type and we find the necessary condition on the dispersion relation in order 
to have non-trivial conserved quantities. Finally, in 0 3 we discuss the existence and 
multiplicity of solutions to this necessary condition. 

2. Equations of the K d v  type 

By equations of the K d v  type we mean evolution equations of the form 

(1) 
a 

ax 
U, =- ( t i 2 +  G[ U,]) 

defined on the whole real line and for t > 0. Here U = u(x, t ) ,  and we use subscripts 
to denote partial derivatives. In ( l ) ,  G is the pseudo-differential operator given by 

m 

G[fl(x) = I e i k x i (  k) f (  k) d k  
-00 

where f ( k )  denotes the Fourier transform of f ( x )  and i ( k )  is the symbol of G. We 
call ( l ) ,  (2), the family of equations of the K d v  type. The symbol g*( k) determines the 
dispersion relation of the linearised equation obtzined from (1). If G is antisymmetric 
with respect to the usual inner product (f, g )  = [-,fg dx (i.e. if 6 is odd as a function 
of k)  equations (1) and (2) have three ‘classical’ conserved quantities, namely 

00 

M = j-x U(X, t )  dx 

P = I,-, u2(x, t )  dx 
m 

the mass (3) 

the momentum (4) 

00 

E = 1 ($24’ + iuG[ U,]) dx the energy. 
-00 

For the Korteweg-de Vries equation, the symbol is given by 

whereas for the Benjamin-Ono equation this is 

ĝ( k) = ik/l kl (7)  

and for the intermediate long wave equation ( ILW) 

g( k) = cg (1 -ikd coth(kD))/ k 
2T 

where co, d and D are free parameters. For the equations corresponding to these 
three symbols, (1) and ( 2 )  have non-classical conserved quantities; in fact they have 
infinitely many (see, e.g., Miura et a1 1968, Case 1979, Satsuma et al 1979, respectively). 
Are there other symbols g^(k) for which ( I ) ,  (2) has at least one non-classical conserved 
quantity? Here we address a simpler problem: namely, are there other symbols for 
which ( l ) ,  (2) has a polynomial conserved quantity of degree four, i.e. of the form 

00 

Z4 = j-OO ( tu4+.  . .) dx. (9) 
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As is well known (see, e.g., Gardner 1971, Faddeev et al 1971 or  Lax 1975), equations 
of the form ( l ) ,  ( 2 )  have a Hamiltonian structure. One can write (1) as 

U1 = { U ,  21  (10) 

where, as usual, the Poisson bracket between two functionals 9, and 9’ of U is defined 
as 

{?1,F2}=jm --(-)dx d 
-m 6u d x  Su 

where 6 9 / S u  denotes the functional derivative of 9 with respect to U .  In equation 
(lo),  the Hamiltonian X is just the energy, given by (5). Hence, 

6% 
-= U’+ G[u,] 
stc 

and, therefore, 

a 
{ U ,  X} = - ( U ’ + G [ U ,  ] ) . 

ax 

Because of the Hamiltonian structure, I4 is a conserved quantity if and  only if 

{X, I,} = 0. (14) 

Let 

denote the functional derivative of 14. Our  problem reduces to determining whether 
there is an  A4 of the form (15) such that 

oc 

(U’+ G[u,]).A4 d x  = 0. I_,. 
Since A4= 614/6u we must require also that 

The above equation is just the integrability condition for A,. 
The most general form A, can have, in order to satisfy (15), (17) and  (16), is 

A4 = u3 + &G[ U,] + iG[ uu,] + K [ U,] (18) 

where K is an  antisymmetric (i.e. with a symbol odd in k )  pseudo-differential operator. 
In principle, we could allow the pseudo-differential operator G in (18) to be different 
than the G given in ( 2 ) .  However, one soon realises that the symbols of both operators 
have to be the same in order to satisfy (16). In fact, replacing Ad,  given by (18), in 
equation (16) we get, 

( ( u 2 ) x w u , 1  +%au,lG[u,,l) d x  = 0 (19) 

with 
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Therefore, our original question can be rephrased in the following way. 'For what 
functions G does there exist an M such that (19) holds for all U?' It is worth pointing 
out here that (19) is certainly satisfied if G satisfies the so-called T conditions (see 
Satsuma et a1 1979, Ablowitz et a1 1982). 

Let u^(k) denote the Fourier transform of U ,  and i ( k ) ,  h*(k) and & ( k )  the symbols 
of the pseudo-differential operators G, K ,  and M,  respectively. In terms of 6, g, h* and 
h, equation (19) becomes 

m o o  

u^(k)u^(q)u^(-k- q) [Akq(  k + q ) i ( k ) $ ( q )  + 6 i ( k ) k q ]  d k  dq =O. (21) I_, L 
Here, A = 3i/8 is a constant. A necessary and sufficient condition on i and 6i so that 
(21) holds for all U^ is 

where b( e ,  ), d (  a ,  ) and f (  e ,  ) are arbitrary antisymmetric functions of their 
arguments (i.e. b(k ,  q )  = -b(q, k ) ,  etc) and s( e ,  e ,  a )  is an arbitrary completely 
tntisymmetric function. We can easily get rid of s by changing b, d and f into 
b, d and f respectively, where b( k, q )  = 6( k, q )  + s( k, q, - k  - q ) ,  d ( k ,  q )  = 
d"(k, q ) - s ( k ,  q, - k - q ) ,  and f ( k ,  q ) = f ( k ,  q ) - s ( k ,  q, - k - q ) .  The form of equation 
(22) imposes strong conditions on i ( k ) .  In fact, as we shall see in the following, one 
can obtain an equation involving only i ( k )  (see equation (26), below) which is a 
necessary condition on i ( k )  so that (22) is satisfied. We proceed as follows. 

Step 1 .  Consider the three equations obtained from (22) by setting respectively k = 1, 
q = -21; k = -21, q = 1; and k = 1, q = 1. By adding the three resulting equations we get 

h(q) -2A(2q) = 2Aqi(q)( i (q)  -2" (23) 
where we have substituted 1 by q as the independent variable. In deriving (23) we 
have used the antisymmetry of b, d, f and s. 

Step 2. Consider now the six equations obtained from (22) by setting respectively 
k = 21, q = I ;  q = 21, k = I ;  q = -31, k = I ;  q = 1, k = -31; q = -31, k = 21; and q = 21, 
k = -31. Then, adding the six resulting equations we get 

9&(3q) -4h (2q)  - G ( q )  = 1 2 A q ( - g ( q ) g ( 2 4 ) + 6 ( 4 ) $ ( 3 q ) +  W q ) i ( 3 q ) )  (24) 
where we have substituted 1 by q as the independent variable. 

Step 3. Finally consider the six equations obtained from (22) by setting respectively 
k=31,  q=1 ;  k = l ,  q = 3 1 ;  k=-41, q=1 ;  q=-41, k = l ;  k=-41,  q=31; and k=31,  
q = -41. Then adding the six resulting equations we get 

16fi(4q) -9fi(3q) - h(q) = 24Aq(i(4q)i(q) -$(3q) i (q)+g*(4q)~(3q))  (25) 
where we have substituted again 1 by q as the independent variable. 

The left-hand sides of equations (23), (24) and (25) are all linear in A, and it is rather 
simple to eliminate 6i from these three equations. By doing so we finally get one 
equation for the symbol ĝ  of G, which is a necessary condition on equation (1) for it 
to have a non-classical polynomial conserved quantity. The equation we get for 2 is 

( 3 2 0 4 )  - i ( d ) ( W q )  + e ( d )  = 4 @ ( 2 q ) W  (26) 
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where we have introduced 

Properties of equation (26). It is rather straightforward to verify that the equation we 
have found for $ ( q )  (i.e. equation (26)) has the following properties. 

(i) If g ( q )  solves (26), so does a g ( y q ) + p / q  for any a, p and y. 
(ii) g ( q )  = q (the symbol corresponding to the Kdv equation), g ( q )  = co, for q 2 0 

(the symbol corresponding to the Benjamin-Ono equation), and g ( q )  = coth(q) - l /q ,  
for q 3 0 (the symbol corresponding to the ILW equation ) are all analytic solutions of 
(26) in a neighbourhood of the origin. (Note that here it is enough to consider $ ( q )  
defined in [O,OO). Recall that g ( - q )  = - g ( q ) . )  

(iii) There are many other solutions of (26) which are not analytic near 0. For 
ex amp 1 e 

solves (26), and so does any other function satisfying g(2q) = $ $ ( q )  i.e. @ ( q )  = 0). At 
this point it is worth recalling that (26) is only a necessary condition on $ for equation 
(1) to have a non-classical conserved quantity. 

3. Analytic solutions of the equation for g. 

In this section we find all the solutions of equation (26) which are analytic in a 
neighbourhood of q = 0. Let 

be the power series for g ( q )  around q = 0. Introducing this expression for g ( q )  in 
equation (26) we get 

,,- E w n q n = o  
n = O  

for all q > 0 in a neighbourhood of the origin and, therefore, 

w ,  = o  for n = 0, 1 ,2 , .  . . 
where 

for n = 1,3,5, .  . . 
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and 

d ,  = 1 4 ~  2"+3"'*(6 x 2"+3 x 2"'* -3) - 5  X 2"'2+ 1 - 16 X 23n'2. (35) 

Equation (30) defines a recurrence relation for the coefficients c, which assumes the 
general form 

(36) 

Denote b, = Ao, = 2[3"+' - 2 x 4" - 2"]. Clearly bo = 0 and b,+, = 46, +,(,'+I - 3"+'). 
Therefore, b, < 0 for all n 2 1. Now, we divide the study of the recurrence relation 
(36) (or (30)) into three separate cases. 

~OcnAon = f n ( c 1 ,  ~ 2 ,  * * * 5 C n - 1 ) -  

C a s e  1,  co # 0. We will show that in this case c, = 0 for all n 2 1. If n = 1, (36) is 

cocl b, = 0 (37) 

COCnb, =ffl(c1, c2, * * * , cfl-1) (38) 

whereas, for n 2 2 ,  (36) is given by 

where f n  is a homogeneous function of degree 2. Since b, # 0 for all n 2 1 (in fact 
b, < 0), (37) implies c1 = 0 and, therefore, from (38) we conclude inductively that c, = 0 
for all n 2 2 .  Therefore, in this case the only analytic solution to equation (26) is 

which is the symbol associated with the Benjamin-Ono equation in equation (1). 

C a s e  2, co = c, = 0. We will show that in this case c, = 0 for all n 3 2 and, therefore, 
2 = 0. From (31) we have that w4 = 0 implies 

d4c: = 0 (40) 

whereas for n even, n 3 6 ,  we have from (31) that 

From (35) we have that d 4 =  126 and therefore (40) implies c2=0 .  Moreover, d,>O 
for all n 2 6. In fact, after some regrouping we get from (35) that 

d, =2"/2~,+3("/2'+1r,+23n/20, (42) 

with 

U,, = 14 x 2n/2 - 5 7, = 242 - 1 0, = (3/2)"'*6- 16. 

It is clear that U,, > 0, r, > 0 for all n > 0. Moreover, 0, > 0 for n a 6. Thus, d,  > 0 for 
all n 2 6. (In fact, d ,  > 0 for n =2,4, . . . .) Since d, # 0 for all n 2 6, n even, and c2 = 0, 
it follows inductively from (41) that c, = 0 for all n. This also ensures that w, = 0 is 
satisfied when n is odd. 

C a s e  3, co=O, cI  Z0.  If c o = O  we get from (31) and (32) that the equation w ,  = 0 
reduces to 
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and 

( " - 1  ) / 2  

I =  1 
c CICf l - IA ln  = 0 for n = 3 , 5 , 7 , .  . . . (44) 

Denote by e, =A , ,  = 7 + 9  x 3" - 14 x 2" -2 x4". e,, satisfies the relation 

e,,, = -14+3e, +2"+'(7-2"). (45) 

Since e, = 0, we can compute the first few terms of this sequence. This yields e ,  = -2, 
e2 = 0, e3 = 10 and  e4 = 0. Since 7 - 2" s 0 for n 2 3, and e4 = 0, (45) implies e, < 0 for 
all n a 5. 

For n = 3 ,  equation (44) is c,c2e3 = O .  Since e3= 10#0 ,  and c, # O ,  c2=0. Since 
e, # 0 for n 2 5 we conclude inductively from (44) that c, = 0 for all even n. For n = 4, 
equation (43) is satisfied identically, no matter the value of c3, since c2 = e4 = 0.  Thus, 
the value of c3 is not determined by the recursion relation (43). We will, finally, 
consider the two possibilities, c3 = 0 or  c3 # 0, separately. We need only consider 
equation (43), which takes the generic form 

C l S k e 2 k  = g k ( S 2 ,  s3, * . $ 9  s k - I )  for k = 3 , 4 , 5 , .  . . . (46) 

Here, we have introduced the notation sk = C 2 k - l  for k = 2 ,3 , .  . . . The functions gk, 
on the right-hand side of (46), are homogeneous of degree 2 with respect to their 
arguments. If s2 = c3 = 0, we conclude inductively from (46) that sk = 0 for all k 2 2, 
since c, # 0 and e2k # 0 for k 2 3. Therefore, if c3 = 0, the analytic solution $ ( q )  to 
equation (26) takes the form 

which is the symbol associated with the Korteweg-de Vries equation in equation (1). 
To conclude our analysis, given s2 = c3 # 0, equation (46) yields a well defined 

sequence c 3 ,  c5, . . . (since c, # 0 and ezk # 0 for k 3 3), where c5, c,, . . . , are uniquely 
determined in terms of c3. Since the solution to the recursion relation (given by 
equation (46)) is unique, and  since we already know that 

is an  analytic solution to equation (26) with c, = icyp # 0 and c3 = -&cy3p # 0, this is 
the only analytic solution (having c1 # 0 # CJ. The solution i ( q )  given by equation 
(48) is the symbol associated with the ILW equation in equation (1). 
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