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Finite mode analysis 
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We present numerical results concerning a five mode truncation of the equation ut + UUx + JUxxx + Uxx + Uxxxx = 0 
subject to periodic boundary conditions. We find that  for large J the system evolves from most initial conditions into 
a final state consisting of one or two traveling pulses, depending on the initial condition and horizontal periodicity. 
This is due to a region of simultaneous stability of the first two branches that  bifurcate from the trivial solution. An 
additional two pulse traveling wave which does not bifurcate from u = 0 is also present. 

1. Introduction 

The equation ut + UUx + ~Uxxx + Uxx + 
Uxxxx = 0, is one of  the simplest which includes 
the combined action of dispersion, nonlinearity, 
dissipation and instability. In the absence of dis- 
persion, that is, for ~ = 0, it is the well studied 
Kuramoto-Sivashinsky (KS) equation. If  suf- 
ficiently large dispersion is included, the time 
evolution of the system is significantly changed. 
A series of numerical studies [1-3 ] have shown 
that, in a periodic domain, most initial condi- 
tions evolve into a final state consisting of a row 
of traveling solitary like pulses of the same am- 
plitude. The interpulse distances have been ob- 
served to adopt distinct fixed values or, in other 
cases, a single interpulse distance is obtained 
giving rise to a periodic arrangement of pulses. 
Different equilibrium states arise depending on 
the initial conditions and on the periodicity L 
of the spatial domain. These final states differ 
in the number of pulses and in their amplitude. 
For lower values of dispersion the evolution 
becomes chaotic and creation or annihilation 
of pulses occurs [4]. Analytical studies of this 
equation include perturbation theory around 
the Korteweg-de Vries equation [2] and the 
study of pulse interactions [5,6]. These two 

approaches do not address the problem of the 
time evolution of an initial condition, a final 
state consisting of a stable array of N pulses is 
assumed. Exact traveling wave solutions have 
been obtained for special values of J [ 7 ]. 

O u r  interest in this paper is to provide some 
understanding of the time evolution of the sys- 
tem, for large 3, from an arbitrary initial condi- 
tion to a final state consisting of a stable array of 
traveling pulses. In the simple case of small pe- 
riodicity interval this can be done including few 
Fourier modes, since as numerical results show, 
the linearly stable modes decay rapidly [2]. In 
previous work [8] we performed a three mode 
truncation which enabled us to understand ana- 
lytically the role of dispersion in the evolution of  
the system. We showed that in a small box a sin- 
gle traveling solitary hump arises with its ampli- 
tude proportional to 5 when 5 is large. When dis- 
persion is low, a sharp feature is not developed. 
Due to the smallness of the box only one pulse 
appears in agreement with the numerical inte- 
grations of the complete equation. In this arti- 
cle we describe numerical results for a five mode 
truncation which exhibits the appearance of one 
or two solitary pulses depending on L and in 
some cases on initial conditions. A similar trun- 
cated system has been used to study the solutions 
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of the Kuramoto-Sivashinsky equation [9 ] near 
the second bifurcation from u = 0. A center 
manifold analysis near this bifurcation predicts 
accurately the transitions to different types of so- 
lutions near this point. The bifurcation of  travel- 
ing waves from the steady state, attracting hete- 
roclinic cycles and unstable modulated traveling 
waves is explained. A crucial fact in their exis- 
tence is the O (2) symmetry of  the KS equation 
in the space of  Fourier coefficients [ 10,11 ]. The 
inclusion of  dispersion breaks this symmetry, as 
a result of  this we find that the solutions are sig- 
nificantly changed, the first solution that bifur- 
cates from u = 0 is stabilized, its region of  sta- 
bility extends beyond the value of  L at which the 
second branch that bifurcates from u = 0 gains 
stability leading to regions where the final state 
is dependent of  initial conditions. An additional 
branch leading to two pulse traveling waves is 
also present at larger L .  

The results obtained when dispersion is in- 
cluded can be summarized as follows, for small 
L all initial conditions lead to the formation of  
a single solitary pulse, as L increases there is a 
region where one or two pulses are formed de- 
pending on initial conditions. Increasing L fur- 
ther we find that some initial conditions lead to 
the formation of  two traveling pulses, two dif- 
ferent two pulse states exist, other initial condi- 
tions lead to modulated traveling waves. 

2. Mathematical formulation 

We consider the equation 

ut + UUx + t~Uxxx + Uxx + Uxxxx = 0 (1) 

be zero by letting a0 = 0. Replacing the series 
expansion in the equation we obtain the follow- 
ing system for the time evolution of  the Fourier 
amplitudes: 

dn + (k~ - k 2 - i6k3~)an 
o o  

+ ½ik, y ~  (a ,a ,_ ,  + -dta,+t) = O. 
t=O 

(2) 

It is this system which we truncate at five modes. 
This means that we are restricted to a small box 
size L. Here, as in the KS equation, since the 
linearly stable modes are strongly damped [2 ], 
keeping one or two linearly stable modes will 
provide a qualitative correct solution for the 
time evolution of the system. The five mode 
truncated system is given by 

dl + ( / t x -  iJk3)al  

+ik(Kla2 + a2a3 + a3a4 -t- ~4a5) = 0, (3) 

a2 + (f12- 8iSk3)a2 

+ik(a~  + 2Kla3 + 2~2a4 + 2~3a5) = 0, (4) 

~/3 q- (/-/3 - 27i6k3)a3 

+ 3 i k ( a l a 2  + ala4 + aEas) = 0, (5) 

d4 + (#4 - 64ic~k 3)a4 

+ 2 i k ( a  2 + 2ala3 + 2~1a5) = 0, (6) 

d5 + (/~5- 125ic~k3)a5 

+ 5 i k ( a l a 4  + a2a3) = 0, (7) 

subject to the periodic boundary conditions 
u(0, t) = u ( L ,  t) with initial condition u ( x ,  O) 

= Uo(X) .  

We expand the solution for u in the Fourier 
series u ( x ,  t) = ~n%-o~ an ( t ) e ik"x where k, = 
2 n n / L  and the coefficients satisfy a-n (t) = Kn. 
Here ~ denotes the complex conjugate ofa .  Since 
the spatial average of  u is conserved we fix it to 

where k = 2z t /L  and/~n = k 4 - k  2. All nu- 
merical integrations are performed on this sys- 
tem of five complex differential equations. We 
find that the system evolves into traveling waves 
consisting of  one or two solitary like pulses. Us- 
ing the polar representation for the amplitudes 
an = Pn ei°" the expression for u may be written 
after some rearrangement as 
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/ ' / = / ' / O  

e,o  ×exp[ink(/+ n0k)]+cc, (8) 
where no is the first positive nonvanishing 
Fourier component of  the solution. We see 
then that traveling waves u (x  - ct) correspond 
to fixed points of Pn, and of  On - (n/no)Ono 
with constant time derivative of  Ono. The speed 
of  the wave is then c = -O'no/kno. In terms 
of  the amplitudes, the traveling waves satisfy 

an = i(n/no)Onoan. Two types of  traveling 
waves u (x  - ct)  are present in this five mode 
truncated system, that in which none of  the 
amplitudes vanish and satisfies an = inOlan 
which propagates with speed c = - t ~ l / k  = 

- t ~ k  2 + R e [  ( a l a 2  + aEa3 -I- a3a4  -t- -d4as)/al], 
and a traveling wave with a~ = a3 = a5 = 0 for 
which a4 = 2i02a4 and whose speed of  propaga- 
tion is c = - 0 2 / 2 k  = - 4 ~ k  2 + Re(-dEa4/a2). 
The first type of  traveling wave leads to a one 
pulse solution that bifurcates from u = 0 and to 
a secondary two pulse branch. The second type 
leads to the two pulse solution that bifurcates 
from u = 0. Due to the translational invariance 
of  the equation the speed can be expressed as a 
function of  the values of  the fixed points Pn and 

On-  (n/no)Ono [12]. 

3. N u m e r i c a l  resul ts  

We have performed a series of numerical in- 
tegrations on system of  equations ( 3 ) -  (7) for 
different initial conditions, high dispersion, and 
for values of  L in the range 2rt < L < 6.41t. The 
solution that bifurcates at L = 6rt and whose 
main components are a3 and a6 is not included 
in this system and we cannot expect the trun- 
cated system to approximate the solution be- 
yond this value of L. All the initial conditions 
explored up to L = 5.84rr lead to traveling 
waves, for 5.84rr < L < 6.227t some initial con- 
ditions lead to modulated traveling waves, oth- 
ers to two pulse solutions. In the region where 
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Fig. 1. The norm of u as a function of (L/Tt) 2 for the 
traveling wave solutions• The solid line indicates the stable 
regions. (b) The speed c as a function of (L/Tt) 2 for the 
traveling waves shown in (a). 

a traveling wave is always reached, depending 
on L and initial condition a final state with one 
or two pulses is reached. We have calculated 
tha stability of  the traveling wave solutions of  
the system. In fig. I a we have plotted the norm 
of u v e r s u s  ( L / I t )  2 for t~ = 3 for the traveling 
waves. The solid lines correspond to the stable 
part of the branches. The three branches shown 
lose stability through a Hopfbifurcat ion leading 
to modulated traveling waves. The branch that 
bifurcates from u = 0 at L = 2rt is stable up to 
L = 5.84rL The branch which bifurcates at L = 
4rr from u = 0 gains stability at L = 4.3rr and 
remains stable until L = 6.103ft. A different 
two pulse branch appears at L = 5.66rt which 
is stable up to L = 6.22rr, this branch extends 
unstably into the larger L region. More modes 
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Fig. 2. At L = 5n the  initial condi t ion  al  = (0 .5 ,0 .5) ,  
a 2 = (0 .5 ,1 ) ,  a 3 = (0 .5 ,0 .5) ,  a 4 = (0 .5 ,0 .5) ,  
a 5 = (0.5, 0.5)  evolves  into a single pulse t ravel ing wave. 
In this  and  the  following figures the  dashed  line shows the 
initial condi t ion  while the  solid l ine represents  the  final 
state. 

should be  taken into account  in this region. The  
speed o f  the waves  is shown in fig. 1 b. Along all 
the branches  the speed is reversed as L increases; 
in each branch,  for small  L waves  are t ravel ing 
to the left. We see then that  for  2~z < L < 4.3zc 
the single pulse t ravel ing wave is stable. For  
4.3~r < L < 5.847t the final state m a y  be a one 
or two pulse t ravel ing wave depending  on initial 
condit ions.  For  5.84zc < L < 6.22rc the sys tem 
evolves into a two pulse t ravel ing wave or into a 
modu la t ed  t ravel ing wave. This  region however  
may  be significantly al tered if  more  modes  are 
included. In  fig. 2 we show the initial condi t ion 

al = (0 .5 ,0 .5) ,  a2 = (0.5, 1), a3 = ( 0 . 5 , 0 . 5 ) ,  

a4 = (0 .5 ,0 .5) ,  a5 = (0 .5 ,0 .5)  which at L = 
5zc and 6 = 3 leads to a fixed point  on the 
branch  that  bifurcates  f rom u = 0 at L = 2n 

given by  p~ = 2.623, P2 = 1.695, P3 = 0 . 9 0 5 ,  

P4 = 0.421, P5 = 0.173 which travels with 
speed 1.945. The  initial condi t ion  IC1, given 
by  a ( 1 )  = ( 1 , - 1 ) , a ( 2 )  = ( 1 , 2 ) , a ( 3 )  = 
a ( 4 )  = a ( 5 )  = (1 ,1)  shown in fig. 3, leads 
instead to the fixed point  al = a3 = a 5  = 0 ,  

P2 = 3.350, P4 = 0.805 which cor responds  
to two pulses t ravel ing to the left with speed 
1.168. At larger L the system m a y  evolve into 
different  two pulse solutions depending  again 
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Fig. 3. A different  initial condi t ion  as tha t  o f  fig. 2 gives 
rise to a two pulse t ravel ing solution.  
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Fig. 4. One  o f  the  two pulse solut ions found  at larger L. 
Not ice  the  spacing between the pulses. Th i s  state lies on 
the  secondary  two pulse branch.  

on the initial condit ion.  In fig. 4 we show the 
initial condi t ion IC 1 which for L = 6.1 n leads 

to the fixed point  Pl = 3.335, P2 = 2.510, P3 = 

3.572, p4 = 1.148, p5 = 0.555 which cor- 
responds  to two traveling pulses with speed 
0.873. In fig. 5 we show the evolut ion of  the 
system f rom initial condi t ion a ( 1 ) = ( 1, - 1 ), 
a ( 2 )  = ( 5 , 2 ) , a ( 3 )  = ( 0 , 1 ) , a ( 4 )  = (5 ,1 ) ,  
a ( 5 )  = (1, 1) to the b imoda l  state a~ = a3 = 

a5 = 0, P2 = 5.761, P4 = 2.563 which trav- 
els with speed 1.246. There  is a short  interval  
6 . I n  < L < 6.22n in which the system evolves 
into the new fixed point  which then undergoes 
a H o p f  bifurcat ion.  
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Fig. 5. A different initial condition leads to a different two 
pulse state. This state lies in the same branch as the one 
shown in fig. 3. 

4. Summary 

on initial conditions. For small ~ the situation is 
not as simple and ressembles the behavior found 
in the KS equation [6]. A normal form analy- 
sis of  the truncated equations near L = 4rt as in 
[9] will provide information on the transition 
from small to large ~ behavior. 
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We performed a series of  numerical integra- 
tions of a five mode truncation of  the generalized 
Kuramoto-Sivashinsky equation for large dis- 
persion ~. For most initial conditions, for a large 
range of  box sizes the system evolves into single 
or two pulse traveling waves depending on initial 
conditions and box size. The role of  dispersion is 
to stabilize the traveling wave solutions that bi- 
furcate from the trivial solution u = 0 leading to 
a region where the first two branches that bifur- 
cate from u = 0 are simultaneously stable. This 
simple five mode truncation exhibits the main 
features found in numerical integrations of  the 
full equation, namely, evolution of  most initial 
conditions into traveling pulses of  amplitude in- 
creasing with ~, different number of  pulses arise 
depending on the box size L and for a given L 
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