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We study the bifurcation structure of the equation ul + uuX + SuxXn + u. rix + uXXXX = 0 in a small domain I, 
by using a five-mode truncation. As dispersion increases quantitative and qualitative changes occur. A characteristic 
feature due to dispersion is the coexistence of stable travelling waves of different basic wavenumber and speed. 

1. Introduction 

In several problems where a long wavelength oscil- 
latory instability is found, the nonlinear evolution of 

the perturbations near criticality is governed by the 

dispersion modified Kuramoto-Sivashinsky equation 
(KS-KdV). It appears in problems of fluid flow along 
an inclined plane [ l-31, convection in fluids with a 
free surface [4], drift waves in plasmas [ 51, verti- 
cally falling liquid films in the presence of interfacial 
viscosities [ 61, etc. While in extended systems in the 
nondispersive case 6 = 0, i.e., in the KS equation, 
disordered behavior predominates, numerical stud- 
ies have shown that for large dispersion the system 
evolves into rows of solitary like pulses of equal am- 
plitude which travel as a whole [ 7-91. The number of 
pulses that appear depends on the initial conditions, 
the horizontal extension of the domain and on disper- 
sion. Fourier analysis of the solutions obtained from 
time integrations of the partial differential equation 
show that the final state is composed of few modes and 

that stable modes decay rapidly [8]. An equilibrium 
between two modes, k and 2k, gives approximate 
agreement with some numerical results [ 5 1. A three- 
mode system shows the secondary bifurcation from 
a steady state to rotating waves in the KS equation 
and the imperfect bifurcation when dispersion is in- 
cluded. Asymptotic results for large dispersion in the 
three-mode equilibria show that the solution evolves 
into a localized travelling pulse of amplitude which 
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increases linearly with 6 [ lo]. Our aim in this Let- 
ter is to extend the work mentioned above to include 
the competition of two unstable modes, which is not 
allowed for unless four or more modes are included. 
A key feature in the study of the KS equation is the 
O(2) symmetry of the equation [ 1 l-141. The inclu- 
sion of dispersion breaks this symmetry, the equation 
is no longer symmetric under reflections, which leads 
to qualitatively different behavior. In the absence of 
dispersion the primary bifurcations from the steady 
state u = 0 are to a new steady state. If the reflection 
symmetry is broken the primary bifurcations are to 
travelling waves of speed proportional to the amount 
of symmetry breaking. This effect has been studied 
theoretically and experimentally in rotating BCnard 
convection in a cylinder [ 15 1. It has been found in 
other problems that even a small symmetry breaking 
can significantly change both the stability properties 
and type of solutions [ I6- 181. 

In this work we present numerical results on the bi- 
furcation structure of the first two primary bifurcation 
branches. The results are obtained using a five-mode 
Galerkin truncation of the KS-KdV equation which 
is expected to be accurate qualitatively and quanti- 
tatively for small values of the periodicity interval. 
For several dissipative partial differential equations, 
and in particular for the KS equation, based on the 
existence of an inertial manifold, several schemes of 
approximation of this manifold have been devised. 
These methods enable a description of the bifurca- 
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tion structure of  the solution in terms of  fewer modes 
than if a traditional Galerkin approximation is em- 
ployed [ 19 ]. We have not used such an approach in 
the present case since our interest is the effect of  dis- 
persion on the first two bifurcating branches. For the 
KS equation these branches are described accurately 
with a five-mode Galerkin truncation, or more effi- 
ciently with a three-mode approximate inertial form. 
We expect an analogous situation here; the use of  
a more efficient scheme is not indispensable in the 
present situation but should certainly be employed if 
the domain of  periodicity is extended. 

In addition to the numerical studies of  the bifurca- 
tion structure of  the KS equation the bifurcating struc- 
ture of  the first two branches has been studied ana- 
lytically by means of  a reduction to a center unstable 
manifold around the point where the second mode be- 
comes unstable [ 12 ]. We have not carried out such a 
reduction, we present no analytical results on the role 
of  dispersion, we refer to ref. [ 16 ] for some results. A 
complete analysis of  such a reduction remains a task 
to be undertaken. 

The stability of  the first bifurcating branch of  the 
regularized Kuramoto-Sivashinsky equation has been 
studied as well [20]. 

Replacing the series expansion in the equation we ob- 
tain the following system for the time evolution of  the 
Fourier amplitudes, 

d,  + (kn 4 - k 2 - i~k 3)a~ 

+ ½ i k n ~  (ata,,-t + 'atan+t) = O. (2) 
t = 0  

Keeping only the first five modes we obtain the system 

~/1 + ( ~ l -  iOk3)al 

+ ik(~ la2  + ~2a3 + ~3a4 + ~4a5) = 0, (3) 

a2 + (P2 - 8iOk 3)a2 

+ i k ( a  2 + 2~1a3 + 2K2a4 + 2~3a5) = 0, (4) 

a3 + ( P 3 -  27i~k3)a3 

+3ik(a~a2 + ata4 + a2as) = 0, (5) 

a4 + ( / A 4  - -  64itSk 3 )a4 

+2ik(a22 + 2alaa + 2~,a5) = O, (6) 

r/5 + (P5 - 125it~k3)a5 

2. Formulation of the problem 

Our starting point is the equation 

Ut + UUx + ~Uxxx + Uxx + Uxxxx = 0 (1) 

+5ik(ala4 + aEa3) = 0, (7) 

where k = 2zr/L and #n = k~ - k~. Notice that the 
Fourier series expansion for u (x, t) can be rewritten 
a s  

subject to periodic boundary conditions in the interval 
[0, L ], with initial conditions u (x, 0) = u0 (x). We 
only consider solutions with zero spatial average. We 
recall that for L ~< 2n all initial conditions evolve 
into u(x , t )  = O. 

We expand the solution for u in the Fourier series 

oo 

u(x , t )  = E a . ( t )exp( iknx) ,  

where k. = 2nn/L  and the coefficients satisfy 

a-n (t) = ~n. 

Here ~ denotes the complex conjugate of  a, and since 
we have chosen solutions with zero average ao = 0. 

u(x , t )  = ~ pnexp{i[On- (n/no)Ono]} 
~ = n  0 

× exp[ink(x + O,o/nok) ] + c.c., (8) 

where no is the first positive nonvanishing Fourier 
component of  the solution. We see then that travelling 
waves u (x - ct) correspond to fixed points of  pn, and 
of  0. - (n / no ) 0,  o with constant time deri.vative of  0.  0. 
The speed of  the wave is then c = -Ono/kno. Two 
types of  travelling waves u (x - ct) are present in this 
truncated five-mode system, those in which none of  
the amplitudes vanish and satisfy d. = inOla, which 
propagate with speed c = -O~]k and a travelling 
wave with al = a3 = a5 = 0 for which a,  = 2i02a4 
whose speed of  propagation is c = -0212k. The first 
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type of  travelling wave (mixed mode)  is found in pri- 
mary and secondary branches, and may lead to sin- 
gle or  mult ipulsed solutions. A prel iminary study of  
this system with large dispersion showed the simul- 
taneous stabili ty of  the two travelling waves that bi- 
furcate from the tr ivial  solution [21] and an addi-  
t ional secondary branch. In this work we present re- 
suits that  show the evolution of  the bifurcat ion struc- 
ture from small to large dispersion. We refer to ref. 
[14] for the corresponding results for the KS equa- 
tion. As we describe in the next section quant i ta t ive 
and quali tat ive changes arise as dispersion increases. 
For  large dispersion, the structure o f  the bifurcat ion 
diagram is considerably simpler. 

3. Numerical results 

Fig. 1. Bifurcation diagram for 5 = 0.1. The solid lines 
correspond to stable travelling waves, the dashed lines to 
unstable travelling waves. Full circles correspond to stable 
modulated travelling waves, open circles to unstable ones. 
BP1 and BP2 correspond to the two branch points on TW2. 

Travelling waves were calculated by obtaining re- 
duced equations for the fixed points  and 'their speed 
as in ref. [ 10 ]. These were verified with the package 
Auto [22,23]. The stabili ty of  the modula ted  travel- 
ling waves was de termined using Auto. 

We have defined the norm 

lUt = ~ U2(X,t) dx  , 

0 

which is t ime independent  for travelling waves; for 
modula ted  waves, which correspond to t ime periodic 
solutions o f p ,  and 0 , -  (n/no)Ono, we define the norm 
as the t ime average 

T 

0 

where T is the per iod o f  the solution for p ,  and On - 
(n/no )O, o. In fig. 1 we show the norm as a function o f  
( L / g )  2 for 5 = 0.1 for the travelling wave solutions. 
The first branch of  travelling waves ( T W l )  that bifur- 
cates from u = 0 at L = 2~ is stable, it loses stabil- 
ity through a H o p f  bifurcat ion to a stable modula ted  
travelling wave. ( M T W l ) .  The branch that  bifurcates 
from L = 4g (TW2) begins as an unstable TW, and 
has a branch point  where a secondary unstable TW 
branch is born,  which we have labelled TW3. TW3 is 
stabil ized at a l imit  point  and subsequently loses sta- 
bil i ty through a Hopfbi furca t ion .  TW2 gains stabili ty 

i 

{ r 

I 

/ 
/ 

/ 

Fig. 2. Travelling waves for 5 = 1. TWl is stable over 
a large region, TW3 is unstable. A new two-pulse branch, 
TW4, has appeared at large L. 

at a second branch point  and at larger L loses stabili ty 
through a Hopf  bifurcation. The two branch points 
along TW2 correspond to a single branch TW3 as we 
can see in fig. 2. The M T W  (MTW3)  that bifurcates 
from TW3 is unstable and terminates in a homoclinic 
orbit.  There is an interval at larger L where TW2 loses 
stability and then regains it. F rom direct t ime integra- 
tions we have found per iod doubling and chaotic so- 
lutions in this interval. Its proximity  to L = 61r, the 
point  where a new branch bifurcates from u = 0, in- 
dicates that more modes need to be included to study 
this region so we have not pursued it further. We ob- 
serve the simultaneous stabili ty o f  different solutions. 
There is a region where TW1 is the only stable solu- 
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Fig. 3. At larger 6 qualitative changes arise in the stability of 
TW2 and TW3. TW2 gains stability at a Hopf bifurcation, 
loses it at a branch point and regains stability at a second 
branch point. Hopf bifurcation points on TW2 and TW3 are 
indicated by open squares. They correspond to HB 1, HB2 
and HB3 in increasing order of L in the following figures. 

tion, another region where TW1 and TW3 are stable, 
and characteristic of  low dispersion, a region where 
no travelling wave is stable. Then a region where TW2 
and MTW 1 are stable. In fig. 2, we show the travelling 
waves for ~ = 1. We can now see that TW3 connects 
the two branch points on TW2. For ~ = 1 TW3 is no 
longer stable. We observe that the region of  stability 
of  TW1 is greatly increased, and TW1 and TW2 are 
now simultaneously stable in a region of  L. Forward 
time integrations may lead to a single or double pulse 
travelling wave solution of  different speed, depend- 
ing on the initial conditions. A new branch TW4 has 
appeared, leading to a different two-pulse state [21 ], 
but more modes should be included to verify its rela- 
tion to the original PDE. The MTW 1 that bifurcates 
from TW1 is stable, in the region where it exists, and 
coexists whir the stable TW2. Hence some initial con- 
ditions lead to MTW 1, others to the two-pulse TW2. 
In fig. 3 we show the corresponding graph for t~ = 
1.3. Qualitative changes are found in the stability of  
TW2. As L is increased the TW2 first gains stabil- 
ity at a Hopf  bifurcation (labeled HB 1 ) producing an 
unstable MTW2, but then loses it at the branch point 
BP1 where TW3 appears. At the next branch point 
BP2 on TW2, the TW3 reconnects to TW2; this bi- 
furcation is subcritical. Both ends of  TW3 bifurcate 
stably from TW2, later losing stability to an interval 
of  MTW3A. As t~ is increased the branch points BP 1 
and BP2 on TW2 and the points HB2 and HB3 where 
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Fig. 4. Enlargement of the TW3 shown in fig. 3. The mod- 
ulated travelling wave, MTW3A, that bifurcates from TW3 
is stable. 
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Fig. 5. Locus of the bifurcation points shown in fig. 4. 

the Hopf  bifurcation on TW3 occurs, come together 
until finally the TW3 entirely disappears. In fig. 4 we 
show a detail of  this region for ~ = 1.355. The lo- 
cus of  the bifurcation points is shown in fig. 5. For 
t~ > 1.24, TW2 gains stability at a Hopf  bifurcation. 
At t~ = 1.502 and L = 4.564 BP1 merges with BP2, 
and for larger values of  t~ TW3 no longer exists. Prior 
to that, at t~ = 1.369 and L = 4.419 HB2 merges 
with HB3, so that between this value of  ~ and 1.502 
TW3 is stable. After t~ exceeds the value 1.502 we 
find no further qualitative changes in the stability of  
TW 1 and TW2. Finally in fig. 6 we show the travel- 
ling waves for t~ = 3. This diagram is representative 
for t~ above 1.502. All three, TW1, TW2 and TW4, 
lose stability through Hopf  bifurcation at large values 
of  L. We see that for large t~, for any L, we find stable 
travelling waves. Moreover, depending on initial con- 
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Fig. 6. At larger 6 TW3 is no longer present, the travelling 
waves that bifurcate from u = 0 are stable for large ranges 

Fig. 7. Waveform u (x ) on TW 1 for different values of dis- 
persion. Dispersion increases the amplitude and localiza- 
tion. 

ditions the system will evolve into one or two-pulse 
travelling waves. The secondary branch TW4 should 
be studied including more modes. In the following fig- 
ures we show the waveform u(x, t) for different val- 
ues of S. In lig. 7 we show the waveform on TW 1 for 
two different values of dispersion. The main feature 
is the increased localization as dispersion increases. 
The two-pulse branch TW2 which is not shown cor- 
responds to the periodic repetition of TW 1. The so- 
lution for u (x, t ) when the system has evolved into 
the modulated travelling wave MTW 1 is shown for 
6 = 0.1 and L = 4% in fig. 8. A clear identifica- 
tion of pulses is not possible now. The modulus of the 
Fourier amplitudes is periodic as is shown in fig. 9. 

Fig. 8. Time evolution of the solution once the system has 
evolved into the modulated travelling wave MTW 1. A com- 
plete period has been plotted. 

Fig. 9. The periodic solution for the amplitudes of the first 
two Fourier components of the modulated travelling wave 
MTWl shown in fig. 8. The fixed points corresponding to 
the travelling waves TWl and TW3 are indicated by a cross. 
The fixed point for TW2, not shown here, lies on the y-axis. 

4. Summary 

We have studied the bifurcation diagram of a five- 
mode truncation of the equation uf + uux + Buxxx + 
uxx + uxxxx = 0. As numerical integrations of the full 
equation show, for large dispersion, almost all initial 
conditions evolve into rows of solitary like travelling 
pulses. The number of pulses depends on the size of 
the interval and on the initial conditions. Our inter- 
est has been to gain some understanding of the role 
of increasing dispersion on the structure of the bifur- 

188 



Volume 184, number 2 PHYSICS LETTERS A 3 January 1994 

cations on a small domain which may explain in part 
the behavior observed in integrations of the PDE. For 
small dispersion, we have found that initial conditions 
may evolve into a varied assortment of states, ranging 
from travelling waves, which can be steady at some 
precise values of L, to chaotic solutions. As dispersion 
increases, the bifurcation diagram becomes gradually 

simpler. The main effect of dispersion is to extend 
the region of existence and stability of the travelling 
waves that bifurcate from u = 0 and to increase the 
localization of the pulses. This stabilization implies 
that, for large dispersion, anywhere in the region stud- 
ied, stable travelling waves exist. Furthermore, differ- 
ent types of travelling waves coexist stably in wide re- 
gions so that initial conditions select the wavelength 
for fixed parameters of the problem. 
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