
Commun. Math. Phys. 175, 221-227 (1996) Communications JΠ

Mathematical
Physics

© Springer-Verlag 1996

Variational Characterization of the Speed of Propagation
of Fronts for the Nonlinear Diffusion Equation

R.D. Benguria, M.C. Depassier
Facultad de Fίsica, P. Universidad Catόlica de Chile, Casilla 306, Santiago 22, Chile

Received: 21 October 1994/in revised form: 30 December 1994

Abstract: We give an integral variational characterization for the speed of
fronts of the nonlinear diffusion equation ut = uxx + f(u) with /(0) = / ( I ) = 0,
and / > 0 in (0,1), which permits, in principle, the calculation of the exact speed
for arbitrary / .

1. Introduction

The problem of the asymptotic speed of propagation of the interface between an
unstable and stable state has received much attention in connection with different
problems of population growth, chemical reactions, pattern formation and others.
We refer to [1] for a recent review and references. The best understood of such
problems is that of the nonlinear reaction diffusion equation

ut = uxx + f(u) (la)

with

/(0) = / ( I ) = 0, / '(0) > 0 and / > 0 in (0,1) (lb)

for which Aronson and Weinberger [2] have shown that any positive sufficiently
localized initial condition w(x,0) evolves into a front that joins the stable state
u = 1 to u = 0. The asymptotic speed at which the front propagates is the minimal
speed c* for which there is a monotonic front joining u = 1 to u = 0. Moreover
they show that the selected speed is bounded above and below by

(2)

and that the asymptotic selected front approaches the fixed point u = 0 exponentially
with slope

m = ~(c* + Λ/C*2 - 4/'(0)). (3)
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The lower bound cL = 2y / /'(0) is referred to in the literature as the linear value
of the speed. For concave functions / , the upper and lower bounds coincide and
the speed is exactly cι [2,3]. However, the asymptotic speed of propagation can
still be the linear value even when the upper and lower bounds do not coincide
as explicit examples and a variational characterization [4] which provides improved
upper bounds show. We have recently obtained an improved lower bound [5] on the
speed of the front that enables one to decide when the selected speed is greater than
the linear value case which is referred to as nonlinear marginal stability selection.
There have been several reformulations of Aronson's and Weinberger's rigorous
results for the nonlinear diffusion equation aiming to their heuristic extension to
other higher order and pattern forming equations [6-9]. None of these approaches
however provide the means to calculate a priori the velocity of the fronts.

The purpose of the present work is to extend our previous result [5] to show
an integral variational characterization of the speed of the fronts of Eq. (1) which
enables, in principle, its exact calculation for arbitrary / . Our main result is the
following

Theorem (Variational Characterization of c*). Let f e Cl[0,l] with /(0) =
/ ( I ) = 0, /'(()) > 0 and /(«) > 0 for u e (0,1). Then

c* = J = sup{I(g)\g G 9} . (4)
Here

figdu
and Q) is the space of functions in Cι(0,1) such that g ^ 0, h = —g' > 0 in (0,1),
and JQ g(u)du < oo. Moreover, if c* φ2y / / ' (0) , J is attained at some g G ®, α«<i
$ w unique up to a multiplicative constant.

Remark. The function g, at which the supremum is attained when c* φ2-y///(0)

actually satisfies ^(l) = 0 and g(q) ~ q 'm near ^ = 0, where |m| is given in
terms of c* and / ; (0) by Eq. (9a) below. In Sect. 2 we prove the theorem, and in
Sect. 3 an example is given.

2. Proof of the Variational Characterization

We are interested in the calculation of the minimal speed for which Eq. (1) has
a monotonic travelling front u(x, t) — q(z) with z = x — ct joining u — 1 to u — 0.
Since the selected speed corresponds to that of a decreasing monotonic front, it is
convenient to work in phase space. Calling p(q) = -dq/dz, where the minus sign
in included so that p is positive, we find that the monotonic fronts are solutions of

[q 0, (7)
with

/K0) = 0, p ( l ) = 0, p>0 in (0,1). (8)

As shown by Aronson and Weinberger [2], the asymptotic speed of propagation of
fronts of Eq. (1), c*, is the minimum value c for which there is a solution of (7)
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and (8). Aronson and Weinberger have proved that there is a (unique) p satisfying
(7) and (8) for c — c* (see [2], Sect. 4). Moreover, the solution p is such that
p(q) ~ \m\q near q = 0, where \m\ is the largest root of the equation

i.e.,

x2 - - 0 , (9)

(9a)

We find it convenient to introduce the parameter λ defined as λ = c*/\m\. In terms
of λ one can write

and m = (10)

It is straightforward to verify that whenever 1 < λ < 2 the value of \m\ given by
(10) corresponds to the largest root of (9) and therefore to the asymptotic slope
at the origin of the selected front [10]. At λ — 2 the speed c* attains the linear
value cι.

Proof of the Theorem. First we show that

c* ^ J, (11)

and then we prove that the equality actually holds in (11). To prove (11) we need
only to show that

for all g G Θ. This latter fact has been proven by us in [5]. We repeat here the
argument for completeness. Let g be any function in <2). Multiplying Eq. (7) by g/p
and integrating with respect to q we find after integrating by parts,

c = =

However since p, h, f and g are positive, for every fixed q

f(q)g
hp

(12)

(13)

hence

> 2-
Jλ

ogdq
(14)

which proves (11).
To finish the proof of the theorem we have to show that the equality holds

in (11). From the results of Aronson and Weinberger [2] it follows that c* ^
2y // /(0). We separate the proof that equality holds in (11) into two cases: Case
i) c* = 2 Λ / / ' ( 0 ) and Case ii) c* > 2 Λ / / ' ( 0 ) .
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Case i) c* = 2Λ// /(0). Take ga(u) = α ^ " 1 for 0 < α < 1. Then #α G 0 and it
is straightforward to verify that I(ga) -> 2y / / '(0) as α -> 0 so that J ^ 2y // /(0).
Hence, from (11) we have

which implies J = c* in this case. (We thank the referee for bringing this point to
our attention).

Case ii) c* > 2y/fr(0). In this case we will not only prove that equality in
(11) holds but also that there exists g G Q) such that c* = I(g).

Let p(q) be the positive solution of (7) satisfying (8). The existence of such a
solution has been established in [2]. Moreover, p(q) ~ \m\q near q = 0.

A function g will saturate the bound (14) if and only if (13) is satisfied as an
equality, i.e., if g is such that

A/>= — , (15)
P

where h — —g and p(q) is the solution of (7) mentioned above. From (7) and
(15) we get

G P P '

which can be integrated to yield

(16)

for some fixed 0 < qo < 1. To complete the argument we need to show that g G
It follows from (15) and (16) that

c*p(q)

in (0,1). Moreover, since p{q) > 0 in (0,1) and p G C ](0,1), we have that
g E Cι(0,1). Thus g is a continuous, positive and decreasing function in (0,1).
Hence g is bounded away from the origin. In order to show that JQ g(q)dq is finite
we have to determine the behavior of g near q = 0. Since p ~ \m\q near 0, we
have from (16) that

near 0. Therefore, if λ < 2 (i.e., if c* > 2Λ// /(0)), we have Jo g(q)dq < oo and
g e 9. D

Remark. It follows from (16) and the behavior of p near 1 that g{\) — 0.

Note. The uniqueness of the maximizer follows from the fact that we need to choose
g in such a way that (13) is satisfied as an equality. Alternatively, we can prove
uniqueness directly from the concavity of I(g). From the homogeneity of I(g) in g
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we can restrict, without loss of generality, to g's such that JQ g(q)dq = 1. Assume
c* > cι and that there are two #'s in Q), Q\ and g2 say, such that I(g\) = I(g2) = c*
(and f gι = f g2 = I). Then, let g = α#i + (1 - α)#2> with 0 < α < 1. Clearly,
J g = I, and /z Ξ —g; = α/*i + (1 — a)h2 > 0. Therefore,

o

However, by the Cauchy-Schwarz inequality,

4- (1 - α)Λ2 ^ <*y/h\g\ + ( 1 -

with equality if and only if gfj = βh\ and 2̂ = /^2 Thus,

which implies /zi/ î = 2̂/̂ 2» and therefore gfi Ξ

3. Example

In this section we illustrate the result by applying it to the exactly solvable case
f(u) = u{\ — u)(\ + aύ) for which it is known that

2λ///(0) - 2 if a ^ 2

The idea is to combine the variational characterization contained in Theorem 1,
which given a trial function yields lower bounds for c*, with the variational char-
acterization of Hadeler and Rothe [4], which provides upper bounds on c*.

For a given a > 0, let us take

(1 — QΫ'^

-—^T— w i t h λ= ι + i •

Then

and [11]

Γ(λ + 2)Γ(2-λ) .Γ ,

i.e., if a > 2.
We obtain

Jy/fghdq = VT^Ί (j ° ~qϊ

λ

+ dq + aj (I - qf^q^'dq ) ,
o \ o <?' o
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and therefore

Using the definition of λ and Γ(z + 1) = zΓ{z) we obtain

for a > 2. Therefore, from Theorem 1 we have that

To prove the reversed inequality we use Hadeler and Rothe's variational character-
ization [4]:

for any p e C^O, 1) such that p(0) = 0 and p(u) > 0 in (0,1).

For a ^ 2 choose p(w) = yfajlu{\ — M). Then p -f (//p) = y/a/2 -f \/2/a. For
( 2 ^ 2 choose p = w(l — w). Hence, p 4- (//p) = 2 + (α - 2)M and
(//p)) = 2. Therefore, from Hadeler's and Rothe's bound we get

U 7 7 7 ( 0 ) = 2 i f α ^ 2

which combined with our lower bound gives the desired result.

4. Conclusion

We have given a variational characterization of the minimal speed for which
the nonlinear diffusion equation has monotonic fronts. As Aronson and Weinberger
have shown this is the asymptotic speed of propagation of a sufficiently localized
positive initial condition u(x, 0).

The variational principle we have derived here can also be used to study the
dependence of c on the parameters of/. Monotonicity properties can be immediately
derived. Derivatives of c with respect to parameters of / can be obtained using the
Feynman-Hellmann formula.
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