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The problem of calculating the period of second order nonlinear autonomous
oscillators is formulated as an eigenvalue problem. We show that the period can
be obtained from two integral variational principles dual to each other. Upper
and lower bounds on the period can be obtained to any desired degree of
accuracy. The results are illustrated by an application to the Duffing equation.
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1. INTRODUCTION

The motion of a particle in one dimension under the action of a conserva-
tive force is described by the simple equation ü=−f(u), where the force
−f depends on the amplitude of the motion u and one or more parameters.
For such conservative systems the total energy E=u̇2/2+V(u), is con-
served. While a complete description of the motion can be obtained from
the analysis of phase space, an explicit analytic expression for the period of
oscillations around equilibria is not always available. For linear problems
the period does not depend on the amplitude of the motion, but when
nonlinearities are present, even though we know the expression for the
period, namely

T=2 F
u1

u0

du

`2(E−V(u))
, (1)



where u0 and u1 are turning points, the integral cannot be evaluated ana-
lytically except for special nonlinear potentials V(u). The usual procedure
in such cases is to consider the nonlinearities as small perturbations to the
linear problem and to obtain a series expansion for the period of oscilla-
tion. To obtain a close estimate of the period at large amplitude, the per-
turbation expansion must be carried to high orders. Often the series may
be divergent. Recently a method to obtain a rapidly convergent series has
been developed, (9) based on Kleinert’s variational perturbation theory (see
Chap. 5 of ref. 7).

In previous work we studied a nonlinear eigenvalue problem, of which
the above problem constitutes a particular case, and showed that the
eigenvalue (the period in the present case) can be obtained from an integral
variational principle. From it, we obtained arbitrarily accurate upper
bounds on the period, valid at all amplitudes, without resource to pertur-
bation theory. The purpose of the present work is to show the existence of
a dual variational principle from which lower bounds are obtained, thus
providing a complete variational characterization of the period.

We consider systems with an equilibrium point u=0, and will study
the period of oscillations around this equilibrium. Moreover, for the sake
of simplicity, we assume that the force is an odd function of u. The results
can be generalized in a simple way to a general force term. If the force is
odd, the period can be evaluated by considering the motion through a
quarter of a period. Chosing the quarter period in the quadrant (u̇ < 0,
u > 0) of phase space, the period may be calculated solving ü=−f(u), with
u(0)=um, u̇(0)=0, and u(T/4)=0.

Introducing the new variable y=4t/T, the problem reduces to finding
the eigenvalue l of

−uœ=lf(u), u(0)=um, uŒ(0)=0, u(1)=0. (2)

The period is given by T=4`l. Here, primes denote derivatives with
respect to y. Notice that the eigenvalue l depends on the amplitude um.

In previous work we proved that the eigenvalue l is characterized by
the variational principle

l[um]=max
g

1
2
(>um0 gŒ1/3(u) du)3

>um0 f(u) g(u) du
, (3)

where the maximum is taken over all positive functions g(u) such that
g(0)=0, gŒ(u) > 0. The maximum is achieved for g=ĝ which satisfies

ĝŒ(u)=
1

(E−V(u))3/2
.
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An application of this result to the Duffing equation yielded a simple
approximate formula as a close upper bound for the frequency w=2p/T.
In the following we construct the dual of (3). The two variational principles
give a complete characterization of the eigenvalue problem. In Section 2 we
give the complete variational characterization of the period. In Section 3
we apply the variational principle and its dual to estimate the period of the
Duffing oscillator.

2. A VARIATIONAL PRINCIPLE AND ITS DUAL

Many authors have considered the following two point boundary
value problem

−yœ=lf(y) in (0, 1) (4)

with

yŒ(0)=0, y(1)=0, and y(0) — ym. (5)

Here f(y) is positive and continuous but not necessarily 0 when y=0. For
example, this type of nonlinear two point boundary value problem arises in
the study of heat generation and stability of temperature distribution of
conducting plates. (6) Under the assumption that f is positive and continu-
ous, Laetsch (8) proved the existence and regularity of nontrivial solutions to
(4), (5). In fact, the positive solutions to (4), (5) are decreasing and the
problem can be reduced to a quadrature,

1
2 yŒ

2+V(y)=E, (6)

where V(y)=l >y0 f(s) ds and E=V(ym).
In ref. 4, Theorem 2.7, we proved the following variational charac-

terization for the principal eigenvalue of (4), (5).

Theorem 1. Let the pair (l, y) be the principal solution (i.e., with
y(x) \ 0) of the two point boundary value problem

−
d2y
dx2

=lf(y) (7)
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subject to yŒ(0)=y(1)=0. Let ym=y(0) be the sup-norm of the solution.
Here, f(y) is a general nonlinear term which is positive and continuous in
(0, ym). Then,

l[ym]=max
g ¥ D

1
2
(>ym0 gŒ(y)1/3 dy)3

>ym0 f(y) g(y) dy
, (8)

where D={g | g ¥ C1(0, ym), gŒ > 0, g(0)=0}. Moreover, the maximum is
attained at a unique (up to a multiplicative constant) g ¥ D. The maximiz-
ing g satisfies

dg
dy

=
K

(E−V(y))3/2
and g(0)=0. (9)

In what follows it is convenient to introduce

h(y) — F(ym)−F(y), (10)

where

F(y) — F
y

0
f(s) ds. (11)

Remark 1. Using the optimal g, given through Eq. (9), in (8),
integrating the denominator by parts, one gets the value of l[ym] for the
principal solution. This is given exactly by

l[ym]=
1
2
1Fym
0

1

`h(s)
ds2

2

. (12)

After small manipulations, this expresion for l[ym] is precisely the formula
for the period given by (1) in the introduction.

In the sequel, we will obtain a new variational characterization of
l[ym] which is the dual of (8). The dual principle is given by the following
theorem.

Theorem 2. Let the pair (l, y) be the principal solution (i.e., with
y(x) \ 0) of the two point boundary value problem (4), (5). Then,

1
l
=max

s ¥H

2 >ym0 (1−2s(s))`(s(s)+1)/h(s) ds

(>ym0 `(s(s)+1)/h(s) ds)3
. (13)
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where H={s | s ¥ C(0, ym), s \ 0}. The maximum is attained at s — 0 and
it is given precisely by

1
l
=2 1Fym

0

1

`h(s)
ds2

−2

. (14)

Proof. We will start from the original variational characterization of
l embodied in Theorem 1, and use the standard Fenchel–Moreau duality
(see, e.g., the book by Ekeland and Temam (5)) to obtain our dual principle.
In order to simplify our calculations it is convenient to define q(y)=
gŒ(y)1/3, with g ¥ D. Integrating the denominator of (8) by parts, we obtain

1
l[ym]

=2min
q

>ym0 h(s) q3 ds
(>ym0 q(s) ds)3

, (15)

or, equivalently,

1
l[ym]

=2min
q ¥ DŒ

F
ym

0
h(s) q3 ds, (16)

where DŒ={q | q ¥ C(0, ym), q > 0, >ym0 q(s) ds=1}. Let J[q] — >ym0 q(s)3×
h(s) ds, and let Ĵ(t) be the Legendre transform of J, i.e.,

Ĵ[t]=sup
q ¥ DŒ

1Fym
0

t(s) q(s) ds−J[q]2 . (17)

In principle we should compute Ĵ(t) for all t ¥ L2(0, ym). Doing so one
finds that the function t that maximizes −Ĵ(t) is t — 0 (we leave the details
to the reader). Having this in mind, and for the sake of simplicity, we may
restrict to nonnegative functions t(s), which we do in the sequel. In order
to simplify the computation of the Legendre transform of J it is convenient
to use the change of variables tQ s given by t=3as, with a given by

1=`a F
ym

0

=1+s(s)
h(s)

ds. (18)

With this change of variables it follows from (17) and the definition of
J[q] that

Ĵ[s]=a`a F
ym

0
(2s−1)=1+s(s)

h(s)
ds. (19)
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Using (18) in (19) finally gives,

−Ĵ[s]=
>ym0 (1−2s(s))`(s(s)+1)/h(s) ds

(>ym0 `(s(s)+1)/h(s) ds)3
. (20)

Using Fenchel–Moreau duality,

min
q

J(q)=max
s

[−Ĵ(s)],

and the theorem follows from here. L

3. AN APPLICATION: THE DUFFING EQUATION

To illustrate our variational principle and its dual, we will consider as
an example the Duffing oscillator. Consider the two point boundary value
problem

ẍ=−l(x+dx3), (21)

on the interval (0, 1) with ẋ(0)=0 and x(1)=0. Denote by xm=x(0) the
sup–norm of the solution. We are only interested in the principal branch
(l, xm), i.e., in the positive solution. In terms of l, the period of the
oscillator is given by 4`l. For this simple example one can compute the
period of the oscillator in closed form in terms of complete elliptic
integrals. However, since our purpose here is to illustrate the use of the
dual variational principles, we will use simple trial functions in Theorems 1
and 2 above to compute upper and lower bounds on the period of the
Duffing oscillator. There is a vast literature on the Duffing oscillator, and
the use of perturbative schemes to obtain the period of the oscilator (see,
e.g., ref. 9 and the references therein). Most perturbative schemes yield
divergent asymptotic series for the period which can, however, be con-
verted into exponentially fast convergent series by Kleinert’s variational
perturbation theory. (7)

To begin with, we use Theorem 1 to get a lower bound on l. As we
pointed out in ref. 4, a good trial function is given by

g(x)=
1
x2m

x

`x2m−x2
, (22)

which is certainly in D. This trial function will yield a lower bound on l
which gives an excellent agreement with the exact value of l near the
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bifurcation point l1=p/2. In fact, as it was illustrated in ref. 4 it gives a
good agreement for all values of the amplitude xm. From (21) we get

gŒ(x)=
1

(x2m−x2)3/2
. (23)

Using this trial function g in Theorem 1, yields the lower bound

l \
p2

4
1

1+3dx2m/4
. (24)

If we denote by w=2p/T, the above bound gives the following upper
bound on w for the Duffing oscillator,

w [`1+3
4dx

2
m . (25)

We now proceed to compute upper bounds on l (i.e., lower bounds on w)
using the dual principle given by Theorem 2. For the Duffing oscillator,
f(x)=x+dx3, and therefore F(x)=x2/2+dx4/4. Hence, we can write

h(x)=h0(1+dz) (26)

where

h0=
1
2 (x

2
m−x2), and z=1

2 (x
2
m+x2). (27)

In order to get simple, computable, bounds using the variational principle
given by Theorem 2, it is convenient to express the trial function s in terms
of a new variable, p, through the following relation,

s+1
h

=
1
h0

p2. (28)

Different approximations (i.e., different upper bounds on l) are obtained
by choosing different expressions for the trial function p. The simplest way
to get computable bounds to different degree of accuracy is to use as trial p
the Taylor expansion of (1+dz)−1/2 truncated to any even power. In the
sequel we give the details for the first nontrivial truncation. Better approx-
imations can be obtained in the same way. Choosing

p(z)=1− 12dz+
3
8d
2z2, (29)
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(which corresponds to the Taylor expansion of (1+dz)−1/2 truncated to
second order), yields

s=
(dz)3

64
(40−15dz+9d2z2), (30)

which is nonnegative, and therefore belongs to H. Denoting by

A=67108864−25165824dx2m+14942208d2x4m−41287680d3x6m

+31073280d4x8m−24748416d5x10m+7192476d6x12m −2202957d7x14m ,

and

B=4(256−96dx2m+57d2x4m)
3,

then,

1
l
\

4
p2

A
B
, (31)

and

w \=A
B
. (32)

In Fig. 1, we plot the exact value (solid line) of w — 2p/T for the
Duffing oscilator as well as the upper bound (25) and the lower bound (32).

Fig. 1. The solid line is the exact solution. The dot–dot–dash line is the upper bound,
whereas the dashed lines are lower bounds from the variational principles.
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The upper bound is an excellent approximation for w for all amplitudes,
whereas more complicated trial functions have to be used to get better
lower bounds on w. In the figure we also include the lower bounds
obtained by truncating (1+dz)−1/2 to degree 4, 6, 8, and 10 as a function of
z. It is interesting to point out that all these lower bounds are precisely the
curves for w obtained by standard perturbation theory.
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