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Minimal speed of fronts of reaction-convection-diffusion equations
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We study the minimal speed of propagating fronts of convection-reaction-diffusion equations of the form
ut1mf(u)ux5uxx1 f (u) for positive reaction terms withf 8(0).0. The functionf(u) is continuous and
vanishes atu50. A variational principle for the minimal speed of the waves is constructed from which upper
and lower bounds are obtained. This permits thea priori assessment of the effect of the convective term on the
minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the
minimal speed of the fronts. We show that iff 9(u)/Af 8(0)1mf8(u),0, then the minimal speed is given by
the linear value 2Af 8(0), and theconvective term has no effect on the minimal speed. The results are
illustrated by applying them to the exactly solvable caseut1muux5uxx1u(12u). Results are also given for
the density dependent diffusion caseut1mf(u)ux5@D(u)ux#x1 f (u).
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I. INTRODUCTION

The reaction-diffusion equationut5uxx1 f (u) has been
employed as a simple model of phenomena in different ar
population growth, chemical reactions, flame propagati
and others. In the classical Fisher case@1#, f (u)5u(12u), a
front propagating with speedckpp52 joins the two equilib-
rium points @2#. The time evolution for general reactio
terms was solved by Aronson and Weinberger@AW# @3# who
showed that sufficiently localized initial conditions evolv
into a front which propagates with speedc* such that
2Af 8(0)<c* <2Asup@ f (u)/u#. The asymptotic speed o
propagation is the minimal speed for which a monoto
front joining the stable to unstable equilibrium point exis
Existence proofs give limited quantitative information on t
dependence of the speed of the front on the parameters o
problem @4#. For this reason different variational metho
have been developed. For the one-dimensional case it
been shown that this minimal speed can be derived ei
from a local variational principle of the minimax type@5#, or
from an integral variational principle@6,7#. Minimax varia-
tional principles for the speed of fronts in several dimensio
and for inhomogeneous environments have also been e
lished @4,8#.

In many processes, in addition to diffusion, motion c
also be due to advection or convection. Nonlinear advec
terms arise naturally, for example, in the motion of chem
tactic cells. In a simple one-dimensional model, denoting
r the density of bacteria, chemotactic to a single chem
element of concentrations(x,t) the density evolves accord
ing to

r t5@Drx2rxsx#x1 f ~r!,

where diffusion, chemotaxis and growth have been con
ered. There is some evidence@9# that, in certain cases, th
rate of chemical consumption is due mainly to the ability
the bacteria to consume it. In that case
1063-651X/2004/69~3!/031106~7!/$22.50 69 0311
s,
,

c
.

the

as
er

s
ab-

n
-
y
al

d-

f

st52kr,

where diffusion of the chemical has been neglected~argu-
ments to justify this approximation, together with the choi
of constantD andx are given in Ref.@9#!. If we now look
for traveling wave solutionss5s(x2ct), r5r(x2ct), then
st52csx , thereforesx5kr/c, and the problem reduces to
single differential equation forr, namely,

r t5Drxx2
xk

c
~r2!x1 f ~r!. ~1!

The more elaborate models of Keller and Segel for chem
taxis @10#, which include diffusion of the chemical and othe
effects, have been considered to explain chemotactic colla
~see Refs.@11,12#, and references therein! and other phenom-
ena. The derivation of these equations from transport the
and the assumptions involved in them have been studied
cently @13#. In addition to these biological processes, equ
tions analogous to Eq.~1! appear when modeling the Gun
effect in semiconductors and in other physical phenom
@14,15#. Equation~1! for a Fisher type reaction termf (u)
5u(12u) has been studied in Ref.@16#. An extensive study
of the existence of traveling waves of nonlinear diffusio
reaction-convection equations which includes a review
many results to which we refer for additional references
contained in Ref.@17#.

In this work we concentrate on the equation with a ge
eral convective term which, suitably scaled, we write as

ut1mf~u!ux5uxx1 f ~u!, ~2!

where the reaction termf (u) is a continuous function with
continuous derivative in@0,1# and satisfies

f ~0!5 f ~1!50, f 8~0!.0, f 8~1!,0
©2004 The American Physical Society06-1
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and

f .0 in ~0,1!.

The functionf(u) is a continuous function with continuou
derivative in @0,1#. Without loss of generality we may as
sume that in additionf(0)50, since otherwise only a uni
form shift in the speed is introduced. The parameterm is
positive.

For Eq.~2!, the existence of monotonic decaying traveli
fronts u(x2ct) for any wave speed greater than a critic
value c* has been proved recently Ref.@18#. Moreover, in
Ref. @18# the following estimate for the threshold valuec* is
obtained,

2Af 8~0!<c* <2A sup
uP~0,1#

f ~u!

u
1 max

uP[0,1]
mf~u!. ~3!

Analogous results for density dependent diffusion are a
established in Ref.@18#. The convergence of some initia
conditions to a monotonic traveling front has been prov
@19# for systems in which the minimal speed is strict
greater than the linear valuecL52Af 8(0).

We will show that the minimal speedc* for the existence
of a monotonic decaying frontu(x2ct) joining the stable
equilibriumu51 to the unstable equilibriumu50 obeys the
variational principle

c* 5sup
gPS

E~g!, ~4!

with

E~g!5

E
0

1

$2Af ~u!g~u!@2g8~u!#1mf~u!g~u!%du

E
0

1

g~u!du

~5!

and the supremum is taken over the setS of all positive,
monotonic decreasing functionsg(u) for which the integrals
in Eq. ~5! exist andg(1)50. From here it will follow that

2Af 8~0![cL<c* < inf
a.0

sup
uP@0,1#

S a1
1

a
f 8~u!1mf~u! D .

~6!

From the variational expression~4! one may obtain the value
of the minimal speed with any desired accuracy, and
inequalities~6! enable us to characterize the reaction ter
for which the speed is the linear valuecL . More precisely, if

f 9~u!

Af 8~0!
1mf8~u!,0, then c* 52Af 8~0!.

The bound~3! is also derived from the variational prin
ciple. The generalization to density dependent diffusion
given as a direct extension of the previous results.
03110
l

o

d

e
s

s

II. MINIMAL SPEED OF TRAVELLING FRONTS

Traveling monotonic decaying frontsu(x2ct) of Eq. ~2!
satisfy the ordinary differential equation

uzz1@c2mf~u!#uz1 f ~u!50,

lim
z→2`

u51, lim
z→`

u50, uz,0,

where z5x2ct. It is convenient to work in phase spac
defining as usualp(u)52uz , the problem reduces to find
ing the solutions of

p~u!
dp~u!

du
2@c2mf~u!#p~u!1 f ~u!50, ~7!

with

p~0!5p~1!50, and p.0.

We first perform the linear analysis around the endpoi
u50 andu51, which may provide restrictions on the a
lowable speed. These results will also be needed when p
ing the existence of a variational principle. Nearu50,
p(u)5mu, where m is the larger root ofm22F(0)m
1 f 8(0)50. For convenience, we have definedF(u)5c
2mf(u). This root is given by

m5
F~0!1AF~0!224 f 8~0!

2
.

The condition thatm be real imposes the restrictionF2(0)
>4 f 8(0). Written explicitly this bound is

c>2Af 8~0![cL . ~8!

Near u51, p5r (12u), wherer is the positive root ofr 2

1F(1)r 1 f 8(1)50, namely,

r 5
2F~1!1AF2~1!24 f 8~1!

2
. ~9!

No additional restriction on the range of allowable speed
imposed from the expression above, since by hypoth
f 8(1),0.

In addition to the linear constraint~8!, a simple constraint
is found from direct integration of Eq.~7!. Dividing by p(u)
and integrating between 0 and 1, we have

c5mE
0

1

f~u!du1E
0

1 f ~u!

p~u!
du.

Sincef andp are positive in (0,1), we obtain

c.mE
0

1

f~u!du.
6-2
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A. Variational principle

In this section we construct a variational principle fro
which the exact speed of the front may be calculated. Leg
be any positive function in~0,1! such thath52dg/du.0.
Multiplying Eq. ~7! by g/p and integrating with respect tou
we find that

cE
0

1

g du5E
0

1S hp1
f

p
gDdu1mE

0

1

fg du

where the first term on the right-hand side is obtained a
integration by parts. However sincep, h, f , andg are posi-
tive, we have that for every fixedu

hp1
f g

p
>2Af gh,

so that

c>

E
0

1

@2Af gh1mfg#du

E
0

1

g du

5E~g!. ~10!

To show that this is a variational principle we must pro
that there exists a functiong5ĝ for which equality holds.
Equality is attained forg5ĝ such that

ph52pĝ85
ĝ f

p
.

Using Eq.~7! to eliminatef (u) we have that

ĝ8~u!

ĝ~u!
2

p8~u!

p~u!
52

F~u!

p~u!
,

which can be integrated to obtain

ĝ~u!5p~u!expF2E
u0

u S F~ t !

p~ t ! DdtG with 0,u0,1.

~11!

Sincep vanishes at 0 and 1, we must analyze the behavio
ĝ at these points in order to ensure the convergence of
integrals in Eq.~10!.

At u51, sincep(u)5r (12u), and sinceF(u) is con-
tinuous at 1, we obtain that

ĝ;r ~12u! [11F(1)/r ] .

From the expression forr, Eq. ~9!, we see that, sincef 8(1)
,0, for any value ofF(1) the exponent 11F(1)/r is posi-
tive, henceĝ(1)50.

Near u50, sincep5mu and sinceF is continuous at
zero, we find that
03110
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u[F(0)/m] 21
.

The integrals in Eq.~10! converge provided

F~0!

m
21,1.

This condition is satisfied wheneverc* .cL , that is, when-
everc* .cL there exists a functiong5ĝ for which equality
holds in Eq.~10! or, equivalently,c* 5maxE(g)5E(ĝ).

On the other hand, whenc* 5cL , there does not exist a
function ĝ in the setS of admissible functions for which
equality holds in Eq.~10!. Consider however the trial func
tions

ga~u!5ua2121.

ClearlygaPS for any 0,a,1. Moreover one can check tha
~see the Appendix!

lim
a→0

E~ga!5cL5c* ,

therefore

c* 5sup
gPS

E~g!

in this case. Notice that in this last case the maximum is
attained since the limiting functiong0 does not belong toS.
This concludes the proof of our variational principle.

B. Upper and lower bounds

The variational principle provides lower bounds with su
ably chosen trial functions, which can be arbitrarily close
the exact value of the speed. The fact that it is a variatio
principle for which equality holds, enables one to obtain a
an upper bound to the speed.

To obtain an upper bound we use the fact that

2ab<aa21
1

a
b2 with a.0. ~12!

Then the following inequality holds:

2Af gh52gAf h/g<gS a1
1

a

f h

g D ,

where we used the inequality above witha51,b5Af h/g.
Then
6-3
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c* 5sup
g F E

0

1

~2Af g h1mfg!du

E
0

1

g du
G

<sup
g

E
0

1

g@a1 f h/~ag!1mf#du

E
0

1

g du

.

The second term in the last expression can be integrate
parts. The boundary termf gu0

1 vanishes and we obtain

c* <sup
g

E
0

1

g~a1 f 8/a1mf!du

E
0

1

g du

< sup
uP@0,1#

Fa1mf1
1

a
f 8G .
~13!

The above inequality holds for any positivea, hence

c* < inf
a

sup
uP@0,1#

Fa1
1

a
f 8~u!1m f~u!G . ~14!

The bound~14! in the casem50 differs from the classica
AW @3# result for fronts of the parabolic reaction diffusio
equationc<cAW52 supuP[0,1]Af (u)/u. The bound~3! ob-
tained in Ref.@18# on the other hand, reduces, whenm50 to
the classical AW result. Here we show that this last bou
can be derived from the variational principle as well. Usi
the inequality~12!, now with a5Af g/u and b5Auh, we
have that

2E
0

1
Af gh du<E

0

1Fa f g

u
1

1

a
huGdu5E

0

1Fa f g

u
1

1

a
gGdu,

where the last expression is obtained after integrating
second term by parts. We have then

c* <sup
g

E
0

1

gS a
f

u
1

1

a
1mf Ddu

E
0

1

g du

< sup
uP@0,1#

Fa f

u
1

1

a
1mfG .

Choosinga51/supAf /u we obtain

c* < sup
uP]0,1]

F2Af ~u!

u G1m max
uP[0,1]

f~u!.

In the classical AW casem50, we know that when the
reaction term is concave then sup 2Af (u)/u52Af 8(0). In
this case the upper bound coincides with the linear low
boundcL and the minimal speed is univocally determined
03110
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similar criterion can be obtained in the present problem. T
minimal speed for the existence of a front is known una
biguously to be the linear value whenever the upper bo
~14! coincides with the linear lower boundcL . A sufficient
condition for this to occur is that the supremum of the fun
tion K(u)5a1 f 8(u)/a1mf(u) in (0,1# does not exceed
the value of K at the origin. Effectively, if supu K(u)
5K(0)5a1 f 8(0)/a; minimizing with respect toa we ob-
tain a5Af 8(0) and the upper bound is precisely the line
value. A sufficient condition that guarantees that the ma
mum ~supremum! of K occurs at zero is thatK(u) be de-
creasing. Witha5Af 8(0) this condition is

f 9~u!

Af 8~0!
1mf8~u!,0.

Whenever this condition is fulfilled, for allu, we know that
the minimal speed of a monotonic front is the linear val
cL52Af 8(0). Again as it occurs in the standard casem50,
this condition is sufficient but not necessary.

III. AN EXACTLY SOLVABLE CASE

Here we illustrate the above results by applying them
the exactly solvable case discussed in Ref.@16#: a Fisher type
reaction termf (u)5u(12u) and the simplest convectiv
term f(u)5u. By means of a phase space analysis Mur
@16# found that the minimal speed for the existence of
monotonic decaying front is

c* 5H 2

m
1

m

2
if m.2

2 if m<2.

~15!

Here we show that the results of the preceding section al
for the exact determination of the speed.

In this example the linear marginal stability value is giv
by cL52. We first use the variational principle to obtain
lower bound. Take the trial function

g~u!5S 12u

u D l

with 0,l,1.

A straightforward integration of Eq.~10! leads to

c>2Al1
m

2
~12l![c~l!.

If m.2 the maximum ofc(l) occurs forl54/m2 and it is
given by 2/m1m/2. For m<2, however, the supremum o
c(l) occurs asl→1. We have then

c* >supc~l!5
2

m
1

m

2
for m.2,

and

c* >supc~l!52 for m<2.
6-4
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To obtain an upper bound we use Eq.~13!, that is,

c* < sup
uP@0,1#

Fa1
1

a
1uS m2

2

a D G ;a.0.

We will separate the two casesm<2 andm.2.
If m<2, choosea51, then

c* < sup
uP@0,1#

@21u~m22!#52.

If m.2 choosea52/m, then

c* < sup
uP@0,1#

S 2

m
1

m

2 D5
2

m
1

m

2
.

The lower bound obtained from the variational express
coincides with the upper bound obtained from Eq.~14!,
therefore we know with certainty that the minimal speed
indeed Eq.~15!, and had been previously demonstrated
phase space methods.

Note that Eq.~3! constitutes a poorer bound in this cas
Effectively, from Eq.~3! it follows that c <21m.
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IV. DENSITY DEPENDENT DIFFUSION

The effect of the convective term on the minimal speed
fronts of the reaction diffusion equation for nonconstant d
fusion follows in a simple way from the previous result
Consider traveling fronts of the equation

ut1mf~u!ux5@D~u!ux#x1 f ~u!,

where f (u) and f(u) satisfy the properties spelled in th
previous sections. The diffusion coefficientD(u) is continu-
ous andD(u).0 in (0,1#. D(0) is either positive or zero
By a suitable change of variables@20,21# the equation for the
fronts is reduced to the usual reaction diffusion equation w
a reaction termf̃ (u)5D(u) f (u). This reaction term satisfie
f̃ .0, and f̃ 8(0)5D(0) f 8(0). We must distinguish two
cases. IfD(0)Þ0, then f̃ satisfies the same properties asf
and the results of the preceding sections can be applied
rectly. If D(0)50, then f̃ 8(0)50 and we expect a shar
wave front. In this case it has been shown@3# that the front
approachesu50 ascu. A variational principle exists also in
this case@22#. We have then that, in both cases, the minim
speed of the wave fronts is given by
c* 5sup
g F E

0

1

$2AD~u! f ~u!g~u!@2g8~u!#1mf~u!g~u!%du

E
0

1

g~u! du
G ,
and
where the supremum is taken over all positive monoto
decreasing functionsg(u) for which the integrals exist and
g(1)50. Upper and lower bounds can be obtained followi
the methods of the preceding sections. We do not spell th
out here.

V. SUMMARY

We have studied the effect of a convective term on
speed of monotonic reaction-diffusion fronts. The minim
speed for the existence of fronts has been shown to de
from a variational principle from which the exact speed c
be determined in principle. The existence of this variatio
characterization permits the obtention of upper and low
bounds. The classical result that establishes that for con
reaction terms, the minimal speed of the fronts is the lin
value is extended to the case where convective terms
present. The extension to the case of density dependen
fusion has been given for positive diffusion terms.

We have found that a convective term increases the m
mal speed of the traveling front only if it is sufficientl
strong, if not, the minimal speed is determined by the re
tion term alone.
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APPENDIX

In this appendix we prove that

lim
a→0

E~ga!5cL52Af 8~0!,

wherega5ua2121 with 0,a,1.
Since*0

1ga(u)du5(12a)/a, andha5(12a)ua22, we
may write

E~ga!5J1~a!1J2~a!,

where

J1~a!5
2a

A12a
E

0

1
Af ~u!~u2a232ua22!du

and

J2~a!5
ma

12aE0

1

f~u!~ua2121!du.
6-5
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Sincef~0!50 andf is continuous the integral inJ2 has a
finite value whena50. Then, due to the overall multiplica
tive factor ofa, we see that

lim
a→0

J2~a!50.

To show that limJ1(a)52Af 8(0), asa→0, write

J1~a!5
2a

A12a
E

0

1
Au f8~0!~u2a232ua22!du1K~a!,

where

K~a!5
2a

A12a
F E

0

1
Af ~u!~u2a232ua22!du

2E
0

1
Au f8~0!~u2a232ua22!duG .

The first integral is

2a

A12a
E

0

1
Au f8~0!~u2a232ua22!du

5
Ap f 8~0!

A12a

GS 1

12aD
GS 231a

2~a21! D
.

Now we prove that lim
a→0

K(a)50.

uK~a!u<
2a

A12a
E

0

1

uAf ~u!~u2a232ua22!

2Au f8~0!~u2a232ua22!udu.
ys

03110
But uAa2Abu<Aub2au, therefore

uK~a!u<
2a

A12a
E

0

1
Au f ~u!2u f8~0!u~u2a232ua22!du.

Since f (u) and its derivative are continuous, in@0,1#, there
exist d.0, q.0 such that

u f ~u!2u f8~0!u
u

,duq.

In particular, if f (u) is analytic in a neighborhood of 0,q
51. Using this inequality in the expression above, we ha
that

uK~a!u<
2a

A12a
E

0

1
Aduq11~u2a232ua22!du.

Finally, sinceu2a232ua22,u2a23,

uK~a!u<
2a

A12a
AdE

0

1

ua211q/2 du5
2a

A12a

Ad

a1q/2
.

Therefore, lim
a→0

uK(a)u50.

To sum up,

lim
a→0

E~ga!5 lim
a→0

Ap f 8~0!

A12a

GS 1

12aD
GS 231a

2~a21! D
52Af 8~0!.
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